Last updated: 2019-10-15
Checks: 7 0
Knit directory: Comparative_APA/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190902)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: code/chimp_log/
Ignored: code/human_log/
Ignored: data/metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF/
Ignored: data/metadata_HCpanel.txt.sb-f4823d1e-qihGek/
Untracked files:
Untracked: ._.DS_Store
Untracked: Chimp/
Untracked: Human/
Untracked: analysis/assessReadQual.Rmd
Untracked: code/._Config_chimp.yaml
Untracked: code/._Config_human.yaml
Untracked: code/._LiftOrthoPAS2chimp.sh
Untracked: code/._Snakefile
Untracked: code/._SnakefilePAS
Untracked: code/._SnakefilePASfilt
Untracked: code/._bed215upbed.py
Untracked: code/._bed2SAF_gen.py
Untracked: code/._buildStarIndex.sh
Untracked: code/._cleanbed2saf.py
Untracked: code/._cluster.json
Untracked: code/._extraSnakefiltpas
Untracked: code/._filter5percPAS.py
Untracked: code/._filterPASforMP.py
Untracked: code/._filterPostLift.py
Untracked: code/._fixUTRexonanno.py
Untracked: code/._formathg38Anno.py
Untracked: code/._formatpantro6Anno.py
Untracked: code/._intersectLiftedPAS.sh
Untracked: code/._liftPAS19to38.sh
Untracked: code/._makeSamplyGroupsHuman_TvN.py
Untracked: code/._maphg19.sh
Untracked: code/._maphg19_subjunc.sh
Untracked: code/._overlapapaQTLPAS.sh
Untracked: code/._prepareCleanLiftedFC_5perc4LC.py
Untracked: code/._preparePAS4lift.py
Untracked: code/._primaryLift.sh
Untracked: code/._recLiftchim2human.sh
Untracked: code/._revLiftPAShg38to19.sh
Untracked: code/._reverseLift.sh
Untracked: code/._runChimpDiffIso.sh
Untracked: code/._runHumanDiffIso.sh
Untracked: code/._runNuclearDifffIso.sh
Untracked: code/._run_verifyBam.sh
Untracked: code/._snakemake.batch
Untracked: code/._snakemakePAS.batch
Untracked: code/._snakemakePASchimp.batch
Untracked: code/._snakemakePAShuman.batch
Untracked: code/._snakemake_chimp.batch
Untracked: code/._snakemake_human.batch
Untracked: code/._snakemakefiltPAS.batch
Untracked: code/._snakemakefiltPAS_chimp
Untracked: code/._snakemakefiltPAS_chimp.sh
Untracked: code/._snakemakefiltPAS_human.sh
Untracked: code/._submit-snakemake-chimp.sh
Untracked: code/._submit-snakemake-human.sh
Untracked: code/._submit-snakemakePAS-chimp.sh
Untracked: code/._submit-snakemakePAS-human.sh
Untracked: code/._submit-snakemakefiltPAS-chimp.sh
Untracked: code/._submit-snakemakefiltPAS-human.sh
Untracked: code/._subset_diffisopheno_Nuclear_HvC.py
Untracked: code/._verifyBam4973.sh
Untracked: code/._wrap_verifyBam.sh
Untracked: code/.snakemake/
Untracked: code/Config_chimp.yaml
Untracked: code/Config_human.yaml
Untracked: code/LiftOrthoPAS2chimp.sh
Untracked: code/LiftorthoPAS.err
Untracked: code/LiftorthoPASt.out
Untracked: code/Log.out
Untracked: code/Rev_liftoverPAShg19to38.err
Untracked: code/Rev_liftoverPAShg19to38.out
Untracked: code/SAF215upbed_gen.py
Untracked: code/Snakefile
Untracked: code/SnakefilePAS
Untracked: code/SnakefilePASfilt
Untracked: code/Upstream10Bases_general.py
Untracked: code/apaQTLsnake.err
Untracked: code/apaQTLsnake.out
Untracked: code/apaQTLsnakePAS.err
Untracked: code/apaQTLsnakePAS.out
Untracked: code/apaQTLsnakePAShuman.err
Untracked: code/bed215upbed.py
Untracked: code/bed2SAF_gen.py
Untracked: code/bed2saf.py
Untracked: code/bg_to_cov.py
Untracked: code/buildStarIndex.sh
Untracked: code/callPeaksYL.py
Untracked: code/chooseAnno2Bed.py
Untracked: code/chooseAnno2SAF.py
Untracked: code/cleanbed2saf.py
Untracked: code/cluster.json
Untracked: code/clusterPAS.json
Untracked: code/clusterfiltPAS.json
Untracked: code/convertNumeric.py
Untracked: code/extraSnakefiltpas
Untracked: code/filter5perc.R
Untracked: code/filter5percPAS.py
Untracked: code/filter5percPheno.py
Untracked: code/filterBamforMP.pysam2_gen.py
Untracked: code/filterMissprimingInNuc10_gen.py
Untracked: code/filterPASforMP.py
Untracked: code/filterPostLift.py
Untracked: code/filterSAFforMP_gen.py
Untracked: code/filterSortBedbyCleanedBed_gen.R
Untracked: code/filterpeaks.py
Untracked: code/fixFChead.py
Untracked: code/fixFChead_bothfrac.py
Untracked: code/fixUTRexonanno.py
Untracked: code/formathg38Anno.py
Untracked: code/generateStarIndex.err
Untracked: code/generateStarIndex.out
Untracked: code/intersectAnno.err
Untracked: code/intersectAnno.out
Untracked: code/intersectLiftedPAS.sh
Untracked: code/liftPAS19to38.sh
Untracked: code/liftoverPAShg19to38.err
Untracked: code/liftoverPAShg19to38.out
Untracked: code/log/
Untracked: code/make5percPeakbed.py
Untracked: code/makeFileID.py
Untracked: code/makePheno.py
Untracked: code/makeSamplyGroupsChimp_TvN.py
Untracked: code/makeSamplyGroupsHuman_TvN.py
Untracked: code/maphg19.err
Untracked: code/maphg19.out
Untracked: code/maphg19.sh
Untracked: code/maphg19_sub.err
Untracked: code/maphg19_sub.out
Untracked: code/maphg19_subjunc.sh
Untracked: code/namePeaks.py
Untracked: code/overlapPAS.err
Untracked: code/overlapPAS.out
Untracked: code/overlapapaQTLPAS.sh
Untracked: code/peak2PAS.py
Untracked: code/pheno2countonly.R
Untracked: code/prepareCleanLiftedFC_5perc4LC.py
Untracked: code/preparePAS4lift.py
Untracked: code/prepare_phenotype_table.py
Untracked: code/primaryLift.err
Untracked: code/primaryLift.out
Untracked: code/primaryLift.sh
Untracked: code/quantLiftedPAS.err
Untracked: code/quantLiftedPAS.out
Untracked: code/quantLiftedPAS.sh
Untracked: code/recChimpback2Human.err
Untracked: code/recChimpback2Human.out
Untracked: code/recLiftchim2human.sh
Untracked: code/revLift.err
Untracked: code/revLift.out
Untracked: code/revLiftPAShg38to19.sh
Untracked: code/reverseLift.sh
Untracked: code/runChimpDiffIso.sh
Untracked: code/runHumanDiffIso.sh
Untracked: code/runNuclearDifffIso.sh
Untracked: code/run_Chimpleafcutter_ds.err
Untracked: code/run_Chimpleafcutter_ds.out
Untracked: code/run_Humanleafcutter_ds.err
Untracked: code/run_Humanleafcutter_ds.out
Untracked: code/run_Nuclearleafcutter_ds.err
Untracked: code/run_Nuclearleafcutter_ds.out
Untracked: code/run_verifyBam.sh
Untracked: code/run_verifybam.err
Untracked: code/run_verifybam.out
Untracked: code/slurm-62824013.out
Untracked: code/slurm-62825841.out
Untracked: code/slurm-62826116.out
Untracked: code/snakePASChimp.err
Untracked: code/snakePASChimp.out
Untracked: code/snakePAShuman.out
Untracked: code/snakemake.batch
Untracked: code/snakemakePAS.batch
Untracked: code/snakemakePASFiltChimp.err
Untracked: code/snakemakePASFiltChimp.out
Untracked: code/snakemakePASFiltHuman.err
Untracked: code/snakemakePASFiltHuman.out
Untracked: code/snakemakePASchimp.batch
Untracked: code/snakemakePAShuman.batch
Untracked: code/snakemake_chimp.batch
Untracked: code/snakemake_human.batch
Untracked: code/snakemakefiltPAS.batch
Untracked: code/snakemakefiltPAS_chimp.sh
Untracked: code/snakemakefiltPAS_human.sh
Untracked: code/submit-snakemake-chimp.sh
Untracked: code/submit-snakemake-human.sh
Untracked: code/submit-snakemakePAS-chimp.sh
Untracked: code/submit-snakemakePAS-human.sh
Untracked: code/submit-snakemakefiltPAS-chimp.sh
Untracked: code/submit-snakemakefiltPAS-human.sh
Untracked: code/subset_diffisopheno.py
Untracked: code/subset_diffisopheno_Chimp_tvN.py
Untracked: code/subset_diffisopheno_Huma_tvN.py
Untracked: code/subset_diffisopheno_Nuclear_HvC.py
Untracked: code/verifyBam4973.sh
Untracked: code/verifybam4973.err
Untracked: code/verifybam4973.out
Untracked: code/wrap_verifyBam.sh
Untracked: code/wrap_verifybam.err
Untracked: code/wrap_verifybam.out
Untracked: data/._metadata_HCpanel.txt
Untracked: data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
Untracked: data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
Untracked: data/._metadata_HCpanel.xlsx
Untracked: data/._~$metadata_HCpanel.xlsx
Untracked: data/CompapaQTLpas/
Untracked: data/DiffIso_Nuclear/
Untracked: data/MapStats/
Untracked: data/NuclearHvC/
Untracked: data/Peaks_5perc/
Untracked: data/Pheno_5perc/
Untracked: data/Pheno_5perc_nuclear/
Untracked: data/Pheno_5perc_total/
Untracked: data/chainFiles/
Untracked: data/cleanPeaks_anno/
Untracked: data/cleanPeaks_byspecies/
Untracked: data/cleanPeaks_lifted/
Untracked: data/liftover_files/
Untracked: data/metadata_HCpanel.txt
Untracked: data/metadata_HCpanel.xlsx
Untracked: data/primaryLift/
Untracked: data/reverseLift/
Untracked: data/~$metadata_HCpanel.xlsx
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 25a8b1e | brimittleman | 2019-10-15 | fix name bug add number PAS analysis |
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1 ✔ purrr 0.3.2
✔ tibble 2.1.1 ✔ dplyr 0.8.0.1
✔ tidyr 0.8.3 ✔ stringr 1.3.1
✔ readr 1.3.1 ✔ forcats 0.3.0
── Conflicts ──────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
library(workflowr)
This is workflowr version 1.4.0
Run ?workflowr for help getting started
In this analysis I will look at thenumber of PAS per species at a gene level. I am only including PAS in chr1-22. These results use mean usage accross fraction.
PAS=read.table("../data/Peaks_5perc/Peaks_5perc_either_bothUsage_noUnchr.txt", stringsAsFactors = F, header = T)
I want to look at the number of PAS at 5% in each gene by human and chimp.
PAS_sm=PAS %>% select(gene, Chimp, Human)
PAS_m= melt(PAS_sm, id.var="gene", variable.name="species", value.name="meanUsage") %>% filter(meanUsage >=0.05) %>% group_by(species, gene) %>% summarise(nPAS=n())
#pos = more human, neg = more chimp
PAS_spread=PAS_m %>% spread(species, nPAS, fill=0) %>% mutate(DiffPAS=Human-Chimp)
summary(PAS_spread$DiffPAS)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.0000 0.0000 0.0000 0.1267 0.0000 8.0000
#more human
nrow(PAS_spread[PAS_spread$DiffPAS>0,])
[1] 3789
#more chimp
nrow(PAS_spread[PAS_spread$DiffPAS<0,])
[1] 2596
#same
nrow(PAS_spread[PAS_spread$DiffPAS==0,])
[1] 9326
#all
nrow(PAS_spread)
[1] 15711
prop.test(x=c(3759, 2596), n=c(15711,15711), alternative ="greater")
2-sample test for equality of proportions with continuity
correction
data: c(3759, 2596) out of c(15711, 15711)
X-squared = 266.33, df = 1, p-value < 2.2e-16
alternative hypothesis: greater
95 percent confidence interval:
0.06653819 1.00000000
sample estimates:
prop 1 prop 2
0.2392591 0.1652345
ggplot(PAS_spread, aes(x=DiffPAS)) + geom_bar(stat="count") +geom_vline(xintercept = mean(PAS_spread$DiffPAS),col="red") + labs(title="Difference in number of PAS at 5% Human vs Chimp", y="Genes", x="N Human PAS - N Chimp PAS")
Plot distribution of N pas by species:
Wilcoxan test to see if there is a difference in this distribution.
ChimpNPAS=PAS_m %>% filter(species=="Chimp")
HumanNPAS=PAS_m %>% filter(species=="Human")
wilcox.test(HumanNPAS$nPAS,ChimpNPAS$nPAS ,alternative = "greater")
Wilcoxon rank sum test with continuity correction
data: HumanNPAS$nPAS and ChimpNPAS$nPAS
W = 123630000, p-value = 2.55e-06
alternative hypothesis: true location shift is greater than 0
ggplot(PAS_m,aes(x=nPAS, by=species, fill=species)) + geom_density(stat="count",alpha=.5) + scale_fill_brewer(palette = "Dark2") + annotate(geom="text",x=7.5, y=4000, label="1 sided Wilcoxan Test p=2.55e-6 \n Human > Chimp") + labs(title="Distribution for number of PAS >= 5%", x="Number of PAS",y="Genes")
HumanAnno=read.table("../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("chr", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak")) %>% separate(peak,into=c("loc", "disc","PAS"), sep="-")
IndH=colnames(HumanAnno)[9:ncol(HumanAnno)]
HumanUsage=read.table("../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = IndH) %>% select(contains("_T"))
HumanMeanTotal=as.data.frame(cbind(HumanAnno[,1:8], Human=rowMeans(HumanUsage)))
ChimpAnno=read.table("../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("chr", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak")) %>% separate(peak,into=c("loc", "disc","PAS"), sep="-")
IndC=colnames(ChimpAnno)[9:ncol(ChimpAnno)]
ChimpUsage=read.table("../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno_countOnlyNumeric.txt", col.names = IndC) %>% select(contains("_T"))
ChimpMeanTotal=as.data.frame(cbind(ChimpAnno[,1:8], Chimp=rowMeans(ChimpUsage)))
Filter 5% and group by gene
BothMean_total=HumanMeanTotal %>% inner_join(ChimpMeanTotal,by=c("chr", "start", "end", "strand","loc", "disc", "PAS", "gene")) %>% filter(Chimp >=.05 | Human >=0.05)
BothMean_total_M=melt(BothMean_total, id.vars = c("chr", "start", "end", "strand","loc", "disc", "PAS", "gene"), value.name = "Total_Usage", variable.name = "Species" )
BothMean_total_gene=BothMean_total_M %>% filter(Total_Usage>=0.05) %>% group_by(Species, gene) %>% summarise(nPASTotal=n())
#pos = more human, neg = more chimp
PAS_Total_spread=BothMean_total_gene %>% spread(Species, nPASTotal, fill=0) %>% mutate(TotalDiffPAS=Human-Chimp)
ggplot(PAS_Total_spread, aes(x=TotalDiffPAS)) + geom_bar(stat="count") +geom_vline(xintercept = mean(PAS_Total_spread$TotalDiffPAS),col="red") + labs(title="Difference in number of PAS at 5% Human vs Chimp \n Total Fraction", y="Genes", x="N Human PAS - N Chimp PAS")
ggplot(BothMean_total_gene,aes(x=nPASTotal, by=Species, fill=Species)) + geom_density(stat="count",alpha=.5) + scale_fill_brewer(palette = "Dark2") + labs(title="Distribution for number of PAS >= 5%\n Total Fraction", x="Number of PAS",y="Genes")
###Nuclear fraction
HumanUsageNuclear=read.table("../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = IndH) %>% select(contains("_N"))
HumanMeanNuclear=as.data.frame(cbind(HumanAnno[,1:8], Human=rowMeans(HumanUsageNuclear)))
ChimpUsageNuclear=read.table("../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno_countOnlyNumeric.txt", col.names = IndC) %>% select(contains("_N"))
ChimpMeanNuclear=as.data.frame(cbind(ChimpAnno[,1:8], Chimp=rowMeans(ChimpUsageNuclear)))
Filter 5% and group by gene
BothMean_nuclear=HumanMeanNuclear %>% inner_join(ChimpMeanNuclear,by=c("chr", "start", "end", "strand","loc", "disc", "PAS", "gene")) %>% filter(Chimp >=.05 | Human >=0.05)
BothMean_nuclear_M=melt(BothMean_nuclear, id.vars = c("chr", "start", "end", "strand","loc", "disc", "PAS", "gene"), value.name = "Nuclear_Usage", variable.name = "Species" )
BothMean_nuclear_gene=BothMean_nuclear_M %>% filter(Nuclear_Usage>=0.05) %>% group_by(Species, gene) %>% summarise(nPASNuclear=n())
#pos = more human, neg = more chimp
PAS_Nuclear_spread=BothMean_nuclear_gene %>% spread(Species, nPASNuclear, fill=0) %>% mutate(NuclearDiffPAS=Human-Chimp)
ggplot(PAS_Nuclear_spread, aes(x=NuclearDiffPAS)) + geom_bar(stat="count") +geom_vline(xintercept = mean(PAS_Nuclear_spread$NuclearDiffPAS),col="red") + labs(title="Difference in number of PAS at 5% Human vs Chimp \n Nuclear Fraction", y="Genes", x="N Human PAS - N Chimp PAS")
ggplot(BothMean_nuclear_gene,aes(x=nPASNuclear, by=Species, fill=Species)) + geom_density(stat="count",alpha=.5) + scale_fill_brewer(palette = "Dark2") + labs(title="Distribution for number of PAS >= 5%\n Nuclear Fraction", x="Number of PAS",y="Genes")
Compare total and nuclear.
mean(PAS_Total_spread$TotalDiffPAS)
[1] 0.1640242
mean(PAS_Nuclear_spread$NuclearDiffPAS)
[1] 0.08575618
Is the skew different in total and nuclear:
t.test(PAS_Total_spread$TotalDiffPAS, PAS_Nuclear_spread$NuclearDiffPAS,alternative = "greater")
Welch Two Sample t-test
data: PAS_Total_spread$TotalDiffPAS and PAS_Nuclear_spread$NuclearDiffPAS
t = 6.0396, df = 31288, p-value = 7.814e-10
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.05695137 Inf
sample estimates:
mean of x mean of y
0.16402420 0.08575618
This means skew toward more PAS in human that chimp is stronger in the total fraction.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] workflowr_1.4.0 reshape2_1.4.3 forcats_0.3.0 stringr_1.3.1
[5] dplyr_0.8.0.1 purrr_0.3.2 readr_1.3.1 tidyr_0.8.3
[9] tibble_2.1.1 ggplot2_3.1.1 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] Rcpp_1.0.2 RColorBrewer_1.1-2 cellranger_1.1.0
[4] pillar_1.3.1 compiler_3.5.1 git2r_0.25.2
[7] plyr_1.8.4 tools_3.5.1 digest_0.6.18
[10] lubridate_1.7.4 jsonlite_1.6 evaluate_0.12
[13] nlme_3.1-137 gtable_0.2.0 lattice_0.20-38
[16] pkgconfig_2.0.2 rlang_0.4.0 cli_1.1.0
[19] rstudioapi_0.10 yaml_2.2.0 haven_1.1.2
[22] withr_2.1.2 xml2_1.2.0 httr_1.3.1
[25] knitr_1.20 hms_0.4.2 generics_0.0.2
[28] fs_1.3.1 rprojroot_1.3-2 grid_3.5.1
[31] tidyselect_0.2.5 glue_1.3.0 R6_2.3.0
[34] readxl_1.1.0 rmarkdown_1.10 modelr_0.1.2
[37] magrittr_1.5 whisker_0.3-2 backports_1.1.2
[40] scales_1.0.0 htmltools_0.3.6 rvest_0.3.2
[43] assertthat_0.2.0 colorspace_1.3-2 labeling_0.3
[46] stringi_1.2.4 lazyeval_0.2.1 munsell_0.5.0
[49] broom_0.5.1 crayon_1.3.4