Last updated: 2020-04-10

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/TrialFiltersMeta.txt.sb-9845453e-R58Y0Q/
    Ignored:    data/mediation_prot/
    Ignored:    data/metadata_HCpanel.txt.sb-284518db-RGf0kd/
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/DiffUsedUTR.Rmd
    Untracked:  analysis/GvizPlots.Rmd
    Untracked:  analysis/HandC.TvN
    Untracked:  analysis/PhenotypeOverlap10.Rmd
    Untracked:  analysis/annotationBias.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  code/._AlignmentScores.sh
    Untracked:  code/._BothFCMM.sh
    Untracked:  code/._BothFCMMPrim.sh
    Untracked:  code/._BothFCnewOInclusive.sh
    Untracked:  code/._ChimpStarMM2.sh
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._ClosestorthoEx.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._Filter255MM.sh
    Untracked:  code/._FilterPrimSec.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._FindIntronForDomPAS_DF.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._MismatchNumbers.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PAS_ATTAAA_df.sh
    Untracked:  code/._PAS_seqExpanded.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._PASsequences_DF.sh
    Untracked:  code/._PlotNuclearUsagebySpecies.R
    Untracked:  code/._PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._RNATranscriptDTplot.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._RunNegMCMediation.sh
    Untracked:  code/._RunNegMCMediationDF.sh
    Untracked:  code/._RunPosMCMediationDF.err
    Untracked:  code/._RunPosMCMediationDF.sh
    Untracked:  code/._SAF2Bed.py
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._StarMM2.sh
    Untracked:  code/._TestFC.sh
    Untracked:  code/._assignPeak2Intronicregion
    Untracked:  code/._assignPeak2Intronicregion.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2Bedbothstrand.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._chimpMultiCov.sh
    Untracked:  code/._chimpMultiCov255.sh
    Untracked:  code/._chimpMultiCovInclusive.sh
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._extractPhyloReg.py
    Untracked:  code/._extractPhyloRegGene.py
    Untracked:  code/._extractPhylopGeneral.ph
    Untracked:  code/._extractPhylopGeneral.py
    Untracked:  code/._extractPhylopReg200down.py
    Untracked:  code/._extractPhylopReg200up.py
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._filterPrimaryread.py
    Untracked:  code/._filterSecondaryread.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixFCheadforExp.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._humanMultiCov.sh
    Untracked:  code/._humanMultiCov255.sh
    Untracked:  code/._humanMultiCov_inclusive.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeNuclearDapaplots.sh
    Untracked:  code/._makeNuclearDapaplots_DF.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mediation_test.R
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergeandBWRNAseq.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._negativeMediation_montecarlo.R
    Untracked:  code/._negativeMediation_montecarloDF.R
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapMMandOrthoexon.sh
    Untracked:  code/._overlapPASandOrthoexon.sh
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._parseHg38.py
    Untracked:  code/._postiveMediation_montecarlo_DF.R
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantLiftedPASPrimary.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDiffIso_DF.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._spliceSite2Fasta.py
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._threeprimeOrthoFC.sh
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ALLPAS_sequenceDF.err
    Untracked:  code/ALLPAS_sequenceDF.out
    Untracked:  code/AlignmentScores.err
    Untracked:  code/AlignmentScores.out
    Untracked:  code/AlignmentScores.sh
    Untracked:  code/BothFCMM.err
    Untracked:  code/BothFCMM.out
    Untracked:  code/BothFCMM.sh
    Untracked:  code/BothFCMMPrim.err
    Untracked:  code/BothFCMMPrim.out
    Untracked:  code/BothFCMMPrim.sh
    Untracked:  code/BothFCnewOInclusive.sh
    Untracked:  code/BothFCnewOInclusive.sh.err
    Untracked:  code/BothFCnewOInclusive.sh.out
    Untracked:  code/ChimpStarMM2.err
    Untracked:  code/ChimpStarMM2.out
    Untracked:  code/ChimpStarMM2.sh
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/ClosestorthoEx.err
    Untracked:  code/ClosestorthoEx.out
    Untracked:  code/ClosestorthoEx.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/Filter255.err
    Untracked:  code/Filter255.out
    Untracked:  code/Filter255MM.sh
    Untracked:  code/FilterPrimSec.err
    Untracked:  code/FilterPrimSec.out
    Untracked:  code/FilterPrimSec.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/FindIntronForDomPAS_DF.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/IntersectMMandOrtho.err
    Untracked:  code/IntersectMMandOrtho.out
    Untracked:  code/IntersectPASandOrtho.err
    Untracked:  code/IntersectPASandOrtho.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MaxEntCode/
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/MismatchNumbers.err
    Untracked:  code/MismatchNumbers.out
    Untracked:  code/MismatchNumbers.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_ATTAAADF.err
    Untracked:  code/PAS_ATTAAADF.out
    Untracked:  code/PAS_ATTAAA_df.sh
    Untracked:  code/PAS_seqExpanded.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PAS_sequenceDF.err
    Untracked:  code/PAS_sequenceDF.out
    Untracked:  code/PASexpanded_sequenceDF.err
    Untracked:  code/PASexpanded_sequenceDF.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/PASsequences_DF.sh
    Untracked:  code/PlotNuclearUsagebySpecies.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/RNATranscriptDTplot.err
    Untracked:  code/RNATranscriptDTplot.out
    Untracked:  code/RNATranscriptDTplot.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/RunNegMCMediation.err
    Untracked:  code/RunNegMCMediation.sh
    Untracked:  code/RunNegMCMediationDF.err
    Untracked:  code/RunNegMCMediationDF.out
    Untracked:  code/RunNegMCMediationDF.sh
    Untracked:  code/RunNegMCMediationr.out
    Untracked:  code/RunPosMCMediation.err
    Untracked:  code/RunPosMCMediation.sh
    Untracked:  code/RunPosMCMediationDF.err
    Untracked:  code/RunPosMCMediationDF.out
    Untracked:  code/RunPosMCMediationDF.sh
    Untracked:  code/RunPosMCMediationr.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/SAF2Bed.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/StarMM2.err
    Untracked:  code/StarMM2.out
    Untracked:  code/StarMM2.sh
    Untracked:  code/TestFC.err
    Untracked:  code/TestFC.out
    Untracked:  code/TestFC.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/allPASSeq_df.sh
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/apaQTLsnakefiltPAS.err
    Untracked:  code/apaQTLsnakefiltPAS.out
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignPeak2Intronicregion.sh
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2Bedbothstrand.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chimpMultiCov.err
    Untracked:  code/chimpMultiCov.out
    Untracked:  code/chimpMultiCov.sh
    Untracked:  code/chimpMultiCov255.sh
    Untracked:  code/chimpMultiCovInclusive.err
    Untracked:  code/chimpMultiCovInclusive.out
    Untracked:  code/chimpMultiCovInclusive.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chooseSignalSite.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/extractPhyloReg.py
    Untracked:  code/extractPhyloRegGene.py
    Untracked:  code/extractPhylopGeneral.py
    Untracked:  code/extractPhylopReg200down.py
    Untracked:  code/extractPhylopReg200up.py
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterPrimaryread.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSecondaryread.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFCheadforExp.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getAlloverlap.py
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/humanMultiCov.err
    Untracked:  code/humanMultiCov.out
    Untracked:  code/humanMultiCov.sh
    Untracked:  code/humanMultiCov255.err
    Untracked:  code/humanMultiCov255.out
    Untracked:  code/humanMultiCov255.sh
    Untracked:  code/humanMultiCovInclusive.err
    Untracked:  code/humanMultiCovInclusive.out
    Untracked:  code/humanMultiCov_inclusive.sh
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectAnnoExt.err
    Untracked:  code/intersectAnnoExt.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makeNuclearDapaplots.sh
    Untracked:  code/makeNuclearDapaplots_DF.sh
    Untracked:  code/makeNuclearPlots.err
    Untracked:  code/makeNuclearPlots.out
    Untracked:  code/makeNuclearPlotsDF.err
    Untracked:  code/makeNuclearPlotsDF.out
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mediation_test.R
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandBWRNAseq.sh
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/mergedbamRNAand2bw.err
    Untracked:  code/mergedbamRNAand2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/negativeMediation_montecarlo.R
    Untracked:  code/negativeMediation_montecarloDF.R
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapMMandOrthoexon.sh
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapPASandOrthoexon.sh
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/overlapapaQTLPAS_extended.sh
    Untracked:  code/overlapapaQTLPAS_samples.sh
    Untracked:  code/parseHg38.py
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/postiveMediation_montecarlo.R
    Untracked:  code/postiveMediation_montecarlo_DF.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quantLiftedPASPrimary.err
    Untracked:  code/quantLiftedPASPrimary.out
    Untracked:  code/quantLiftedPASPrimary.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runChimpDiffIsoDF.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runHumanDiffIsoDF.sh
    Untracked:  code/runNuclearDiffIso_DF.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_dF.err
    Untracked:  code/run_Humanleafcutter_dF.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_dsDF.err
    Untracked:  code/run_Nuclearleafcutter_dsDF.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePAS_Human.batch
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.batch
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/spliceSite2Fasta.py
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/test.txt
    Untracked:  code/threeprimeOrthoFC.out
    Untracked:  code/threeprimeOrthoFC.sh
    Untracked:  code/threeprimeOrthoFCcd.err
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._TrialFiltersMeta.txt
    Untracked:  data/._TrialFiltersMeta.txt.sb-9845453e-R58Y0Q
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/BaseComp/
    Untracked:  data/CleanLiftedPeaks_FC_primary/
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DNDS/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Nuclear_DF/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DominantPAS/
    Untracked:  data/DominantPAS_DF/
    Untracked:  data/EvalPantro5/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NormalizedClusters/
    Untracked:  data/NuclearHvC/
    Untracked:  data/NuclearHvC_DF/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/OrthoExonBed/
    Untracked:  data/OverlapBenchmark/
    Untracked:  data/OverlappingPAS/
    Untracked:  data/PAS/
    Untracked:  data/PAS_SAF/
    Untracked:  data/PAS_doubleFilter/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_DF_nuclear/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_nuclear_old/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/PhyloP/
    Untracked:  data/Pol2Chip/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/SignalSites_doublefilter/
    Untracked:  data/SpliceSite/
    Untracked:  data/TestAnnoBiasOE/
    Untracked:  data/TestMM2/
    Untracked:  data/TestMM2_AS/
    Untracked:  data/TestMM2_PrimaryRead/
    Untracked:  data/TestMM2_SeondaryRead/
    Untracked:  data/TestMM2_mismatch/
    Untracked:  data/TestMM2_quality/
    Untracked:  data/TestWithinMergePAS/
    Untracked:  data/Test_FC_methods/
    Untracked:  data/Threeprime2Ortho/
    Untracked:  data/TotalFractionPAS/
    Untracked:  data/TotalHvC/
    Untracked:  data/TrialFiltersMeta.txt
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/apaQTLGenes/
    Untracked:  data/bioGRID/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/files4viz_nuclear/
    Untracked:  data/files4viz_nuclear_DF/
    Untracked:  data/gviz/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/mediation/
    Untracked:  data/mediation_DF/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_extra.txt
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/multimap/
    Untracked:  data/orthoUTR/
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/testQuant/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/._.DS_Store
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd
    Untracked:  proteinModelSet.Rmd

Unstaged changes:
    Modified:   analysis/ExploredAPA.Rmd
    Modified:   analysis/MMExpreiment.Rmd
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/TotalVNuclearBothSpecies.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/changeMisprimcut.Rmd
    Modified:   analysis/comp2apaQTLPAS.Rmd
    Modified:   analysis/correlationPhenos.Rmd
    Modified:   analysis/establishCutoffs.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/pol2.Rmd
    Modified:   analysis/speciesSpecific.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 014951a brimittleman 2020-04-10 remove 18499
html a7536f9 brimittleman 2020-04-03 Build site.
Rmd bf79d5e brimittleman 2020-04-03 update catalot
html 252c8be brimittleman 2020-01-25 Build site.
Rmd 0f7b377 brimittleman 2020-01-25 add graphs for CM
html 2d84fb1 brimittleman 2020-01-23 Build site.
Rmd 908f02d brimittleman 2020-01-23 add compare filter and write out for top SS
html 86dc150 brimittleman 2020-01-22 Build site.
Rmd c3a9af5 brimittleman 2020-01-22 add all ss and choose 1
html f3aa6b1 brimittleman 2020-01-22 Build site.
Rmd ed5a6a0 brimittleman 2020-01-22 add all SS
html 5525b39 brimittleman 2020-01-21 Build site.
Rmd 2e66af9 brimittleman 2020-01-21 add ss and PAS num DF

Top 2 SS

In this analysis I will look at the signal site distributions for the human and chimp PAS I have called.

library(ggpubr)
Loading required package: ggplot2
Loading required package: magrittr
library(workflowr)
This is workflowr version 1.6.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ tibble  2.1.1       ✔ purrr   0.3.2  
✔ tidyr   0.8.3       ✔ dplyr   0.8.0.1
✔ readr   1.3.1       ✔ stringr 1.3.1  
✔ tibble  2.1.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ tidyr::extract()   masks magrittr::extract()
✖ dplyr::filter()    masks stats::filter()
✖ dplyr::lag()       masks stats::lag()
✖ purrr::set_names() masks magrittr::set_names()

I am looking at 200 base pair regions for each pas. I will look for the sequence in these for now and then refine the search.

I can use bedtools nuc on both to get the sequences for the bed files in ../data/PAS.

mkdir ../data/SignalSites_doublefilter
sbatch PASsequences_DF.sh

The way I did this it flipped the - strand and assayed the correct strand sequence. I will still have to make everything upper case.

Before I use python to find the occurances. I will look at the results because I gave the AATAAA pattern to the nuc program to assay.

First i have to remove the # in each file

humanRawout=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_nuc.txt", stringsAsFactors = F, header = T) %>% mutate(SS=ifelse(X17_user_patt_count>=1, "yes", "no"))
ChimpRawout=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_nuc.txt", stringsAsFactors = F, header = T)%>% mutate(SS=ifelse(X17_user_patt_count>=1, "yes", "no"))

Histogram for the results:

ggplot(humanRawout,aes(x=X17_user_patt_count)) + geom_bar(aes(y=..prop..)) +labs(title="Distribution of AATAAA pattern Human")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21
ggplot(ChimpRawout,aes(x=X17_user_patt_count)) + geom_bar(aes(y=..prop..))+labs(title="Distribution of AATAAA pattern Chimps")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21

See if yes no segragates with usage:

ggplot(humanRawout,aes(x=SS,y=X5_usercol,by=SS, fill=SS)) + geom_boxplot() + labs(x="Presence of AATAAA", y="Human mean usage",title="Human usage by presense of at least 1 AATAAA") + scale_fill_brewer(palette = "Dark2") + stat_compare_means(method = "t.test")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21
ggplot(ChimpRawout,aes(x=SS,y=X5_usercol,by=SS, fill=SS)) + geom_boxplot() + labs(x="Presence of AATAAA", y="Chimp mean usage",title="Chimp usage by presense of at least 1 AATAAA") + scale_fill_brewer(palette = "Dark2") + stat_compare_means(method = "t.test")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21

Look at location data and bring this in.

Loc=read.table("../data/PAS_doubleFilter/PAS_5perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt", header = T, stringsAsFactors = F) %>% rename("X4_usercol"=PAS) %>% dplyr::select(X4_usercol,loc)

ChimpRawout_withloc=ChimpRawout %>% inner_join(Loc, by="X4_usercol") %>% filter(loc!="008559")
humanRawout_withloc=humanRawout%>% inner_join(Loc, by="X4_usercol") %>% filter(loc!="008559")
ggplot(humanRawout_withloc,aes(x=loc,y=X5_usercol,by=SS, fill=SS)) + geom_boxplot() + labs(x="Presence of AATAAA", y="Human mean usage",title="Human usage by presense of at least 1 AATAAA") + scale_fill_brewer(palette = "Dark2") + stat_compare_means(method = "t.test",label.y.npc = "bottom")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21
ggplot(ChimpRawout_withloc,aes(x=loc,y=X5_usercol,by=SS, fill=SS)) + geom_boxplot() + labs(x="Presence of AATAAA", y="Chimp mean usage",title="Chimp usage by presense of at least 1 AATAAA") + scale_fill_brewer(palette = "Dark2") + stat_compare_means(method = "t.test",
label.y.npc = "bottom")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21

I can run the nuc command again for the other doninant signal site I found in the apaQTL analysis (ATTAAA), I can join the results.

sbatch PAS_ATTAAA_df.sh

remove #

human_ATTAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_ATTAAA.txt",stringsAsFactors = F,header = T) %>% mutate(SS2=ifelse(X17_user_patt_count>=1, "yes", "no"))

chimp_ATTAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_ATTAAA.txt",stringsAsFactors = F,header = T) %>% mutate(SS2=ifelse(X17_user_patt_count>=1, "yes", "no"))


human_both=human_ATTAAA %>% inner_join(humanRawout_withloc, by=c("X1_usercol", "X2_usercol", "X3_usercol", "X4_usercol", "X5_usercol", "X6_usercol", "X7_pct_at", "X8_pct_gc", "X9_num_A", "X10_num_C", "X11_num_G", "X12_num_T", "X13_num_N", "X14_num_oth", "X15_seq_len", "X16_seq")) %>% mutate(anySS=ifelse(SS == "yes" | SS2 =="yes", "yes", "no"))

chimp_both=chimp_ATTAAA %>% inner_join(ChimpRawout_withloc, by=c("X1_usercol", "X2_usercol", "X3_usercol", "X4_usercol", "X5_usercol", "X6_usercol", "X7_pct_at", "X8_pct_gc", "X9_num_A", "X10_num_C", "X11_num_G", "X12_num_T", "X13_num_N", "X14_num_oth", "X15_seq_len", "X16_seq")) %>% mutate(anySS=ifelse(SS == "yes" | SS2 =="yes", "yes", "no"))
ggplot(human_both,aes(x=loc,y=X5_usercol,by=SS2, fill=SS2)) + geom_boxplot() + labs(x="Presence of  ATTAAA", y="Human mean usage",title="Human usage by presense of at least 1  ATTAAA") + scale_fill_brewer(palette = "Dark2") + stat_compare_means(method = "t.test",label.y.npc = "bottom")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21
ggplot(chimp_both,aes(x=loc,y=X5_usercol,by=SS2, fill=SS2)) + geom_boxplot() + labs(x="Presence of ATTAAA", y="Chimp mean usage",title="Chimp usage by presense of at least 1  ATTAAA") + scale_fill_brewer(palette = "Dark2") + stat_compare_means(method = "t.test",
label.y.npc = "bottom")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21
ggplot(human_both,aes(x=loc,y=X5_usercol,by=anySS, fill=anySS)) + geom_boxplot() + labs(x="Presence of AATAAA or ATTAAA", y="Human mean usage",title="Human usage by presense of at least 1 AATAAA or ATTAAA") + scale_fill_brewer(palette = "Dark2") + stat_compare_means(method = "t.test",label.y.npc = "bottom")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21
ggplot(chimp_both,aes(x=loc,y=X5_usercol,by=anySS, fill=anySS)) + geom_boxplot() + labs(x="Presence of AATAAA or ATTAAA", y="Chimp mean usage",title="Chimp usage by presense of at least 1 AATAAA or ATTAAA") + scale_fill_brewer(palette = "Dark2") + stat_compare_means(method = "t.test",
label.y.npc = "bottom")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21

Plot percentage either by loc:

human_both_loc= human_both %>% group_by(loc, anySS) %>% summarise(count=n()) %>% ungroup() %>% group_by(loc) %>% mutate(nLoc=sum(count),Human=count/nLoc) %>%ungroup() %>%  dplyr::select(loc, anySS,Human)

chimp_both_loc= chimp_both %>% group_by(loc, anySS) %>% summarise(count=n()) %>% ungroup() %>% group_by(loc) %>% mutate(nLoc=sum(count),Chimp=count/nLoc)%>% ungroup() %>% dplyr::select(loc, anySS,Chimp)

bothSpeciesLoc=chimp_both_loc %>% inner_join(human_both_loc,by=c("loc", "anySS")) %>% gather(key="species", value="propSS", -loc, -anySS) %>% filter(anySS=="yes")


ggplot(bothSpeciesLoc, aes(x=loc, fill=species,y=propSS)) + geom_bar(stat="identity",position = "dodge") +  scale_fill_brewer(palette = "Dark2") + labs(title="Presence of top 2 signal sites by location", x="Proportion with signal site", x="location")

Version Author Date
a7536f9 brimittleman 2020-04-03
5525b39 brimittleman 2020-01-21

Write out information about SS so i can use it for other anaylsis.

human_write=human_both %>% dplyr::select(X4_usercol,SS,SS2,anySS) %>% rename("PAS"=X4_usercol)

write.table(human_write, "../data/SignalSites_doublefilter/HumanPresenceofSS_DF.txt", col.names = T, row.names = F, quote = F)

chimp_write=chimp_both %>% dplyr::select(X4_usercol,SS,SS2,anySS) %>% rename("PAS"=X4_usercol)

write.table(chimp_write,"../data/SignalSites_doublefilter/ChimpPresenceofSS_DF.txt", col.names = T, row.names = F, quote = F)

Expand

REDO THESE I previously just looked at the top 2 signal sites. Now I will write a loop to run this on the remaining 10.


#../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_AAAAAG.txt
for i in AAAAAG AATACA AATAGA AATATA ACTAAA AGTAAA CATAAA GATAAA TATAAA AAAAAA  
do
echo $i
bedtools nuc -s -pattern $i -C -fi /project2/gilad/kenneth/References/human/genome/hg38.fa -bed ../data/PAS_doubleFilter/PAS_doublefilter_either_HumanCoordHummanUsage.sort.bed > ../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_${i}.txt
done 

for i in AAAAAG AATACA AATAGA AATATA ACTAAA AGTAAA CATAAA GATAAA TATAAA AAAAAA  
do
echo $i
bedtools nuc -s  -pattern $i  -C -fi /project2/gilad/briana/genome_anotation_data/Chimp_genome/panTro6.fa -bed ../data/PAS_doubleFilter/PAS_doublefilter_either_ChimpCoordChimpUsage.sort.bed > ../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_${i}.txt
done

sbatch allPASSeq_df.sh

AAAAAG AATACA AATAGA AATATA ACTAAA AGTAAA CATAAA GATAAA TATAAA AAAAAA

Human_AATAAA= humanRawout %>% rename("Human_AATAAA"=X17_user_patt_count, "PAS"=X4_usercol) %>% dplyr::select(PAS, Human_AATAAA)

Human_ATTAAA= human_ATTAAA %>% rename("Human_ATTAAA"=X17_user_patt_count, "PAS"=X4_usercol) %>% dplyr::select(PAS, Human_ATTAAA)

Human_AAAAAG=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_AAAAAG.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_AAAAAG")) %>% dplyr::select(PAS, Human_AAAAAG)

Human_AATACA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_AATACA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_AATACA")) %>% dplyr::select(PAS, Human_AATACA)
 
Human_AATAGA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_AATAGA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_AATAGA")) %>% dplyr::select(PAS, Human_AATAGA)
 

Human_AATATA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_AATATA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_AATATA")) %>% dplyr::select(PAS, Human_AATATA)  


Human_ACTAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_ACTAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_ACTAAA")) %>% dplyr::select(PAS, Human_ACTAAA)  

Human_AGTAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_AGTAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_AGTAAA")) %>% dplyr::select(PAS, Human_AGTAAA)  


Human_CATAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_CATAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_CATAAA")) %>% dplyr::select(PAS, Human_CATAAA)  

Human_GATAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_GATAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_GATAAA")) %>% dplyr::select(PAS, Human_GATAAA)  

Human_TATAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_TATAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_TATAAA")) %>% dplyr::select(PAS, Human_TATAAA)  


Human_AAAAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_HumanCoordHummanUsage_AAAAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Human_AAAAAA")) %>% dplyr::select(PAS, Human_AAAAAA)  
Chimp_AATAAA= ChimpRawout %>% rename("Chimp_AATAAA"=X17_user_patt_count, "PAS"=X4_usercol) %>% dplyr::select(PAS, Chimp_AATAAA)

Chimp_ATTAAA= chimp_ATTAAA %>% rename("Chimp_ATTAAA"=X17_user_patt_count, "PAS"=X4_usercol) %>% dplyr::select(PAS, Chimp_ATTAAA)


Chimp_AAAAAG=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_AAAAAG.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_AAAAAG")) %>% dplyr::select(PAS, Chimp_AAAAAG)

Chimp_AATACA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_AATACA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_AATACA")) %>% dplyr::select(PAS, Chimp_AATACA)
 
Chimp_AATAGA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_AATAGA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_AATAGA")) %>% dplyr::select(PAS, Chimp_AATAGA)
 

Chimp_AATATA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_AATATA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_AATATA")) %>% dplyr::select(PAS, Chimp_AATATA)  


Chimp_ACTAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_ACTAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_ACTAAA")) %>% dplyr::select(PAS, Chimp_ACTAAA)  

Chimp_AGTAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_AGTAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_AGTAAA")) %>% dplyr::select(PAS, Chimp_AGTAAA)  


Chimp_CATAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_CATAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_CATAAA")) %>% dplyr::select(PAS, Chimp_CATAAA)  

Chimp_GATAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_GATAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_GATAAA")) %>% dplyr::select(PAS, Chimp_GATAAA)  

Chimp_TATAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_TATAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_TATAAA")) %>% dplyr::select(PAS, Chimp_TATAAA)  


Chimp_AAAAAA=read.table("../data/SignalSites_doublefilter/PAS_doublefilter_either_ChimpCoordChimpUsage_AAAAAA.txt",stringsAsFactors = F,col.names=c("chr","start", "end", "PAS", "Human", "strand", "pcAT", "pcGC", "A", "C", "G", "T","N","oth", "leng", "Chimp_AAAAAA")) %>% dplyr::select(PAS, Chimp_AAAAAA)  

Join all of these by PAS

Human_allPAS=Human_AATAAA %>% inner_join(Human_ATTAAA, by="PAS")  %>% inner_join(Human_AAAAAG, by="PAS")  %>% inner_join(Human_AATACA, by="PAS") %>% inner_join(Human_AATAGA, by="PAS") %>% inner_join(Human_AATATA, by="PAS") %>% inner_join(Human_ACTAAA, by="PAS") %>% inner_join(Human_AGTAAA, by="PAS") %>% inner_join(Human_CATAAA, by="PAS") %>% inner_join(Human_GATAAA, by="PAS") %>% inner_join(Human_TATAAA, by="PAS") %>% inner_join(Human_AAAAAA, by="PAS")


Chimp_allPAS=Chimp_AATAAA %>% inner_join(Chimp_ATTAAA, by="PAS")  %>% inner_join(Chimp_AAAAAG, by="PAS")  %>% inner_join(Chimp_AATACA, by="PAS") %>% inner_join(Chimp_AATAGA, by="PAS") %>% inner_join(Chimp_AATATA, by="PAS") %>% inner_join(Chimp_ACTAAA, by="PAS") %>% inner_join(Chimp_AGTAAA, by="PAS") %>% inner_join(Chimp_CATAAA, by="PAS") %>% inner_join(Chimp_GATAAA, by="PAS") %>% inner_join(Chimp_TATAAA, by="PAS") %>% inner_join(Chimp_AAAAAA, by="PAS")

Gather these

Human_allPAS_gather=Human_allPAS %>% gather("Site", "Count",-PAS) %>% mutate(Identified=ifelse(Count>=1, "Y", "N")) %>% separate(Site, into=c("Species", "Signal"), by="_")

Chimp_allPAS_gather=Chimp_allPAS %>% gather("Site", "Count",-PAS) %>% mutate(Identified=ifelse(Count>=1, "Y", "N"))%>% separate(Site, into=c("Species", "Signal"), by="_")

Both_AllPAS_ident= Chimp_allPAS_gather %>% bind_rows(Human_allPAS_gather) %>% filter(Identified=="Y")


Both_AllPAS_group= Both_AllPAS_ident %>% group_by(Species, Signal) %>% summarise(n=n()) %>% mutate(NPAS=44432, propW=n/NPAS)

Plot:

ggplot(Both_AllPAS_ident, aes(x=Signal, by=Species, fill=Species)) + geom_bar(stat="count",position = "dodge")+ theme(axis.text.x = element_text(angle = 90)) + scale_fill_brewer(palette = "Dark2")

Version Author Date
a7536f9 brimittleman 2020-04-03
f3aa6b1 brimittleman 2020-01-22
ggplot(Both_AllPAS_group, aes(x=Signal, by=Species, fill=Species,y=propW)) + geom_bar(stat="identity",position = "dodge")+ theme(axis.text.x = element_text(angle = 90)) + scale_fill_brewer(palette = "Dark2")

Version Author Date
a7536f9 brimittleman 2020-04-03

This is not accounting for more than 1. I need to chose in a hierarchical way. I think I will use these proportions.

I want to see how many signals are identified per PAS

Chimp_allPAS_gather_site= Chimp_allPAS_gather %>% filter(Identified=="Y") %>% group_by(PAS) %>% summarise(nPerPAS_Chimp=n())

Human_allPAS_gather_site= Human_allPAS_gather %>% filter(Identified=="Y") %>% group_by(PAS) %>% summarise(nPerPAS_Human=n())


BothwithninSite=Chimp_allPAS_gather_site %>% inner_join(Human_allPAS_gather_site, by="PAS") 

Plot:

ggplot(BothwithninSite, aes(x=nPerPAS_Chimp, y=nPerPAS_Human)) + geom_point() + geom_smooth(method="lm")

Version Author Date
a7536f9 brimittleman 2020-04-03
f3aa6b1 brimittleman 2020-01-22
ggplot(BothwithninSite, aes(x=nPerPAS_Chimp)) + geom_bar()

Version Author Date
a7536f9 brimittleman 2020-04-03
ggplot(BothwithninSite, aes(x=nPerPAS_Human)) + geom_bar()

Version Author Date
a7536f9 brimittleman 2020-04-03

Ok similar distributions. I can hierarchically chose in both with the same parameter.

AATAAA, ATTAAA, AAAAAG, AAAAAA, TATAAA, AATATA, AGTAAA, AATACA, GATAAA, AATAGA, CATAAA, ACTAAA

I will do this seperately for human and chimp per PAS.

I can make a script in python that makes a dictionary for each PAS with the signals that are identified for it. After that I can use the heiarchical model to choose the signal.

I can do the signal with a dictionary so each PAS is given a number. I will chose the minimun number

Write out the files for this:

write.table(Human_allPAS_gather, "../data/SignalSites_doublefilter/HumanAllSignalSiteInfo.txt", col.names = F, row.names = F, quote = F)

write.table(Chimp_allPAS_gather, "../data/SignalSites_doublefilter/ChimpAllSignalSiteInfo.txt", col.names = F, row.names = F, quote = F)
python chooseSignalSite.py ../data/SignalSites_doublefilter/HumanAllSignalSiteInfo.txt ../data/SignalSites_doublefilter/HumanSignalSiteperPAS.txt

python chooseSignalSite.py ../data/SignalSites_doublefilter/ChimpAllSignalSiteInfo.txt ../data/SignalSites_doublefilter/ChimpSignalSiteperPAS.txt
SS=c('AATAAA', 'ATTAAA', 'AAAAAG', 'AAAAAA', 'TATAAA', 'AATATA', 'AGTAAA', 'AATACA', 'GATAAA', 'AATAGA', 'CATAAA', 'ACTAAA')
SS_numer=seq(1,12)

SS_DF=as.data.frame(cbind(SS, SS_numer))

SS_DF$SS_numer=as.numeric(as.character(SS_DF$SS_numer))
Human1Per=read.table("../data/SignalSites_doublefilter/HumanSignalSiteperPAS.txt",col.names = c("PAS", "SS_numer"), stringsAsFactors = F) %>% full_join(SS_DF, by="SS_numer") %>% mutate(Species="Human")

Chimp1Per=read.table("../data/SignalSites_doublefilter/ChimpSignalSiteperPAS.txt",col.names = c("PAS", "SS_numer"), stringsAsFactors = F) %>% full_join(SS_DF, by="SS_numer") %>% mutate(Species="Chimp") 


Both1Per=Human1Per %>% bind_rows(Chimp1Per)

Plot

ggplot(Both1Per,aes(x=SS, by=Species, fill=Species)) + geom_bar(stat="count",position = "dodge")+ theme(axis.text.x = element_text(angle = 90)) + scale_fill_brewer(palette = "Dark2")

Version Author Date
a7536f9 brimittleman 2020-04-03

Look and see if the sites are the same

Chimp1Petojoin=Chimp1Per %>% rename("Chimp"=SS) %>% dplyr::select(PAS, Chimp )
Human1Petojoin=Human1Per %>% rename("Human"=SS) %>% dplyr::select(PAS, Human )


Both1perJoin=Chimp1Petojoin %>% full_join(Human1Petojoin,by="PAS")
Both1perJoin$Chimp=as.character(Both1perJoin$Chimp)
Both1perJoin$Human=as.character(Both1perJoin$Human)
Both1perJoin= Both1perJoin %>%  mutate(Chimp = replace_na(Chimp, "None"),Human = replace_na(Human, "None"))

ChimpNone=Both1perJoin %>% filter(Chimp=="None")

HumanNone=Both1perJoin %>% filter(Human=="None")

Plot when the other has none, what is the SS

ggplot(ChimpNone,aes(x=Human))+ geom_bar(stat="count")+ theme(axis.text.x = element_text(angle = 90))

Version Author Date
a7536f9 brimittleman 2020-04-03
86dc150 brimittleman 2020-01-22
ggplot(HumanNone,aes(x=Chimp))+ geom_bar(stat="count")+ theme(axis.text.x = element_text(angle = 90))

Version Author Date
a7536f9 brimittleman 2020-04-03

Now I want to add usage:

PASMeta=read.table("../data/PAS_doubleFilter/PAS_5perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt",stringsAsFactors = F, header = T)

MetaPASwSS=Both1perJoin %>% rename("ChimpPAS"=Chimp, "HumanPAS"=Human) %>%  full_join(PASMeta,by="PAS") %>% mutate(ChimpPAS = replace_na(ChimpPAS, "None"),HumanPAS = replace_na(HumanPAS, "None"))

Plot usage average by SS

#human
ggplot(MetaPASwSS, aes(x=HumanPAS,y=Human)) + geom_boxplot()+ theme(axis.text.x = element_text(angle = 90))

Version Author Date
a7536f9 brimittleman 2020-04-03
252c8be brimittleman 2020-01-25
#chimp  
ggplot(MetaPASwSS, aes(x=ChimpPAS,y=Chimp)) + geom_boxplot()+ theme(axis.text.x = element_text(angle = 90))

Version Author Date
a7536f9 brimittleman 2020-04-03

Make the above plots wiht both speicies:

I need to seperate and bind the rows.

MetaPASwSS_groupC=MetaPASwSS %>% dplyr::select(PAS,ChimpPAS,Chimp) %>% mutate(Species="Chimp") %>% rename("Signal"=ChimpPAS, "Usage"=Chimp)

MetaPASwSS_groupH=MetaPASwSS %>% dplyr::select(PAS,HumanPAS,Human) %>% mutate(Species="Human") %>% rename("Signal"=HumanPAS, "Usage"=Human)

MetaPASwSSBoth=MetaPASwSS_groupC %>% bind_rows(MetaPASwSS_groupH)

ggplot(MetaPASwSSBoth, aes(x=Signal, y=Usage, by=Species, fill=Species)) + geom_boxplot()+ theme(axis.text.x = element_text(angle = 90)) + scale_fill_brewer(palette = "Dark2") + labs(title="Usage distribution by Signal and species")

Version Author Date
a7536f9 brimittleman 2020-04-03
252c8be brimittleman 2020-01-25
86dc150 brimittleman 2020-01-22

I want to see if the usage is different when the PAS is same vs different

#filter out when same is none 
MetaPASwSS_match= MetaPASwSS %>% mutate(SameSS=ifelse(ChimpPAS==HumanPAS , "Yes", "No"), bothNone=ifelse(ChimpPAS=="None" & HumanPAS=="None", "yes", "no")) %>% filter(bothNone=="no") 


MetaPASwSS_matchG= MetaPASwSS_match%>% dplyr::select(PAS, SameSS, Chimp, Human) %>% gather(Species, Usage, -SameSS, -PAS)
ggplot(MetaPASwSS_matchG,aes(x=Species, y=Usage, by=SameSS,fill=SameSS)) + geom_boxplot() + stat_compare_means(method = "t.test",label.y=0) + scale_fill_brewer(palette = "Dark2",name="Both Species \nhave Same Signal Site") +labs(title="Usage of PAS by same signal in both species")

Version Author Date
a7536f9 brimittleman 2020-04-03
252c8be brimittleman 2020-01-25
86dc150 brimittleman 2020-01-22

This means usage is higher when they have matching signal sites.

Get proportion plot.

MetaPASwSS_Sm = MetaPASwSS %>%  dplyr::select(PAS,ChimpPAS, HumanPAS) %>% gather("Species", "SS", -PAS) %>% group_by(Species,SS) %>% summarise(nSS=n()) %>% mutate(propSS=nSS/nrow(MetaPASwSS))

ggplot(MetaPASwSS_Sm, aes(x=SS,y=propSS,by=Species,fill=Species)) + geom_bar(stat="identity", position = "dodge") + theme(axis.text.x = element_text(angle = 90)) + scale_fill_brewer(palette = "Dark2")

Version Author Date
a7536f9 brimittleman 2020-04-03
252c8be brimittleman 2020-01-25

By location SS:

MetaPASwSS_loc=MetaPASwSS %>% mutate(ChimpWSS=ifelse(ChimpPAS =="None", "No", "Yes"),HumanWSS=ifelse(HumanPAS =="None", "No", "Yes")) %>% dplyr::select(loc, PAS, ChimpWSS, HumanWSS) %>% gather("Species", "SS", -PAS, -loc) %>% group_by(loc, Species, SS) %>% summarise(n=n()) %>% ungroup() %>% group_by(loc, Species) %>% mutate(nLoc=sum(n),PropWSS=n/nLoc) %>% filter(SS=="Yes")

ggplot(MetaPASwSS_loc,aes(x=loc, by=Species, fill=Species, y=PropWSS)) +geom_bar(stat="identity", position = "dodge")+ labs(x="",y="Proportion of PAS",title="PAS with signal site \nby species and location") + scale_fill_brewer( labels = c("Chimp","Human"), palette = "Dark2")

Version Author Date
a7536f9 brimittleman 2020-04-03

I will write out the metadata with signal site info for downstream analysis.

write.table(MetaPASwSS, "../data/PAS_doubleFilter/PAS_5perc_either_HumanCoord_BothUsage_meta_doubleFilter_withSS.txt", col.names = T, quote = F, row.names = F)

In another analysis I can ask if the differentially used PAS are those that have a SS in one and not another or different SS.

I also want to include only the signal sites that correlate with differences in average usage: These are the Top 2. AATAAA and ATTAAA

I will add a column with those with PAS if they are either of those:

MetaPASwSS_top = MetaPASwSS %>% mutate(HumanTopSS=ifelse(HumanPAS=="AATAAA" | HumanPAS== "ATTAAA", "Yes", "No"),ChimpTopSS=ifelse(ChimpPAS=="AATAAA" | ChimpPAS== "ATTAAA", "Yes", "No"))

This will be important for looking at the differentially used PAS.

ggplot(MetaPASwSS_top,aes(x=HumanTopSS, y=Human))+ geom_boxplot()

Version Author Date
a7536f9 brimittleman 2020-04-03
252c8be brimittleman 2020-01-25
2d84fb1 brimittleman 2020-01-23
ggplot(MetaPASwSS_top,aes(x=ChimpTopSS, y=Chimp))+ geom_boxplot()

Version Author Date
a7536f9 brimittleman 2020-04-03

Now I can subset to those with SS in chimp only:

MetaPASwSS_top_chimponly=MetaPASwSS_top %>% filter(HumanTopSS=="No", ChimpTopSS=="Yes")

nrow(MetaPASwSS_top_chimponly)
[1] 359
MetaPASwSS_top_chimponly_G= MetaPASwSS_top_chimponly %>% dplyr::select(PAS, Chimp,Human) %>% gather("Species", "Usage", -PAS)

ggplot(MetaPASwSS_top_chimponly_G,aes(x=Species, y=Usage))+ geom_boxplot() + stat_compare_means(method="t.test") + labs(title="Usage for PAS with a signal site in chimps only")

Version Author Date
a7536f9 brimittleman 2020-04-03
252c8be brimittleman 2020-01-25
MetaPASwSS_top_humanonly=MetaPASwSS_top %>% filter(HumanTopSS=="Yes", ChimpTopSS=="No")

nrow(MetaPASwSS_top_humanonly)
[1] 361
MetaPASwSS_top_humanonly_G= MetaPASwSS_top_humanonly %>% dplyr::select(PAS, Chimp,Human) %>% gather("Species", "Usage", -PAS)

ggplot(MetaPASwSS_top_humanonly_G,aes(x=Species, y=Usage))+ geom_boxplot() + stat_compare_means(method="t.test") + labs(title="Usage for PAS with a signal site in human only")

Version Author Date
a7536f9 brimittleman 2020-04-03
252c8be brimittleman 2020-01-25
MetaPASwSS_topLocH= MetaPASwSS_top %>% dplyr::select(HumanTopSS,loc) %>% mutate(Species='Human') %>% rename("Signal"=HumanTopSS)
MetaPASwSS_topLocC= MetaPASwSS_top %>% dplyr::select(ChimpTopSS,loc) %>% mutate(Species='Chimp')%>% rename("Signal"=ChimpTopSS)

MetaPASwSS_topLocBoth= MetaPASwSS_topLocH %>% bind_rows(MetaPASwSS_topLocC) %>% group_by(Species, loc,Signal) %>% summarise(WithSS=n()) %>% ungroup() %>% group_by(Species, loc) %>% mutate(nLoc=sum(WithSS), Prop=WithSS/nLoc) %>% filter(Signal=="Yes")

ggplot(MetaPASwSS_topLocBoth, aes(x=loc, y=Prop, by=Species, fill=Species))+geom_bar(stat="identity", position = "dodge")+ labs(title="Proportion of PAS with a Signal Site", y="Proportion of PAS", x="") + scale_fill_brewer(palette = "Dark2")

Version Author Date
a7536f9 brimittleman 2020-04-03

Write out this extra info:

write.table(MetaPASwSS_top, "../data/PAS_doubleFilter/PAS_10perc_either_HumanCoord_BothUsage_meta_doubleFilter_withSSTop2.txt", col.names = T, quote = F, row.names = F)

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1   purrr_0.3.2    
 [5] readr_1.3.1     tidyr_0.8.3     tibble_2.1.1    tidyverse_1.2.1
 [9] workflowr_1.6.0 ggpubr_0.2      magrittr_1.5    ggplot2_3.1.1  

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5   haven_1.1.2        lattice_0.20-38   
 [4] colorspace_1.3-2   generics_0.0.2     htmltools_0.3.6   
 [7] yaml_2.2.0         rlang_0.4.0        later_0.7.5       
[10] pillar_1.3.1       glue_1.3.0         withr_2.1.2       
[13] RColorBrewer_1.1-2 modelr_0.1.2       readxl_1.1.0      
[16] plyr_1.8.4         munsell_0.5.0      gtable_0.2.0      
[19] cellranger_1.1.0   rvest_0.3.2        evaluate_0.12     
[22] labeling_0.3       knitr_1.20         httpuv_1.4.5      
[25] broom_0.5.1        Rcpp_1.0.2         promises_1.0.1    
[28] scales_1.0.0       backports_1.1.2    jsonlite_1.6      
[31] fs_1.3.1           hms_0.4.2          digest_0.6.18     
[34] stringi_1.2.4      grid_3.5.1         rprojroot_1.3-2   
[37] cli_1.1.0          tools_3.5.1        lazyeval_0.2.1    
[40] crayon_1.3.4       whisker_0.3-2      pkgconfig_2.0.2   
[43] xml2_1.2.0         lubridate_1.7.4    assertthat_0.2.0  
[46] rmarkdown_1.10     httr_1.3.1         rstudioapi_0.10   
[49] R6_2.3.0           nlme_3.1-137       git2r_0.26.1      
[52] compiler_3.5.1