Last updated: 2020-04-09

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/TrialFiltersMeta.txt.sb-9845453e-R58Y0Q/
    Ignored:    data/mediation_prot/
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/DiffUsedUTR.Rmd
    Untracked:  analysis/GvizPlots.Rmd
    Untracked:  analysis/HandC.TvN
    Untracked:  analysis/PhenotypeOverlap10.Rmd
    Untracked:  analysis/annotationBias.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  code/._AlignmentScores.sh
    Untracked:  code/._BothFCMM.sh
    Untracked:  code/._BothFCMMPrim.sh
    Untracked:  code/._BothFCnewOInclusive.sh
    Untracked:  code/._ChimpStarMM2.sh
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._ClosestorthoEx.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._Filter255MM.sh
    Untracked:  code/._FilterPrimSec.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._FindIntronForDomPAS_DF.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._MismatchNumbers.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PAS_ATTAAA_df.sh
    Untracked:  code/._PAS_seqExpanded.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._PASsequences_DF.sh
    Untracked:  code/._PlotNuclearUsagebySpecies.R
    Untracked:  code/._PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._RNATranscriptDTplot.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._RunNegMCMediation.sh
    Untracked:  code/._RunNegMCMediationDF.sh
    Untracked:  code/._RunPosMCMediationDF.err
    Untracked:  code/._RunPosMCMediationDF.sh
    Untracked:  code/._SAF2Bed.py
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._StarMM2.sh
    Untracked:  code/._TestFC.sh
    Untracked:  code/._assignPeak2Intronicregion
    Untracked:  code/._assignPeak2Intronicregion.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2Bedbothstrand.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._chimpMultiCov.sh
    Untracked:  code/._chimpMultiCov255.sh
    Untracked:  code/._chimpMultiCovInclusive.sh
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._extractPhyloReg.py
    Untracked:  code/._extractPhyloRegGene.py
    Untracked:  code/._extractPhylopGeneral.ph
    Untracked:  code/._extractPhylopGeneral.py
    Untracked:  code/._extractPhylopReg200down.py
    Untracked:  code/._extractPhylopReg200up.py
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._filterPrimaryread.py
    Untracked:  code/._filterSecondaryread.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixFCheadforExp.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._humanMultiCov.sh
    Untracked:  code/._humanMultiCov255.sh
    Untracked:  code/._humanMultiCov_inclusive.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeNuclearDapaplots.sh
    Untracked:  code/._makeNuclearDapaplots_DF.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mediation_test.R
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergeandBWRNAseq.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._negativeMediation_montecarlo.R
    Untracked:  code/._negativeMediation_montecarloDF.R
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapMMandOrthoexon.sh
    Untracked:  code/._overlapPASandOrthoexon.sh
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._parseHg38.py
    Untracked:  code/._postiveMediation_montecarlo_DF.R
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantLiftedPASPrimary.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDiffIso_DF.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._spliceSite2Fasta.py
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._threeprimeOrthoFC.sh
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ALLPAS_sequenceDF.err
    Untracked:  code/ALLPAS_sequenceDF.out
    Untracked:  code/AlignmentScores.err
    Untracked:  code/AlignmentScores.out
    Untracked:  code/AlignmentScores.sh
    Untracked:  code/BothFCMM.err
    Untracked:  code/BothFCMM.out
    Untracked:  code/BothFCMM.sh
    Untracked:  code/BothFCMMPrim.err
    Untracked:  code/BothFCMMPrim.out
    Untracked:  code/BothFCMMPrim.sh
    Untracked:  code/BothFCnewOInclusive.sh
    Untracked:  code/BothFCnewOInclusive.sh.err
    Untracked:  code/BothFCnewOInclusive.sh.out
    Untracked:  code/ChimpStarMM2.err
    Untracked:  code/ChimpStarMM2.out
    Untracked:  code/ChimpStarMM2.sh
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/ClosestorthoEx.err
    Untracked:  code/ClosestorthoEx.out
    Untracked:  code/ClosestorthoEx.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/Filter255.err
    Untracked:  code/Filter255.out
    Untracked:  code/Filter255MM.sh
    Untracked:  code/FilterPrimSec.err
    Untracked:  code/FilterPrimSec.out
    Untracked:  code/FilterPrimSec.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/FindIntronForDomPAS_DF.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/IntersectMMandOrtho.err
    Untracked:  code/IntersectMMandOrtho.out
    Untracked:  code/IntersectPASandOrtho.err
    Untracked:  code/IntersectPASandOrtho.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MaxEntCode/
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/MismatchNumbers.err
    Untracked:  code/MismatchNumbers.out
    Untracked:  code/MismatchNumbers.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_ATTAAADF.err
    Untracked:  code/PAS_ATTAAADF.out
    Untracked:  code/PAS_ATTAAA_df.sh
    Untracked:  code/PAS_seqExpanded.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PAS_sequenceDF.err
    Untracked:  code/PAS_sequenceDF.out
    Untracked:  code/PASexpanded_sequenceDF.err
    Untracked:  code/PASexpanded_sequenceDF.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/PASsequences_DF.sh
    Untracked:  code/PlotNuclearUsagebySpecies.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/RNATranscriptDTplot.err
    Untracked:  code/RNATranscriptDTplot.out
    Untracked:  code/RNATranscriptDTplot.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/RunNegMCMediation.err
    Untracked:  code/RunNegMCMediation.sh
    Untracked:  code/RunNegMCMediationDF.err
    Untracked:  code/RunNegMCMediationDF.out
    Untracked:  code/RunNegMCMediationDF.sh
    Untracked:  code/RunNegMCMediationr.out
    Untracked:  code/RunPosMCMediation.err
    Untracked:  code/RunPosMCMediation.sh
    Untracked:  code/RunPosMCMediationDF.err
    Untracked:  code/RunPosMCMediationDF.out
    Untracked:  code/RunPosMCMediationDF.sh
    Untracked:  code/RunPosMCMediationr.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/SAF2Bed.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/StarMM2.err
    Untracked:  code/StarMM2.out
    Untracked:  code/StarMM2.sh
    Untracked:  code/TestFC.err
    Untracked:  code/TestFC.out
    Untracked:  code/TestFC.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/allPASSeq_df.sh
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignPeak2Intronicregion.sh
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2Bedbothstrand.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chimpMultiCov.err
    Untracked:  code/chimpMultiCov.out
    Untracked:  code/chimpMultiCov.sh
    Untracked:  code/chimpMultiCov255.sh
    Untracked:  code/chimpMultiCovInclusive.err
    Untracked:  code/chimpMultiCovInclusive.out
    Untracked:  code/chimpMultiCovInclusive.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chooseSignalSite.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/extractPhyloReg.py
    Untracked:  code/extractPhyloRegGene.py
    Untracked:  code/extractPhylopGeneral.py
    Untracked:  code/extractPhylopReg200down.py
    Untracked:  code/extractPhylopReg200up.py
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterPrimaryread.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSecondaryread.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFCheadforExp.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getAlloverlap.py
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/humanMultiCov.err
    Untracked:  code/humanMultiCov.out
    Untracked:  code/humanMultiCov.sh
    Untracked:  code/humanMultiCov255.err
    Untracked:  code/humanMultiCov255.out
    Untracked:  code/humanMultiCov255.sh
    Untracked:  code/humanMultiCovInclusive.err
    Untracked:  code/humanMultiCovInclusive.out
    Untracked:  code/humanMultiCov_inclusive.sh
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectAnnoExt.err
    Untracked:  code/intersectAnnoExt.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makeNuclearDapaplots.sh
    Untracked:  code/makeNuclearDapaplots_DF.sh
    Untracked:  code/makeNuclearPlots.err
    Untracked:  code/makeNuclearPlots.out
    Untracked:  code/makeNuclearPlotsDF.err
    Untracked:  code/makeNuclearPlotsDF.out
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mediation_test.R
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandBWRNAseq.sh
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/mergedbamRNAand2bw.err
    Untracked:  code/mergedbamRNAand2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/negativeMediation_montecarlo.R
    Untracked:  code/negativeMediation_montecarloDF.R
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapMMandOrthoexon.sh
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapPASandOrthoexon.sh
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/overlapapaQTLPAS_extended.sh
    Untracked:  code/overlapapaQTLPAS_samples.sh
    Untracked:  code/parseHg38.py
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/postiveMediation_montecarlo.R
    Untracked:  code/postiveMediation_montecarlo_DF.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quantLiftedPASPrimary.err
    Untracked:  code/quantLiftedPASPrimary.out
    Untracked:  code/quantLiftedPASPrimary.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runChimpDiffIsoDF.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runHumanDiffIsoDF.sh
    Untracked:  code/runNuclearDiffIso_DF.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_dF.err
    Untracked:  code/run_Humanleafcutter_dF.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_dsDF.err
    Untracked:  code/run_Nuclearleafcutter_dsDF.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/spliceSite2Fasta.py
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/test.txt
    Untracked:  code/threeprimeOrthoFC.out
    Untracked:  code/threeprimeOrthoFC.sh
    Untracked:  code/threeprimeOrthoFCcd.err
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._TrialFiltersMeta.txt
    Untracked:  data/._TrialFiltersMeta.txt.sb-9845453e-R58Y0Q
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/BaseComp/
    Untracked:  data/CleanLiftedPeaks_FC_primary/
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DNDS/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Nuclear_DF/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DominantPAS/
    Untracked:  data/DominantPAS_DF/
    Untracked:  data/EvalPantro5/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NormalizedClusters/
    Untracked:  data/NuclearHvC/
    Untracked:  data/NuclearHvC_DF/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/OrthoExonBed/
    Untracked:  data/OverlapBenchmark/
    Untracked:  data/OverlappingPAS/
    Untracked:  data/PAS/
    Untracked:  data/PAS_SAF/
    Untracked:  data/PAS_doubleFilter/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_DF_nuclear/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_nuclear_old/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/PhyloP/
    Untracked:  data/Pol2Chip/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/SignalSites_doublefilter/
    Untracked:  data/SpliceSite/
    Untracked:  data/TestAnnoBiasOE/
    Untracked:  data/TestMM2/
    Untracked:  data/TestMM2_AS/
    Untracked:  data/TestMM2_PrimaryRead/
    Untracked:  data/TestMM2_SeondaryRead/
    Untracked:  data/TestMM2_mismatch/
    Untracked:  data/TestMM2_quality/
    Untracked:  data/TestWithinMergePAS/
    Untracked:  data/Test_FC_methods/
    Untracked:  data/Threeprime2Ortho/
    Untracked:  data/TotalFractionPAS/
    Untracked:  data/TotalHvC/
    Untracked:  data/TrialFiltersMeta.txt
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/apaQTLGenes/
    Untracked:  data/bioGRID/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/files4viz_nuclear/
    Untracked:  data/files4viz_nuclear_DF/
    Untracked:  data/gviz/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/mediation/
    Untracked:  data/mediation_DF/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/multimap/
    Untracked:  data/orthoUTR/
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/testQuant/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/._.DS_Store
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd
    Untracked:  proteinModelSet.Rmd

Unstaged changes:
    Modified:   analysis/ExploredAPA.Rmd
    Modified:   analysis/MMExpreiment.Rmd
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/TotalVNuclearBothSpecies.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/changeMisprimcut.Rmd
    Modified:   analysis/comp2apaQTLPAS.Rmd
    Modified:   analysis/correlationPhenos.Rmd
    Modified:   analysis/establishCutoffs.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/pol2.Rmd
    Modified:   analysis/speciesSpecific.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd fc93eb9 brimittleman 2020-04-09 red for no 18499

It looks like NA18499 nuclear fraction data is of poor quality. I will run some of the analysis without this individual.

library(reshape2)
library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(workflowr)
This is workflowr version 1.6.0
Run ?workflowr for help getting started
Nuclear=read.table("../data/PAS_doubleFilter/PAS_5perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt",header = T,stringsAsFactors = F) %>% select(PAS, Chimp, Human) %>% rename(ChimpNuclear=Chimp, HumanNuclear=Human)
Total=read.table("../data/TotalFractionPAS/TotalFraction_PASmeta.txt",header = T, stringsAsFactors = F)%>% select(PAS, ChimpTot, HumanTot) %>% rename(ChimpTotal=ChimpTot, HumanTotal=HumanTot)


BothFrac= Nuclear %>% inner_join(Total,by="PAS")
HumanAnno=read.table("../Human/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("chr", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "disc","PAS"), sep="-")
IndH=colnames(HumanAnno)[9:ncol(HumanAnno)]

HumanUsage=read.table("../Human/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = IndH)
HumanUsage_anno=as.data.frame(cbind(HumanAnno[,1:8],HumanUsage )) %>% select(-chr,-start,-end, -gene, -strand, -loc, -disc,-NA18499_N, -NA18499_T) %>% filter(PAS %in% Nuclear$PAS)


HumanUsageGather= HumanUsage_anno%>% gather("Line", "Usage", -PAS) %>% mutate(fraction=ifelse(grepl("_N", Line),"NuclearHuman", "TotalHuman"),indiv=substr(Line,1,nchar(Line)-2))
HumanUsageGatherMeans=HumanUsageGather %>% group_by(PAS, fraction) %>% summarise(meanUsage=mean(Usage)) %>% spread( fraction, meanUsage) 

chimp

ChimpAnno=read.table("../Chimp/data/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("chr", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "disc","PAS"), sep="-")
IndC=colnames(ChimpAnno)[9:ncol(ChimpAnno)]

ChimpUsage=read.table("../Chimp/data/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno_countOnlyNumeric.txt", col.names = IndC)
ChimpUsage_anno=as.data.frame(cbind(ChimpAnno[,1:8],ChimpUsage ))%>% select(-chr,-start,-end, -gene, -strand, -loc, -disc ) %>% filter(PAS %in% Nuclear$PAS)

ChimpUsageGather= ChimpUsage_anno%>% gather("Line", "Usage", -PAS) %>% mutate(fraction=ifelse(grepl("_N", Line),"NuclearChimp", "TotalChimp"),indiv=substr(Line,1,nchar(Line)-2))
ChimpUsageGatherMeans=ChimpUsageGather %>% group_by(PAS, fraction) %>% summarise(meanUsage=mean(Usage)) %>% spread( fraction, meanUsage) 

Both fractions:

BothMean=ChimpUsageGatherMeans %>% inner_join(HumanUsageGatherMeans,by="PAS")

Look recalculate the mean usage for these.

ggplot(BothMean,aes(x=NuclearHuman, y=TotalHuman)) + geom_point() + geom_smooth(method="lm") + labs(title="Human mean usage correlation between fractions",x= "Nuclear", y="Total")

cor.test(BothMean$NuclearHuman, BothMean$TotalHuman)

    Pearson's product-moment correlation

data:  BothMean$NuclearHuman and BothMean$TotalHuman
t = 573.75, df = 46492, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9349463 0.9371962
sample estimates:
      cor 
0.9360808 
summary(lm(BothMean$NuclearHuman~BothMean$TotalHuman))

Call:
lm(formula = BothMean$NuclearHuman ~ BothMean$TotalHuman)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.46121 -0.03133  0.00037  0.03249  0.52478 

Coefficients:
                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)         0.018499   0.000411   45.02   <2e-16 ***
BothMean$TotalHuman 0.835818   0.001457  573.75   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07106 on 46492 degrees of freedom
Multiple R-squared:  0.8762,    Adjusted R-squared:  0.8762 
F-statistic: 3.292e+05 on 1 and 46492 DF,  p-value: < 2.2e-16
ggplot(BothMean,aes(x=NuclearChimp, y=TotalChimp)) + geom_point() + geom_smooth(method="lm") + labs(title="Chimp mean usage correlation between fractions",x= "Nuclear", y="Total")

cor.test(BothMean$NuclearChimp, BothMean$TotalChimp)

    Pearson's product-moment correlation

data:  BothMean$NuclearChimp and BothMean$TotalChimp
t = 751.89, df = 46492, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9605587 0.9619402
sample estimates:
      cor 
0.9612555 
summary(lm(BothMean$NuclearChimp~BothMean$TotalChimp))

Call:
lm(formula = BothMean$NuclearChimp ~ BothMean$TotalChimp)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.41422 -0.02140  0.00066  0.02535  0.42995 

Coefficients:
                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)         0.010779   0.000337   31.99   <2e-16 ***
BothMean$TotalChimp 0.876831   0.001166  751.89   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05828 on 46492 degrees of freedom
Multiple R-squared:  0.924, Adjusted R-squared:  0.924 
F-statistic: 5.653e+05 on 1 and 46492 DF,  p-value: < 2.2e-16
NA18358= cor(ChimpUsage_anno$NA18358_N, ChimpUsage_anno$NA18358_T)
NA3622= cor(ChimpUsage_anno$NA3622_N, ChimpUsage_anno$NA3622_T)
NA3659= cor(ChimpUsage_anno$NA3659_N, ChimpUsage_anno$NA3659_T)
NA4973= cor(ChimpUsage_anno$NA4973_N, ChimpUsage_anno$NA4973_T)
NApt30= cor(ChimpUsage_anno$NApt30_N, ChimpUsage_anno$NApt30_T)
NApt91= cor(ChimpUsage_anno$NApt91_N, ChimpUsage_anno$NApt91_T)

NA18498= cor(HumanUsage_anno$NA18498_N, HumanUsage_anno$NA18498_T)
NA18502= cor(HumanUsage_anno$NA18502_N, HumanUsage_anno$NA18502_T)
NA18504= cor(HumanUsage_anno$NA18504_N, HumanUsage_anno$NA18504_T)
NA18510= cor(HumanUsage_anno$NA18510_N, HumanUsage_anno$NA18510_T)
NA18523= cor(HumanUsage_anno$NA18523_N, HumanUsage_anno$NA18523_T)


AllTvN=as.data.frame(cbind(Species=c(rep("Chimp",6), rep("Human",5)), Val=c(NA18358,NA3622,NA3659, NA4973,NApt30, NApt91,NA18498,NA18502,NA18504,  NA18510,NA18523), Ind=c('NA18358','NA3622','NA3659', 'NA4973','NApt30', 'NApt91','NA18498','NA18502','NA18504',  'NA18510','NA18523')))

AllTvN$Val=as.numeric(as.character(AllTvN$Val))
ggplot(AllTvN, aes(x=Ind, y=Val, fill=Species)) + geom_bar(stat = "identity") + scale_fill_brewer(palette = "Dark2")+ theme(axis.text.x = element_text(angle = 90)) + labs(x="",y="Correlation between Total and Nuclear Usage", title="Correlation between total and nuclear usage \nfor PAS over 5% in both fractions: Remove 18499")

allPheno=ChimpUsage_anno %>%inner_join(HumanUsage_anno,by="PAS")


allPheno_nuc= allPheno %>% select(contains("_N"))
allPhenoNuc_matrix=as.matrix(allPheno_nuc)

Count_corrNuc= round(cor(allPhenoNuc_matrix),2)

Count_corrNuc_melt=melt(Count_corrNuc)


ggplot(data = Count_corrNuc_melt, aes(x=Var1, y=Var2, fill=value)) + 
  geom_tile() +theme(axis.text.x = element_text(angle = 90))+ scale_fill_distiller(palette = "Blues", direction=1)+ geom_text(aes(label = value))

This is more balanced.

Redo dominance:

allPAS= read.table("../data/PAS_doubleFilter/PAS_5perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt", header = T,stringsAsFactors = F) %>% inner_join(BothMean,by="PAS")
Chimp_Dom= allPAS %>%
  group_by(gene) %>%
  top_n(1,NuclearChimp) %>% 
  mutate(nPer=n()) %>% 
  filter(nPer==1) %>% 
  dplyr::select(gene,loc,PAS,NuclearChimp) %>% 
  rename(ChimpLoc=loc, ChimpPAS=PAS)

Human_Dom= allPAS %>% 
  group_by(gene) %>% 
  top_n(1, NuclearHuman) %>% 
  mutate(nPer=n()) %>% 
  filter(nPer==1) %>% 
  dplyr::select(gene,loc,PAS,NuclearHuman) %>% 
  rename(HumanLoc=loc, HumanPAS=PAS)


#merge

BothDom= Chimp_Dom %>% inner_join(Human_Dom,by="gene")
SameDom=BothDom %>% filter(ChimpPAS==HumanPAS) 

ggplot(SameDom, aes(x=HumanLoc))+ geom_histogram(stat="count") + labs(x="Location", y="Number of Genes", title="Dominant PAS for genes with matching by species : Remove 18499")
Warning: Ignoring unknown parameters: binwidth, bins, pad

DiffDom=BothDom %>% filter(ChimpPAS!=HumanPAS) 

DiffDom_g= DiffDom %>% select(gene, ChimpLoc, HumanLoc) %>% gather("Species", "Location", -gene)
ggplot(DiffDom_g,aes(by=Species, x=Location, fill=Species))+ geom_histogram(stat="count",position = "dodge") + labs(x="Location", y="Number of Genes", title="Different Dominant PAS: Remove 18499") + scale_fill_brewer(palette = "Dark2")+theme(legend.position='bottom')
Warning: Ignoring unknown parameters: binwidth, bins, pad

PASpregene=allPAS %>% group_by(gene) %>% summarize(nPAS=n())
PASmore2=PASpregene %>% filter(nPAS>1)
SameDom=SameDom %>% mutate(DiffinDom=NuclearChimp-NuclearHuman) %>% filter(gene %in% PASmore2$gene)
ggplot(SameDom,aes(x=DiffinDom))+ geom_histogram(bins=100)

PASMeta_humanDom_diff=allPAS %>% filter(PAS %in% DiffDom$HumanPAS) %>% mutate(Diff=NuclearHuman-NuclearChimp)

PASMeta_ChimpDom_diff=allPAS %>% filter(PAS%in%DiffDom$ChimpPAS) %>% mutate(Diff=NuclearHuman-NuclearChimp)


ggplot(PASMeta_humanDom_diff,aes(x=Diff))+geom_histogram(bins=100, fill="#D95F02",alpha=.5) + labs(title="Human Usage - Chimp Usage \n Colored by dominant : Remove 18499") + geom_histogram(data=PASMeta_ChimpDom_diff,aes(x=Diff), bins = 100, fill="#1B9E77", alpha=.5) + geom_vline(xintercept = mean(PASMeta_ChimpDom_diff$Diff), col="#1B9E77")+ geom_vline(xintercept = mean(PASMeta_humanDom_diff$Diff), col="#D95F02") + geom_histogram(bins=100, data=SameDom, aes(x=DiffinDom), alpha=.3)+ geom_vline(xintercept = mean(SameDom$DiffinDom))

DiffDomfromH= DiffDom %>% select(NuclearHuman, ChimpPAS) %>% rename(PAS=ChimpPAS, humanDom=NuclearHuman) %>% inner_join(allPAS, by=c("gene","PAS"))%>% mutate(Diff=humanDom-NuclearHuman,Dom="Human") %>% select(gene,Dom, Diff) %>% inner_join(PASpregene, by="gene")%>% filter(nPAS<6)
Adding missing grouping variables: `gene`
DiffDomfromC= DiffDom %>% select(NuclearChimp, HumanPAS) %>% rename(PAS=HumanPAS, ChimpDom=NuclearChimp) %>% inner_join(allPAS,  by=c("gene","PAS"))%>% mutate(Diff=ChimpDom-NuclearChimp,Dom="Chimp")%>% select(gene,Dom, Diff) %>% inner_join(PASpregene, by="gene") %>% filter(nPAS<6)
Adding missing grouping variables: `gene`
ggplot(DiffDomfromH,aes(x=Diff))+ geom_histogram(bins=50, fill="#D95F02",alpha=.5) + geom_histogram(data=DiffDomfromC, bins=50,fill="#1B9E77", alpha=.5 ) + facet_grid(~nPAS) + labs(x="Difference in Mean usage", title="Dominant PAS in species - same species value for \nthe 'dominant' in other species : Remove 18499")

Ok this looks good. Seems like a lot of this


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] workflowr_1.6.0 forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.1   tidyverse_1.2.1 reshape2_1.4.3 

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5   haven_1.1.2        lattice_0.20-38   
 [4] colorspace_1.3-2   generics_0.0.2     htmltools_0.3.6   
 [7] yaml_2.2.0         rlang_0.4.0        later_0.7.5       
[10] pillar_1.3.1       glue_1.3.0         withr_2.1.2       
[13] RColorBrewer_1.1-2 modelr_0.1.2       readxl_1.1.0      
[16] plyr_1.8.4         munsell_0.5.0      gtable_0.2.0      
[19] cellranger_1.1.0   rvest_0.3.2        evaluate_0.12     
[22] labeling_0.3       knitr_1.20         httpuv_1.4.5      
[25] broom_0.5.1        Rcpp_1.0.2         promises_1.0.1    
[28] backports_1.1.2    scales_1.0.0       jsonlite_1.6      
[31] fs_1.3.1           hms_0.4.2          digest_0.6.18     
[34] stringi_1.2.4      grid_3.5.1         rprojroot_1.3-2   
[37] cli_1.1.0          tools_3.5.1        magrittr_1.5      
[40] lazyeval_0.2.1     crayon_1.3.4       whisker_0.3-2     
[43] pkgconfig_2.0.2    xml2_1.2.0         lubridate_1.7.4   
[46] assertthat_0.2.0   rmarkdown_1.10     httr_1.3.1        
[49] rstudioapi_0.10    R6_2.3.0           nlme_3.1-137      
[52] git2r_0.26.1       compiler_3.5.1