Last updated: 2020-04-16

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/TrialFiltersMeta.txt.sb-9845453e-R58Y0Q/
    Ignored:    data/mediation_prot/
    Ignored:    data/metadata_HCpanel.txt.sb-284518db-RGf0kd/
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/AREstabilityScores.Rmd
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/DiffUsedUTR.Rmd
    Untracked:  analysis/GvizPlots.Rmd
    Untracked:  analysis/HandC.TvN
    Untracked:  analysis/PhenotypeOverlap10.Rmd
    Untracked:  analysis/annotationBias.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  code/._AlignmentScores.sh
    Untracked:  code/._BothFCMM.sh
    Untracked:  code/._BothFCMMPrim.sh
    Untracked:  code/._BothFCnewOInclusive.sh
    Untracked:  code/._ChimpStarMM2.sh
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._ClosestorthoEx.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._Filter255MM.sh
    Untracked:  code/._FilterPrimSec.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._FindIntronForDomPAS_DF.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._MismatchNumbers.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PAS_ATTAAA_df.sh
    Untracked:  code/._PAS_seqExpanded.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._PASsequences_DF.sh
    Untracked:  code/._PlotNuclearUsagebySpecies.R
    Untracked:  code/._PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._RNATranscriptDTplot.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._RunNegMCMediation.sh
    Untracked:  code/._RunNegMCMediationDF.sh
    Untracked:  code/._RunPosMCMediationDF.err
    Untracked:  code/._RunPosMCMediationDF.sh
    Untracked:  code/._SAF2Bed.py
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._StarMM2.sh
    Untracked:  code/._TestFC.sh
    Untracked:  code/._assignPeak2Intronicregion
    Untracked:  code/._assignPeak2Intronicregion.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2Bedbothstrand.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._chimpMultiCov.sh
    Untracked:  code/._chimpMultiCov255.sh
    Untracked:  code/._chimpMultiCovInclusive.sh
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._extractPhyloReg.py
    Untracked:  code/._extractPhyloRegGene.py
    Untracked:  code/._extractPhylopGeneral.ph
    Untracked:  code/._extractPhylopGeneral.py
    Untracked:  code/._extractPhylopReg200down.py
    Untracked:  code/._extractPhylopReg200up.py
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._filterPrimaryread.py
    Untracked:  code/._filterSecondaryread.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixFCheadforExp.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._humanMultiCov.sh
    Untracked:  code/._humanMultiCov255.sh
    Untracked:  code/._humanMultiCov_inclusive.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeNuclearDapaplots.sh
    Untracked:  code/._makeNuclearDapaplots_DF.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mediation_test.R
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergeandBWRNAseq.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._negativeMediation_montecarlo.R
    Untracked:  code/._negativeMediation_montecarloDF.R
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapMMandOrthoexon.sh
    Untracked:  code/._overlapPASandOrthoexon.sh
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._parseHg38.py
    Untracked:  code/._postiveMediation_montecarlo_DF.R
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantLiftedPASPrimary.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDiffIso_DF.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._spliceSite2Fasta.py
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._threeprimeOrthoFC.sh
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ALLPAS_sequenceDF.err
    Untracked:  code/ALLPAS_sequenceDF.out
    Untracked:  code/AlignmentScores.err
    Untracked:  code/AlignmentScores.out
    Untracked:  code/AlignmentScores.sh
    Untracked:  code/BothFCMM.err
    Untracked:  code/BothFCMM.out
    Untracked:  code/BothFCMM.sh
    Untracked:  code/BothFCMMPrim.err
    Untracked:  code/BothFCMMPrim.out
    Untracked:  code/BothFCMMPrim.sh
    Untracked:  code/BothFCnewOInclusive.sh
    Untracked:  code/BothFCnewOInclusive.sh.err
    Untracked:  code/BothFCnewOInclusive.sh.out
    Untracked:  code/ChimpStarMM2.err
    Untracked:  code/ChimpStarMM2.out
    Untracked:  code/ChimpStarMM2.sh
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/ClosestorthoEx.err
    Untracked:  code/ClosestorthoEx.out
    Untracked:  code/ClosestorthoEx.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/Filter255.err
    Untracked:  code/Filter255.out
    Untracked:  code/Filter255MM.sh
    Untracked:  code/FilterPrimSec.err
    Untracked:  code/FilterPrimSec.out
    Untracked:  code/FilterPrimSec.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindDomXCutoff.py
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/FindIntronForDomPAS_DF.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/IntersectMMandOrtho.err
    Untracked:  code/IntersectMMandOrtho.out
    Untracked:  code/IntersectPASandOrtho.err
    Untracked:  code/IntersectPASandOrtho.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MaxEntCode/
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/MismatchNumbers.err
    Untracked:  code/MismatchNumbers.out
    Untracked:  code/MismatchNumbers.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_ATTAAADF.err
    Untracked:  code/PAS_ATTAAADF.out
    Untracked:  code/PAS_ATTAAA_df.sh
    Untracked:  code/PAS_seqExpanded.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PAS_sequenceDF.err
    Untracked:  code/PAS_sequenceDF.out
    Untracked:  code/PASexpanded_sequenceDF.err
    Untracked:  code/PASexpanded_sequenceDF.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/PASsequences_DF.sh
    Untracked:  code/PlotNuclearUsagebySpecies.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/RNATranscriptDTplot.err
    Untracked:  code/RNATranscriptDTplot.out
    Untracked:  code/RNATranscriptDTplot.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/RunNegMCMediation.err
    Untracked:  code/RunNegMCMediation.sh
    Untracked:  code/RunNegMCMediationDF.err
    Untracked:  code/RunNegMCMediationDF.out
    Untracked:  code/RunNegMCMediationDF.sh
    Untracked:  code/RunNegMCMediationr.out
    Untracked:  code/RunNewDom.err
    Untracked:  code/RunNewDom.out
    Untracked:  code/RunPosMCMediation.err
    Untracked:  code/RunPosMCMediation.sh
    Untracked:  code/RunPosMCMediationDF.err
    Untracked:  code/RunPosMCMediationDF.out
    Untracked:  code/RunPosMCMediationDF.sh
    Untracked:  code/RunPosMCMediationr.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/SAF2Bed.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/StarMM2.err
    Untracked:  code/StarMM2.out
    Untracked:  code/StarMM2.sh
    Untracked:  code/TestFC.err
    Untracked:  code/TestFC.out
    Untracked:  code/TestFC.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/allPASSeq_df.sh
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/apaQTLsnakefiltPAS.err
    Untracked:  code/apaQTLsnakefiltPAS.out
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignPeak2Intronicregion.sh
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2Bedbothstrand.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chimpMultiCov.err
    Untracked:  code/chimpMultiCov.out
    Untracked:  code/chimpMultiCov.sh
    Untracked:  code/chimpMultiCov255.sh
    Untracked:  code/chimpMultiCovInclusive.err
    Untracked:  code/chimpMultiCovInclusive.out
    Untracked:  code/chimpMultiCovInclusive.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chooseSignalSite.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/extractPhyloReg.py
    Untracked:  code/extractPhyloRegGene.py
    Untracked:  code/extractPhylopGeneral.py
    Untracked:  code/extractPhylopReg200down.py
    Untracked:  code/extractPhylopReg200up.py
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterPrimaryread.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSecondaryread.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFCheadforExp.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getAlloverlap.py
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/humanMultiCov.err
    Untracked:  code/humanMultiCov.out
    Untracked:  code/humanMultiCov.sh
    Untracked:  code/humanMultiCov255.err
    Untracked:  code/humanMultiCov255.out
    Untracked:  code/humanMultiCov255.sh
    Untracked:  code/humanMultiCovInclusive.err
    Untracked:  code/humanMultiCovInclusive.out
    Untracked:  code/humanMultiCov_inclusive.sh
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectAnnoExt.err
    Untracked:  code/intersectAnnoExt.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makeNuclearDapaplots.sh
    Untracked:  code/makeNuclearDapaplots_DF.sh
    Untracked:  code/makeNuclearPlots.err
    Untracked:  code/makeNuclearPlots.out
    Untracked:  code/makeNuclearPlotsDF.err
    Untracked:  code/makeNuclearPlotsDF.out
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mediation_test.R
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandBWRNAseq.sh
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/mergedbamRNAand2bw.err
    Untracked:  code/mergedbamRNAand2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/negativeMediation_montecarlo.R
    Untracked:  code/negativeMediation_montecarloDF.R
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapMMandOrthoexon.sh
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapPASandOrthoexon.sh
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/overlapapaQTLPAS_extended.sh
    Untracked:  code/overlapapaQTLPAS_samples.sh
    Untracked:  code/parseHg38.py
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/postiveMediation_montecarlo.R
    Untracked:  code/postiveMediation_montecarlo_DF.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quantLiftedPASPrimary.err
    Untracked:  code/quantLiftedPASPrimary.out
    Untracked:  code/quantLiftedPASPrimary.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runChimpDiffIsoDF.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runHumanDiffIsoDF.sh
    Untracked:  code/runNewDom.sh
    Untracked:  code/runNuclearDiffIso_DF.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_dF.err
    Untracked:  code/run_Humanleafcutter_dF.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_dsDF.err
    Untracked:  code/run_Nuclearleafcutter_dsDF.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePAS_Human.batch
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.batch
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/spliceSite2Fasta.py
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/test.txt
    Untracked:  code/threeprimeOrthoFC.out
    Untracked:  code/threeprimeOrthoFC.sh
    Untracked:  code/threeprimeOrthoFCcd.err
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._TrialFiltersMeta.txt
    Untracked:  data/._TrialFiltersMeta.txt.sb-9845453e-R58Y0Q
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/ARE_Elements/
    Untracked:  data/BaseComp/
    Untracked:  data/CleanLiftedPeaks_FC_primary/
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DNDS/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Nuclear_DF/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DomDefGreaterX/
    Untracked:  data/DominantPAS/
    Untracked:  data/DominantPAS_DF/
    Untracked:  data/EvalPantro5/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NormalizedClusters/
    Untracked:  data/NuclearHvC/
    Untracked:  data/NuclearHvC_DF/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/OrthoExonBed/
    Untracked:  data/OverlapBenchmark/
    Untracked:  data/OverlappingPAS/
    Untracked:  data/PAS/
    Untracked:  data/PAS_SAF/
    Untracked:  data/PAS_doubleFilter/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_DF_nuclear/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_nuclear_old/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/PhyloP/
    Untracked:  data/Pol2Chip/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/SignalSites_doublefilter/
    Untracked:  data/SpliceSite/
    Untracked:  data/TestAnnoBiasOE/
    Untracked:  data/TestMM2/
    Untracked:  data/TestMM2_AS/
    Untracked:  data/TestMM2_PrimaryRead/
    Untracked:  data/TestMM2_SeondaryRead/
    Untracked:  data/TestMM2_mismatch/
    Untracked:  data/TestMM2_quality/
    Untracked:  data/TestWithinMergePAS/
    Untracked:  data/Test_FC_methods/
    Untracked:  data/Threeprime2Ortho/
    Untracked:  data/TotalFractionPAS/
    Untracked:  data/TotalHvC/
    Untracked:  data/TrialFiltersMeta.txt
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/apaQTLGenes/
    Untracked:  data/bioGRID/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/files4viz_nuclear/
    Untracked:  data/files4viz_nuclear_DF/
    Untracked:  data/gviz/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/mediation/
    Untracked:  data/mediation_DF/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_extra.txt
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/miRNA/
    Untracked:  data/multimap/
    Untracked:  data/orthoUTR/
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/testQuant/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/._.DS_Store
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd
    Untracked:  proteinModelSet.Rmd

Unstaged changes:
    Modified:   analysis/ExploredAPA.Rmd
    Modified:   analysis/MMExpreiment.Rmd
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/TotalDomStructure.Rmd
    Modified:   analysis/TotalVNuclearBothSpecies.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/changeMisprimcut.Rmd
    Modified:   analysis/comp2apaQTLPAS.Rmd
    Modified:   analysis/correlationPhenos.Rmd
    Modified:   analysis/establishCutoffs.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/pol2.Rmd
    Modified:   analysis/speciesSpecific.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 4cc2f72 brimittleman 2020-04-16 add prop plots and 1v1 lines
html 71e0ab3 brimittleman 2020-04-15 Build site.
Rmd 8b2f73d brimittleman 2020-04-15 add aggregate res
html 38c6dc9 brimittleman 2020-04-14 Build site.
Rmd 2d0668e brimittleman 2020-04-14 add new way to call dom

library(workflowr)
This is workflowr version 1.6.0
Run ?workflowr for help getting started
library(gridExtra)
library(VennDiagram)
Loading required package: grid
Loading required package: futile.logger
library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ───────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::combine() masks gridExtra::combine()
✖ dplyr::filter()  masks stats::filter()
✖ dplyr::lag()     masks stats::lag()
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave

The way I am calling dominance is a bit naive. I am looking for the most used PAS. It may be better to look for genes with actual dominance on one PAS, meaning a PAS is used X percent above the others in the gene. I will have a set of genes with 1 PAS, 1 domiant PAS, no dominant PAS. I can then look to see if these sets are te same or different across species.

I wrote a python script. I will test it with a small file.

mkdir ../data/DomDefGreaterX
head -n 1 ../data/PAS_doubleFilter/PAS_5perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt  > ../data/DomDefGreaterX/TestFile_ZSWIM7.txt
grep ZSWIM7 ../data/PAS_doubleFilter/PAS_5perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt >> ../data/DomDefGreaterX/TestFile_ZSWIM7.txt

python FindDomXCutoff.py ../data/DomDefGreaterX/TestFile_ZSWIM7.txt ../data/DomDefGreaterX/TestDom_ZSWIM7.txt .3 Human 
python FindDomXCutoff.py ../data/DomDefGreaterX/TestFile_ZSWIM7.txt ../data/DomDefGreaterX/TestDom_ZSWIM7.txt .3 Chimp 

Looks like this code works for both species. Not the most efficient but fine.

First I need the set of genes with 1 pas. These will not be included in the analysis. I added to the code to not include PAS that have 0 usage in that species.

MetaPAS=read.table("../data/PAS_doubleFilter/PAS_5perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt", header = T, stringsAsFactors = F)
MetaCol=colnames(MetaPAS)
Human1PASGene= MetaPAS %>% filter(Human>0) %>% group_by(gene) %>% summarise(nPAS=n()) %>% filter(nPAS==1)
Chimp1PASGene= MetaPAS %>% filter(Chimp>0) %>% group_by(gene) %>% summarise(nPAS=n()) %>% filter(nPAS==1)

MetaPAS_human1= MetaPAS %>% filter(gene %in% Human1PASGene$gene, Human >0) %>% mutate(Set="Human1")
MetaPAS_chimp1= MetaPAS %>% filter(gene %in% Chimp1PASGene$gene, Chimp >0)  %>% mutate(Set="Chimp1")

Look at where these are.

OnePASboth=MetaPAS_human1 %>% bind_rows(MetaPAS_chimp1)
ggplot(OnePASboth, aes(x=loc, by=Set, fill=Set)) + geom_bar(position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="PAS location for genes with 1 PAS in each species")

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14

Seperate results

I will run the code at different cutoffs from 10% different to 90% different. I can do this with a bash script.

I need to think about the best way to visualize this. I will start with 1 usage cutoff then move toward more. Start with the most stringent. For each one I will add the number of PAS in the gene origianlly:

90% difference

PASnum= MetaPAS %>% select(PAS, gene, Chimp, Human) %>% gather(Species, usage, -PAS, -gene) %>% filter(usage >0) %>% group_by(gene,Species) %>% summarise(nPAS=n())
PASnumHuman=PASnum %>% filter(Species=="Human") %>% select(-Species)
PASnumChimp=PASnum %>% filter(Species=="Chimp") %>% select(-Species)



HumanDom9=read.table("../data/DomDefGreaterX/Human_.9_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Human9") %>% inner_join(PASnumHuman, by="gene")
nrow(HumanDom9)
[1] 65
ChimpDom9=read.table("../data/DomDefGreaterX/Chimp_.9_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Chimp9") %>% inner_join(PASnumChimp, by="gene")
nrow(ChimpDom9)
[1] 173

Explore these:

BothDom9=HumanDom9 %>% bind_rows(ChimpDom9)
genloc9=ggplot(BothDom9, aes(x=loc, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.9",y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
genloc9

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14
BothDom9_prop= BothDom9 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc9=ggplot(BothDom9_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.9",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

There are way more in chimp at this cutoff.

Look at how many genes have the same and different dominant at .9 difference:

HumanDom9_sm=HumanDom9 %>% select(PAS, gene, loc) %>% rename(HumanPAS=PAS, HumanLoc=loc)
ChimpDom9_sm=ChimpDom9 %>% select(PAS, gene, loc)%>% rename(ChimpPAS=PAS, ChimpLoc=loc)

both9sm=ChimpDom9_sm %>% inner_join(HumanDom9_sm, by="gene")
nrow(both9sm)
[1] 0

Look at the number of PAS in these genes:

None of the same genes are represented here.

ggplot(BothDom9, aes(x=nPAS, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of PAS per gene with .9 difference",y="genes")

Version Author Date
38c6dc9 brimittleman 2020-04-14
grid.newpage()
venn.plot9 <- draw.pairwise.venn(area1 = length(HumanDom9_sm$gene),
                           area2 = length(ChimpDom9_sm$gene),
                           cross.area = nrow(both9sm),
                           c("Human", "Chimp"), scaled = TRUE,
                           fill = c("orange", "green"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14

Look at the location of the PAS not in gene.

HumanDom9_smLab= HumanDom9 %>% mutate(Set="Human")
ChimpDom9_smLab= ChimpDom9 %>% mutate(Set="Chimp")
BothDom9_smLab=HumanDom9_smLab %>% bind_rows(ChimpDom9_smLab)
diffgenes9=ggplot(BothDom9_smLab,aes(x=loc, fill=Set))+ geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2")+  labs(title="Non Matched: 0.9", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffgenes9

Version Author Date
71e0ab3 brimittleman 2020-04-15
BothDom9_smLab_prop=BothDom9_smLab%>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)
propDiff9=ggplot(BothDom9_smLab_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.9: Different Genes",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

80% difference

HumanDom8=read.table("../data/DomDefGreaterX/Human_.8_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Human8") %>% inner_join(PASnumHuman, by="gene")
nrow(HumanDom8)
[1] 318
ChimpDom8=read.table("../data/DomDefGreaterX/Chimp_.8_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Chimp8") %>% inner_join(PASnumChimp, by="gene")
nrow(ChimpDom8)
[1] 571
BothDom8=HumanDom8 %>% bind_rows(ChimpDom8)
genloc8=ggplot(BothDom8, aes(x=loc, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.8",y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
genloc8

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom8_sm=HumanDom8 %>% select(PAS, gene, loc) %>% rename(HumanPAS=PAS, HumanLoc=loc)
ChimpDom8_sm=ChimpDom8 %>% select(PAS, gene, loc)%>% rename(ChimpPAS=PAS, ChimpLoc=loc)

both8sm=ChimpDom8_sm %>% inner_join(HumanDom8_sm, by="gene")
nrow(both8sm)
[1] 192

There are 192 genes that are the same.

grid.newpage()
venn.plot8 <- draw.pairwise.venn(area1 = length(HumanDom8_sm$gene),
                           area2 = length(ChimpDom8_sm$gene),
                           cross.area = nrow(both8sm),
                           c("Human", "Chimp"), scaled = TRUE,
                           fill = c("orange", "green"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14

For these I can look to see if the PAS are the same or different:

both8sm_same= both8sm %>% filter(ChimpPAS==HumanPAS)
nrow(both8sm_same)
[1] 189
both8sm_diff= both8sm %>% filter(ChimpPAS!=HumanPAS)
nrow(both8sm_diff)
[1] 3

location for same:

same8=ggplot(both8sm_same,aes(x=ChimpLoc,fill=ChimpLoc)) +geom_bar(stat = "count") +scale_fill_brewer(palette = "Dark2")+ labs(title="Matched Gene Matched PAS .8", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
same8

Version Author Date
71e0ab3 brimittleman 2020-04-15

Only 3 are in different PAS

both8sm_diff
     ChimpPAS    gene ChimpLoc    HumanPAS HumanLoc
1  human21024   CKS1B     utr3  human21027      end
2 chimp163919  IFNGR2     utr3 human215583   intron
3 human324647 NSUN5P1     utr5 human324646     utr5
ggplot(BothDom8, aes(x=nPAS, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of PAS per gene with .8 difference",y="genes")

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom8_smLab= HumanDom8 %>% anti_join(ChimpDom8,by = "gene") %>% mutate(Set="Human")
ChimpDom8_smLab=  ChimpDom8 %>% anti_join(HumanDom8,by = "gene") %>% mutate(Set="Chimp")
BothDom8_smLab=HumanDom8_smLab %>% bind_rows(ChimpDom8_smLab)
diffgenes8=ggplot(BothDom8_smLab,aes(x=loc, fill=Set))+ geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") +  labs(title="Non Matched: 0.8", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffgenes8

BothDom8_prop= BothDom8 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc8=ggplot(BothDom8_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.8",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
BothDom8_smLab_prop=BothDom8_smLab%>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)
propDiff8=ggplot(BothDom8_smLab_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.8: Different Genes",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

70% difference

HumanDom7=read.table("../data/DomDefGreaterX/Human_.7_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Human7") %>% inner_join(PASnumHuman, by="gene")
nrow(HumanDom7)
[1] 637
ChimpDom7=read.table("../data/DomDefGreaterX/Chimp_.7_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Chimp7") %>% inner_join(PASnumChimp, by="gene")
nrow(ChimpDom7)
[1] 988
BothDom7=HumanDom7 %>% bind_rows(ChimpDom7)
genloc7=ggplot(BothDom7, aes(x=loc, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.7",y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
genloc7

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom7_sm=HumanDom7 %>% select(PAS, gene, loc) %>% rename(HumanPAS=PAS, HumanLoc=loc)
ChimpDom7_sm=ChimpDom7 %>% select(PAS, gene, loc)%>% rename(ChimpPAS=PAS, ChimpLoc=loc)

both7sm=ChimpDom7_sm %>% inner_join(HumanDom7_sm, by="gene")
nrow(both7sm)
[1] 473
grid.newpage()
venn.plot7 <- draw.pairwise.venn(area1 = length(HumanDom7_sm$gene),
                           area2 = length(ChimpDom7_sm$gene),
                           cross.area = nrow(both7sm),
                           c("Human", "Chimp"), scaled = TRUE,
                           fill = c("orange", "green"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

Version Author Date
71e0ab3 brimittleman 2020-04-15
both7sm_same= both7sm %>% filter(ChimpPAS==HumanPAS)
nrow(both7sm_same)
[1] 467
both7sm_diff= both7sm %>% filter(ChimpPAS!=HumanPAS)
nrow(both7sm_diff)
[1] 6

location for same:

same7=ggplot(both7sm_same,aes(x=ChimpLoc,fill=ChimpLoc)) +geom_bar(stat = "count") +scale_fill_brewer(palette = "Dark2")+ labs(title="Matched Gene Matched PAS .7", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
same7

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14
both7sm_diff
     ChimpPAS    gene ChimpLoc    HumanPAS HumanLoc
1  human21024   CKS1B     utr3  human21027      end
2 chimp137870    TMC8     utr3 human151981     utr3
3 human162402  MFSD12     utr3 human162401     utr3
4 chimp182091   MAT2A     utr3 human184286      cds
5 chimp163919  IFNGR2     utr3 human215583   intron
6 human324647 NSUN5P1     utr5 human324646     utr5
ggplot(BothDom7, aes(x=nPAS, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of PAS per gene with .7 difference",y="genes")

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom7_smLab= HumanDom7 %>% anti_join(ChimpDom7,by = "gene") %>% mutate(Set="Human")
ChimpDom7_smLab=  ChimpDom7 %>% anti_join(HumanDom7,by = "gene") %>% mutate(Set="Chimp")
BothDom7_smLab=HumanDom7_smLab %>% bind_rows(ChimpDom7_smLab)
diffgenes7=ggplot(BothDom7_smLab,aes(x=loc, fill=Set))+ geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Location of dominant PAS in genes \nnot matched between species: 0.7", y="genes")+  labs(title="Non Matched: 0.7", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffgenes7

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14
BothDom7_prop= BothDom7 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc7=ggplot(BothDom7_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.7",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
BothDom7_smLab_prop=BothDom7_smLab%>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)
propDiff7=ggplot(BothDom7_smLab_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.7: Different Genes",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

60% difference

HumanDom6=read.table("../data/DomDefGreaterX/Human_.6_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Human6") %>% inner_join(PASnumHuman, by="gene")
nrow(HumanDom6)
[1] 1014
ChimpDom6=read.table("../data/DomDefGreaterX/Chimp_.6_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Chimp6") %>% inner_join(PASnumChimp, by="gene")
nrow(ChimpDom6)
[1] 1404
BothDom6=HumanDom6 %>% bind_rows(ChimpDom6)
genloc6=ggplot(BothDom6, aes(x=loc, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.6",y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
genloc6

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14
HumanDom6_sm=HumanDom6 %>% select(PAS, gene, loc) %>% rename(HumanPAS=PAS, HumanLoc=loc)
ChimpDom6_sm=ChimpDom6 %>% select(PAS, gene, loc)%>% rename(ChimpPAS=PAS, ChimpLoc=loc)

both6sm=ChimpDom6_sm %>% inner_join(HumanDom6_sm, by="gene")
nrow(both6sm)
[1] 803
grid.newpage()
venn.plot6 <- draw.pairwise.venn(area1 = length(HumanDom6_sm$gene),
                           area2 = length(ChimpDom6_sm$gene),
                           cross.area = nrow(both6sm),
                           c("Human", "Chimp"), scaled = TRUE,
                           fill = c("orange", "green"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

Version Author Date
71e0ab3 brimittleman 2020-04-15
both6sm_same= both6sm %>% filter(ChimpPAS==HumanPAS)
nrow(both6sm_same)
[1] 796
both6sm_diff= both6sm %>% filter(ChimpPAS!=HumanPAS)
nrow(both6sm_diff)
[1] 7

location for same:

same6=ggplot(both6sm_same,aes(x=ChimpLoc,fill=ChimpLoc)) +geom_bar(stat = "count") +scale_fill_brewer(palette = "Dark2")+ labs(title="Matched Gene Matched PAS .6", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
same6

Version Author Date
71e0ab3 brimittleman 2020-04-15
both6sm_diff
     ChimpPAS    gene ChimpLoc    HumanPAS HumanLoc
1  human21024   CKS1B     utr3  human21027      end
2  human60067    FTH1     utr3  human60068      cds
3 chimp137870    TMC8     utr3 human151981     utr3
4 human162402  MFSD12     utr3 human162401     utr3
5 chimp182091   MAT2A     utr3 human184286      cds
6 chimp163919  IFNGR2     utr3 human215583   intron
7 human324647 NSUN5P1     utr5 human324646     utr5
ggplot(BothDom6, aes(x=nPAS, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of PAS per gene with .6 difference",y="genes")

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14
HumanDom6_smLab= HumanDom6 %>% anti_join(ChimpDom6,by = "gene") %>% mutate(Set="Human")
ChimpDom6_smLab=  ChimpDom6 %>% anti_join(HumanDom6,by = "gene") %>% mutate(Set="Chimp")
BothDom6_smLab=HumanDom6_smLab %>% bind_rows(ChimpDom6_smLab)
diffgenes6=ggplot(BothDom6_smLab,aes(x=loc, fill=Set))+ geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") +  labs(title="Non Matched: 0.6", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffgenes6

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14
BothDom6_prop= BothDom6 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc6=ggplot(BothDom6_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.6",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
BothDom6_smLab_prop=BothDom6_smLab%>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)
propDiff6=ggplot(BothDom6_smLab_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.6: Different Genes",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

50% difference

HumanDom5=read.table("../data/DomDefGreaterX/Human_.5_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Human5") %>% inner_join(PASnumHuman, by="gene")
nrow(HumanDom5)
[1] 1404
ChimpDom5=read.table("../data/DomDefGreaterX/Chimp_.5_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Chimp5") %>% inner_join(PASnumChimp, by="gene")
nrow(ChimpDom5)
[1] 1908
BothDom5=HumanDom5 %>% bind_rows(ChimpDom5)
genloc5=ggplot(BothDom5, aes(x=loc, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.5",y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
genloc5

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom5_sm=HumanDom5 %>% select(PAS, gene, loc) %>% rename(HumanPAS=PAS, HumanLoc=loc)
ChimpDom5_sm=ChimpDom5 %>% select(PAS, gene, loc)%>% rename(ChimpPAS=PAS, ChimpLoc=loc)

both5sm=ChimpDom5_sm %>% inner_join(HumanDom5_sm, by="gene")
nrow(both5sm)
[1] 1160
grid.newpage()
venn.plot5 <- draw.pairwise.venn(area1 = length(HumanDom5_sm$gene),
                           area2 = length(ChimpDom5_sm$gene),
                           cross.area = nrow(both5sm),
                           c("Human", "Chimp"), scaled = TRUE,
                           fill = c("orange", "green"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14
both5sm_same= both5sm %>% filter(ChimpPAS==HumanPAS)
nrow(both5sm_same)
[1] 1145
both5sm_diff= both5sm %>% filter(ChimpPAS!=HumanPAS)
nrow(both5sm_diff)
[1] 15

location for same:

same5=ggplot(both5sm_same,aes(x=ChimpLoc,fill=ChimpLoc)) +geom_bar(stat = "count") +scale_fill_brewer(palette = "Dark2")+ labs(title="Matched Gene Matched PAS .5", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
same5

Version Author Date
71e0ab3 brimittleman 2020-04-15
both5sm_diff
      ChimpPAS    gene ChimpLoc    HumanPAS HumanLoc
1   human21024   CKS1B     utr3  human21027      end
2   human48359   PGAM1     utr3  human48357   intron
3   human60067    FTH1     utr3  human60068      cds
4   human68171    DDX6     utr3  human68160     utr3
5  chimp137870    TMC8     utr3 human151981     utr3
6  human162402  MFSD12     utr3 human162401     utr3
7  chimp182091   MAT2A     utr3 human184286      cds
8  human205442   RBCK1     utr3 human205434     utr3
9  chimp163919  IFNGR2     utr3 human215583   intron
10 chimp165747     LSS     utr3 human217562   intron
11 human225614   RPL32     utr3 human225615     utr3
12 human250766   NCBP2     utr3 chimp224588      cds
13 human324647 NSUN5P1     utr5 human324646     utr5
14 chimp308202   FABP5     utr3 human345717      cds
15 human366498 SLC27A4   intron human366500     utr3
ggplot(BothDom5, aes(x=nPAS, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of PAS per gene with .5 difference",y="genes")

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom5_smLab= HumanDom5 %>% anti_join(ChimpDom5,by = "gene") %>% mutate(Set="Human")
ChimpDom5_smLab=  ChimpDom5 %>% anti_join(HumanDom5,by = "gene") %>% mutate(Set="Chimp")
BothDom5_smLab=HumanDom5_smLab %>% bind_rows(ChimpDom5_smLab)
diffgenes5=ggplot(BothDom5_smLab,aes(x=loc, fill=Set))+ geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") +   labs(title="Non Matched: 0.5", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffgenes5

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14
BothDom5_prop= BothDom5 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc5=ggplot(BothDom5_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.5",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
BothDom5_smLab_prop=BothDom5_smLab%>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)
propDiff5=ggplot(BothDom5_smLab_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.5: Different Genes",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

40% difference

HumanDom4=read.table("../data/DomDefGreaterX/Human_.4_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Human4") %>% inner_join(PASnumHuman, by="gene")
nrow(HumanDom4)
[1] 1833
ChimpDom4=read.table("../data/DomDefGreaterX/Chimp_.4_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Chimp4") %>% inner_join(PASnumChimp, by="gene")
nrow(ChimpDom4)
[1] 2478
BothDom4=HumanDom4 %>% bind_rows(ChimpDom4)
genloc4=ggplot(BothDom4, aes(x=loc, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.4",y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
genloc4

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom4_sm=HumanDom4 %>% select(PAS, gene, loc) %>% rename(HumanPAS=PAS, HumanLoc=loc)
ChimpDom4_sm=ChimpDom4 %>% select(PAS, gene, loc)%>% rename(ChimpPAS=PAS, ChimpLoc=loc)

both4sm=ChimpDom4_sm %>% inner_join(HumanDom4_sm, by="gene")
nrow(both4sm)
[1] 1565
grid.newpage()
venn.plot4 <- draw.pairwise.venn(area1 = length(HumanDom4_sm$gene),
                           area2 = length(ChimpDom4_sm$gene),
                           cross.area = nrow(both4sm),
                           c("Human", "Chimp"), scaled = TRUE,
                           fill = c("orange", "green"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

Version Author Date
71e0ab3 brimittleman 2020-04-15
both4sm_same= both4sm %>% filter(ChimpPAS==HumanPAS)
nrow(both4sm_same)
[1] 1543
both4sm_diff= both4sm %>% filter(ChimpPAS!=HumanPAS)
nrow(both4sm_diff)
[1] 22

location for same:

same4=ggplot(both4sm_same,aes(x=ChimpLoc,fill=ChimpLoc)) +geom_bar(stat = "count") +scale_fill_brewer(palette = "Dark2")+ labs(title="Matched Gene Matched PAS .4", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
same4

Version Author Date
71e0ab3 brimittleman 2020-04-15
38c6dc9 brimittleman 2020-04-14

22 is enough to start to plot:

both4sm_diff_g= both4sm_diff %>% select(gene, HumanLoc, ChimpLoc) %>% gather('Species', 'Loc', -gene)
diffDom4=ggplot(both4sm_diff_g, aes(x=Loc, fill=Species))+ geom_bar(stat="count",position = "dodge") +scale_fill_brewer(palette = "Dark2")+ labs(y='Genes', title="Different Dominant PAS: 0.4",x="") +theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffDom4

Version Author Date
71e0ab3 brimittleman 2020-04-15
ggplot(BothDom4, aes(x=nPAS, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of PAS per gene with .4 difference",y="genes")

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom4_smLab= HumanDom4 %>% anti_join(ChimpDom4,by = "gene") %>% mutate(Set="Human")
ChimpDom4_smLab=  ChimpDom4 %>% anti_join(HumanDom4,by = "gene") %>% mutate(Set="Chimp")
BothDom4_smLab=HumanDom4_smLab %>% bind_rows(ChimpDom4_smLab)
diffgenes4=ggplot(BothDom4_smLab,aes(x=loc, fill=Set))+ geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") +  labs(title="Non Matched: 0.4", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffgenes4

BothDom4_prop= BothDom4 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc4=ggplot(BothDom4_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.4",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
BothDom4_smLab_prop=BothDom4_smLab%>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)
propDiff4=ggplot(BothDom4_smLab_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.4: Different Genes",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

30% difference

HumanDom3=read.table("../data/DomDefGreaterX/Human_.3_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Human3") %>% inner_join(PASnumHuman, by="gene")
nrow(HumanDom3)
[1] 2403
ChimpDom3=read.table("../data/DomDefGreaterX/Chimp_.3_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Chimp3") %>% inner_join(PASnumChimp, by="gene")
nrow(ChimpDom3)
[1] 3127
BothDom3=HumanDom3 %>% bind_rows(ChimpDom3)
genloc3=ggplot(BothDom3, aes(x=loc, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.3",y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
genloc3

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom3_sm=HumanDom3 %>% select(PAS, gene, loc) %>% rename(HumanPAS=PAS, HumanLoc=loc)
ChimpDom3_sm=ChimpDom3 %>% select(PAS, gene, loc)%>% rename(ChimpPAS=PAS, ChimpLoc=loc)

both3sm=ChimpDom3_sm %>% inner_join(HumanDom3_sm, by="gene")
nrow(both3sm)
[1] 2069
grid.newpage()
venn.plot3 <- draw.pairwise.venn(area1 = length(HumanDom3_sm$gene),
                           area2 = length(ChimpDom3_sm$gene),
                           cross.area = nrow(both3sm),
                           c("Human", "Chimp"), scaled = TRUE,
                           fill = c("orange", "green"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

Version Author Date
71e0ab3 brimittleman 2020-04-15
both3sm_same= both3sm %>% filter(ChimpPAS==HumanPAS)
nrow(both3sm_same)
[1] 2031
both3sm_diff= both3sm %>% filter(ChimpPAS!=HumanPAS)
nrow(both3sm_diff)
[1] 38

location for same:

same3=ggplot(both3sm_same,aes(x=ChimpLoc,fill=ChimpLoc)) +geom_bar(stat = "count") +scale_fill_brewer(palette = "Dark2")+ labs(title="Matched Gene Matched PAS .3", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
same3

Version Author Date
71e0ab3 brimittleman 2020-04-15
both3sm_diff_g= both3sm_diff %>% select(gene, HumanLoc, ChimpLoc) %>% gather('Species', 'Loc', -gene)
diffDom3=ggplot(both3sm_diff_g, aes(x=Loc, fill=Species))+ geom_bar(stat="count",position = "dodge") +scale_fill_brewer(palette = "Dark2")+ labs(y='Genes', title="Different Dominant PAS: 0.3",x="") +theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffDom3

ggplot(BothDom3, aes(x=nPAS, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of PAS per gene with .3 difference",y="genes")

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom3_smLab= HumanDom3 %>% anti_join(ChimpDom3,by = "gene") %>% mutate(Set="Human")
ChimpDom3_smLab=  ChimpDom3 %>% anti_join(HumanDom3,by = "gene") %>% mutate(Set="Chimp")
BothDom3_smLab=HumanDom3_smLab %>% bind_rows(ChimpDom3_smLab)
diffgenes3=ggplot(BothDom3_smLab,aes(x=loc, fill=Set))+ geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") +   labs(title="Non Matched: 0.3", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffgenes3

BothDom3_prop= BothDom3 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc3=ggplot(BothDom3_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.3",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
BothDom3_prop= BothDom3 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc3=ggplot(BothDom3_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.3",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
BothDom3_smLab_prop=BothDom3_smLab%>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)
propDiff3=ggplot(BothDom3_smLab_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.3: Different Genes",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

20% difference

HumanDom2=read.table("../data/DomDefGreaterX/Human_.2_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Human2") %>% inner_join(PASnumHuman, by="gene")
nrow(HumanDom2)
[1] 3183
ChimpDom2=read.table("../data/DomDefGreaterX/Chimp_.2_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Chimp2") %>% inner_join(PASnumChimp, by="gene")
nrow(ChimpDom2)
[1] 3969
BothDom2=HumanDom2 %>% bind_rows(ChimpDom2)
genloc2=ggplot(BothDom2, aes(x=loc, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.2",y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
genloc2

Version Author Date
71e0ab3 brimittleman 2020-04-15
HumanDom2_sm=HumanDom2 %>% select(PAS, gene, loc) %>% rename(HumanPAS=PAS, HumanLoc=loc)
ChimpDom2_sm=ChimpDom2 %>% select(PAS, gene, loc)%>% rename(ChimpPAS=PAS, ChimpLoc=loc)

both2sm=ChimpDom2_sm %>% inner_join(HumanDom2_sm, by="gene")
nrow(both2sm)
[1] 2711
grid.newpage()
venn.plot2 <- draw.pairwise.venn(area1 = length(HumanDom2_sm$gene),
                           area2 = length(ChimpDom2_sm$gene),
                           cross.area = nrow(both2sm),
                           c("Human", "Chimp"), scaled = TRUE,
                           fill = c("orange", "green"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

Version Author Date
71e0ab3 brimittleman 2020-04-15
both2sm_same= both2sm %>% filter(ChimpPAS==HumanPAS)
nrow(both2sm_same)
[1] 2634
both2sm_diff= both2sm %>% filter(ChimpPAS!=HumanPAS)
nrow(both2sm_diff)
[1] 77

location for same:

same2=ggplot(both2sm_same,aes(x=ChimpLoc,fill=ChimpLoc)) +geom_bar(stat = "count") +scale_fill_brewer(palette = "Dark2")+ labs(title="Matched Gene Matched PAS .2", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
same2

Version Author Date
71e0ab3 brimittleman 2020-04-15
both2sm_diff_g= both2sm_diff %>% select(gene, HumanLoc, ChimpLoc) %>% gather('Species', 'Loc', -gene)
diffDom2=ggplot(both2sm_diff_g, aes(x=Loc, fill=Species))+ geom_bar(stat="count",position = "dodge") +scale_fill_brewer(palette = "Dark2")+  labs(y='Genes', title="Different Dominant PAS: 0.2",x="") +theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffDom2

Version Author Date
71e0ab3 brimittleman 2020-04-15
ggplot(BothDom2, aes(x=nPAS, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of PAS per gene with .2 difference",y="genes")

HumanDom2_smLab= HumanDom2 %>% anti_join(ChimpDom2,by = "gene") %>% mutate(Set="Human")
ChimpDom2_smLab=  ChimpDom2 %>% anti_join(HumanDom2,by = "gene") %>% mutate(Set="Chimp")
BothDom2_smLab=HumanDom2_smLab %>% bind_rows(ChimpDom2_smLab)
diffgenes2=ggplot(BothDom2_smLab,aes(x=loc, fill=Set))+ geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") +  labs(title="Non Matched: 0.2", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffgenes2

BothDom2_prop= BothDom2 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc2=ggplot(BothDom2_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.2",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
BothDom2_smLab_prop=BothDom2_smLab%>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)
propDiff2=ggplot(BothDom2_smLab_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.2: Different Genes",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

10% difference

HumanDom1=read.table("../data/DomDefGreaterX/Human_.1_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Human1") %>% inner_join(PASnumHuman, by="gene")
nrow(HumanDom1)
[1] 4417
ChimpDom1=read.table("../data/DomDefGreaterX/Chimp_.1_dominantPAS.txt", col.names = MetaCol,stringsAsFactors = F) %>% mutate(set="Chimp1") %>% inner_join(PASnumChimp, by="gene")
nrow(ChimpDom1)
[1] 5254
BothDom1=HumanDom1 %>% bind_rows(ChimpDom1)
genloc1=ggplot(BothDom1, aes(x=loc, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.1",y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none") 

genloc1

HumanDom1_sm=HumanDom1 %>% select(PAS, gene, loc) %>% rename(HumanPAS=PAS, HumanLoc=loc)
ChimpDom1_sm=ChimpDom1 %>% select(PAS, gene, loc)%>% rename(ChimpPAS=PAS, ChimpLoc=loc)

both1sm=ChimpDom1_sm %>% inner_join(HumanDom1_sm, by="gene")
nrow(both1sm)
[1] 3814
grid.newpage()
venn.plot1 <- draw.pairwise.venn(area1 = length(HumanDom1_sm$gene),
                           area2 = length(ChimpDom1_sm$gene),
                           cross.area = nrow(both1sm),
                           c("Human", "Chimp"), scaled = TRUE,
                           fill = c("orange", "green"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

both1sm_same= both1sm %>% filter(ChimpPAS==HumanPAS)
nrow(both1sm_same)
[1] 3542
both1sm_diff= both1sm %>% filter(ChimpPAS!=HumanPAS)
nrow(both1sm_diff)
[1] 272

location for same:

same1=ggplot(both1sm_same,aes(x=ChimpLoc,fill=ChimpLoc)) +geom_bar(stat = "count") +scale_fill_brewer(palette = "Dark2")+ labs(title="Matched Gene Matched PAS .1", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
same1

both1sm_diff_g= both1sm_diff %>% select(gene, HumanLoc, ChimpLoc) %>% gather('Species', 'Loc', -gene)
diffDom1=ggplot(both1sm_diff_g, aes(x=Loc, fill=Species))+ geom_bar(stat="count",position = "dodge") +scale_fill_brewer(palette = "Dark2")+ labs(y='PAS', title="Location for Different Dominant PAS at 10% difference") +labs(y='Genes', title="Different Dominant PAS: 0.1",x="") +theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffDom1

ggplot(BothDom1, aes(x=nPAS, fill=set)) + geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of PAS per gene with .1 difference",y="genes")

HumanDom1_smLab= HumanDom1 %>% anti_join(ChimpDom1,by = "gene") %>% mutate(Set="Human")
ChimpDom1_smLab=  ChimpDom1 %>% anti_join(HumanDom1,by = "gene") %>% mutate(Set="Chimp")
BothDom1_smLab=HumanDom1_smLab %>% bind_rows(ChimpDom1_smLab)
diffgenes1=ggplot(BothDom1_smLab,aes(x=loc, fill=Set))+ geom_bar(stat="count", position = "dodge") + scale_fill_brewer(palette = "Dark2") +  labs(title="Non Matched: 0.1", y="genes",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
diffgenes1

BothDom1_prop= BothDom1 %>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)

proploc1=ggplot(BothDom1_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.1",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")
BothDom1_smLab_prop=BothDom1_smLab%>% group_by(set, loc) %>% summarise(nLoc=n()) %>% ungroup() %>% group_by(set) %>% mutate(nSet=sum(nLoc), prop=nLoc/nSet)
propDiff1=ggplot(BothDom1_smLab_prop, aes(x=loc,by=set, fill=set,y=prop)) + geom_bar(stat="identity",position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="0.1: Different Genes",y="Proportion",x="")+theme(axis.text.x = element_text(angle = 90),legend.position = "none")

Aggregate results:

Next step will be to aggregate these plots in a way that is both easier to visualize but also easier to draw conclusions from.

First plot the number of genes with a dominant PAS at each cutoff.

Cutoffs=seq(0.1,.9, .1)
Human=c(nrow(HumanDom1),nrow(HumanDom2),nrow(HumanDom3),nrow(HumanDom4),nrow(HumanDom5),nrow(HumanDom6),nrow(HumanDom7),nrow(HumanDom8),nrow(HumanDom9))
Chimp=c(nrow(ChimpDom1),nrow(ChimpDom2),nrow(ChimpDom3),nrow(ChimpDom4),nrow(ChimpDom5),nrow(ChimpDom6),nrow(ChimpDom7),nrow(ChimpDom8),nrow(ChimpDom9))

DomNumsDF=as.data.frame(cbind(Cutoffs, Human, Chimp)) %>% gather("Species", "DominantGenes", -Cutoffs)
DomNumsDF$Cutoffs= as.factor(DomNumsDF$Cutoffs)
ggplot(DomNumsDF, aes(x=Cutoffs, fill=Species, y=DominantGenes)) + geom_bar(stat="identity", position = "dodge") + scale_fill_brewer(palette = "Dark2") + labs(title="Number of Genes with a Dominant PAS",x="Difference in usage to be called dominant")

General location:

genloctiles <- ggdraw() + 
  draw_label(
    "Location of Dominant PAS",
    fontface = 'bold',
    x = 0,
    hjust = 0
  )
genloc=plot_grid(genloc1,genloc2,genloc3,genloc4,genloc5,genloc6,genloc7,genloc8,genloc9)

plot_grid(
  genloctiles, genloc,
  ncol = 1,
  # rel_heights values control vertical title margins
  rel_heights = c(0.1, 1)
)

This shows this pattern is robust to the cutoff.

Proportion:

proploctiles <- ggdraw() + 
  draw_label(
    "Location of Dominant PAS by proportion",
    fontface = 'bold',
    x = 0,
    hjust = 0
  )
proploc=plot_grid(proploc9,proploc8,proploc7,proploc6,proploc5,proploc4,proploc3,proploc2,proploc1)

plot_grid(
  proploctiles, proploc,
  ncol = 1,
  # rel_heights values control vertical title margins
  rel_heights = c(0.1, 1)
)

Plot the joint genes.

diffdomtiles <- ggdraw() + 
  draw_label(
    "Location of Dominant PAS in genes with different Dominant PAS",
    fontface = 'bold',
    x = 0,
    hjust = 0
  )
diffdom=plot_grid(diffDom1,diffDom2,diffDom3,diffDom4)

plot_grid(
  diffdomtiles, diffdom,
  ncol = 1,
  # rel_heights values control vertical title margins
  rel_heights = c(0.1, 1)
)

This is also robust to cutoff.

Location when they do not share the same gene.

diffgenes9

diffgenestiles <- ggdraw() + 
  draw_label(
    "Location of Dominant PAS in genes with a dominant PAS only in 1 species",
    fontface = 'bold',
    x = 0,
    hjust = 0
  )
diffgenes=plot_grid(diffgenes1,diffgenes2,diffgenes3,diffgenes4,diffgenes5,diffgenes6,diffgenes7,diffgenes8,diffgenes9)

plot_grid(
  diffgenestiles, diffgenes,
  ncol = 1,
  # rel_heights values control vertical title margins
  rel_heights = c(0.1, 1)
)

#propDiff1
diffgenesProptiles <- ggdraw() + 
  draw_label(
    "Location of Dominant PAS in genes with a dominant PAS only in 1 species- Proportion",
    fontface = 'bold',
    x = 0,
    hjust = 0
  )
diffPropgenes=plot_grid(propDiff1,propDiff2,propDiff3,propDiff4,propDiff5,propDiff6,propDiff7,propDiff8,propDiff9)

plot_grid(
  diffgenesProptiles, diffPropgenes,
  ncol = 1,
  # rel_heights values control vertical title margins
  rel_heights = c(0.1, 1)
)

This is robust as well.

Look at the overlapping genes with the same PAS

#same1

SAMESAMEtiles <- ggdraw() + 
  draw_label(
    "Location of Dominant PAS in genes with the same dominant PAS",
    fontface = 'bold',
    x = 0,
    hjust = 0
  )
SAMESAME=plot_grid(same1,same2,same3,same4,same5,same6,same7,same8)

plot_grid(
  SAMESAMEtiles, SAMESAME,
  ncol = 1,
  # rel_heights values control vertical title margins
  rel_heights = c(0.1, 1)
)


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] cowplot_0.9.4       forcats_0.3.0       stringr_1.3.1      
 [4] dplyr_0.8.0.1       purrr_0.3.2         readr_1.3.1        
 [7] tidyr_0.8.3         tibble_2.1.1        ggplot2_3.1.1      
[10] tidyverse_1.2.1     VennDiagram_1.6.20  futile.logger_1.4.3
[13] gridExtra_2.3       workflowr_1.6.0    

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5     haven_1.1.2          lattice_0.20-38     
 [4] colorspace_1.3-2     generics_0.0.2       htmltools_0.3.6     
 [7] yaml_2.2.0           rlang_0.4.0          later_0.7.5         
[10] pillar_1.3.1         withr_2.1.2          glue_1.3.0          
[13] RColorBrewer_1.1-2   lambda.r_1.2.3       modelr_0.1.2        
[16] readxl_1.1.0         plyr_1.8.4           cellranger_1.1.0    
[19] munsell_0.5.0        gtable_0.2.0         rvest_0.3.2         
[22] evaluate_0.12        labeling_0.3         knitr_1.20          
[25] httpuv_1.4.5         broom_0.5.1          Rcpp_1.0.2          
[28] promises_1.0.1       backports_1.1.2      scales_1.0.0        
[31] formatR_1.5          jsonlite_1.6         fs_1.3.1            
[34] hms_0.4.2            digest_0.6.18        stringi_1.2.4       
[37] rprojroot_1.3-2      cli_1.1.0            tools_3.5.1         
[40] magrittr_1.5         lazyeval_0.2.1       futile.options_1.0.1
[43] crayon_1.3.4         whisker_0.3-2        pkgconfig_2.0.2     
[46] xml2_1.2.0           lubridate_1.7.4      rstudioapi_0.10     
[49] assertthat_0.2.0     rmarkdown_1.10       httr_1.3.1          
[52] R6_2.3.0             nlme_3.1-137         git2r_0.26.1        
[55] compiler_3.5.1