Last updated: 2019-10-04

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/metadata_HCpanel.txt.sb-f4823d1e-qihGek/

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/.snakemake/
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/convertNumeric.py
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makePheno.py
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/namePeaks.py
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/liftover_files/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd d6e07c1 brimittleman 2019-10-04 subset 5 perc pas and pheno
html 2a20597 brimittleman 2019-10-04 Build site.
Rmd d7ac788 brimittleman 2019-10-04 subset 5 perc pas and pheno
html fafaf61 brimittleman 2019-10-04 Build site.
Rmd ca39a2a brimittleman 2019-10-04 finish annoatation and quantification
html 4f7e30d brimittleman 2019-10-03 Build site.
Rmd 8033ddb brimittleman 2019-10-03 get to pheno to find prob
html e0ac227 brimittleman 2019-10-03 Build site.
Rmd e3f0cdf brimittleman 2019-10-03 add annotation analysis

library(tidyverse)
── Attaching packages ─────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths

I will annotate the PAS that passed the liftover. These PAS are in ../data/cleanPeaks_lifted

Map PAS to these annoations:

mkdir ../data/cleanPeaks_anno
bedtools map -a ../data/cleanPeaks_lifted/AllPAS_postLift.sort.bed -b  /project2/gilad/briana/genome_anotation_data/hg38_refseq_anno/hg38_ncbiRefseq_Formatted_Allannotation.sort.bed -c 4 -S -o distinct > ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnno.bed 

Chose annotation if PAS in multiple and create bed. I will have to lift this back to chimp then make saf files for both to do the feature count

python chooseAnno2Bed.py ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnno.bed  ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED.bed 

Lift this so I have it with chimp coordinates:

sbatch LiftOrthoPAS2chimp.sh

bed 2 SAF

python bed2SAF_gen.py ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED.bed  ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED.SAF

python bed2SAF_gen.py ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED_chimpLoc.bed  ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED_chimpLoc.SAF

Use feature counts to quantify:

mkdir  ../Human/data/CleanLiftedPeaks_FC/
mkdir ../Chimp/data/CleanLiftedPeaks_FC/

sbatch quantLiftedPAS.sh 

Fix header:

python fixFChead_bothfrac.py ../Human/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human ../Human/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human_fixed.fc


python fixFChead_bothfrac.py ../Chimp/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Chimp ../Chimp/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Chimp_fixed.fc

#make file ID

python makeFileID.py ../Chimp/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Chimp ../Chimp/data/CleanLiftedPeaks_FC/ChimpFileID.txt

python makeFileID.py ../Human/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human ../Human/data/CleanLiftedPeaks_FC/HumanFileID.txt

Make phenotypes from these:

mkdir ../Human/phenotype/
mkdir ../Chimp/phenotype/
python makePheno.py  ../Human/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human_fixed.fc ../Human/data/CleanLiftedPeaks_FC/HumanFileID.txt ../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt

python makePheno.py  ../Chimp/data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Chimp_fixed.fc ../Chimp/data/CleanLiftedPeaks_FC/ChimpFileID.txt ../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno.txt

Convert these to numeric:

Rscript pheno2countonly.R -I ../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt -O ../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnly.txt

Rscript pheno2countonly.R -I ../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno.txt -O ../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno_countOnly.txt


python convertNumeric.py ../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnly.txt ../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt

python convertNumeric.py ../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno_countOnly.txt ../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno_countOnlyNumeric.txt

Plot usages to see if 5% is a good cutoff for this analysis as well.

HumanAnno=read.table("../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("chr", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "disc","PAS"), sep="-")
IndH=colnames(HumanAnno)[9:ncol(HumanAnno)]

HumanUsage=read.table("../Human/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = IndH)

HumanMean=as.data.frame(cbind(HumanAnno[,1:8], Human=rowMeans(HumanUsage)))

HumanUsage_anno=as.data.frame(cbind(HumanAnno[,1:8],HumanUsage ))
ChimpAnno=read.table("../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("chr", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "disc","PAS"), sep="-")
IndH=colnames(ChimpAnno)[9:ncol(ChimpAnno)]

ChimpUsage=read.table("../Chimp/phenotype/ALLPAS_postLift_LocParsed_Chimp_Pheno_countOnlyNumeric.txt", col.names = IndH)

ChimpMean=as.data.frame(cbind(ChimpAnno[,1:8], Chimp=rowMeans(ChimpUsage)))

ChimpUsage_anno=as.data.frame(cbind(ChimpAnno[,1:8],ChimpUsage ))

Mean both:

BothMean=ChimpMean %>% full_join(HumanMean, by=c("chr","start","end","gene"   ,"strand", "loc", "disc","PAS" )) 

BothMeanM=melt(BothMean,id.vars =c("chr","start","end","gene"   ,"strand", "loc", "disc","PAS" ),variable.name = "Species", value.name = "MeanUsage" ) %>% filter(loc !="008559")

Plot:

ggplot(BothMeanM, aes(x=loc, y=MeanUsage,by=Species,fill=Species)) + geom_boxplot()  + scale_fill_brewer(palette = "Dark2")

Version Author Date
2a20597 brimittleman 2019-10-04
ggplot(BothMeanM, aes(x=MeanUsage,by=Species,col=Species)) + stat_ecdf(geom = "point", alpha=.25)  + scale_color_brewer(palette = "Dark2") + labs(title="Cumulative Distribution plot for PAS Usage", x="Mean Usage- both fractions", y="F(Mean Usage)") 

Version Author Date
2a20597 brimittleman 2019-10-04

This is good. Globally the usages are similar across species.

ggplot(BothMeanM, aes(x=log10(MeanUsage + .00001),by=Species,fill=Species)) + geom_histogram(alpha=.5, bins=30,position="dodge")  + scale_fill_brewer(palette = "Dark2") + geom_vline(xintercept = log10(0.05))

Version Author Date
2a20597 brimittleman 2019-10-04

Looks like 5% in either species is a good set.

Filter to PAS with 5% usage

BothMean mean in human or chimp > 0.5

BothMean_5= BothMean %>% filter(Chimp >=0.05 | Human >= 0.05)  
BothMean_5M=melt(BothMean_5,id.vars =c("chr","start","end","gene"   ,"strand", "loc", "disc","PAS" ),variable.name = "Species", value.name = "MeanUsage" ) %>% filter(loc !="008559")

ggplot(BothMean_5M, aes(x=loc, y=MeanUsage,by=Species,fill=Species)) + geom_boxplot()  + scale_fill_brewer(palette = "Dark2")

Version Author Date
2a20597 brimittleman 2019-10-04
ggplot(BothMean_5M, aes(x=MeanUsage,by=Species,col=Species)) + stat_ecdf(geom = "point", alpha=.25)  + scale_color_brewer(palette = "Dark2") + labs(title="Cumulative Distribution plot for PAS Usage at 5%", x="Mean Usage- both fractions", y="F(Mean Usage)") 

Version Author Date
2a20597 brimittleman 2019-10-04
ggplot(BothMean_5M, aes(x=MeanUsage,by=Species,fill=Species)) + geom_histogram(alpha=.5, bins=30, position = "dodge")  + scale_fill_brewer(palette = "Dark2")

Version Author Date
2a20597 brimittleman 2019-10-04

Write this out this way and as a bed files with human and chimp scores:

mkdir ../data/Peaks_5perc
mkdir ../data/Pheno_5perc
BothMean_5_out=BothMean_5 %>% select(PAS,disc, Chimp, Human)
write.table(BothMean_5_out, "../data/Peaks_5perc/Peaks_5perc_either_bothUsage.txt", row.names = F, col.names = T, quote = F)
#write bed with human coord for igv
BothMean_5_bed=BothMean_5 %>% select(chr, start, end, PAS, Human, strand)
write.table(BothMean_5_bed, "../data/Peaks_5perc/Peaks_5perc_either_HumanCoordHummanUsage.bed", row.names = F, col.names = T, quote = F)

I can filter the phenotypes and PAS with this list.

ggplot(BothMean_5_out, aes(x=disc, fill=disc))+  geom_bar(aes(y = (..count..)/sum(..count..)))+ scale_fill_brewer(palette = "Dark2")

Version Author Date
2a20597 brimittleman 2019-10-04
BothMean_5_outmean= BothMean_5_out %>% mutate(meanUsage=(Human+Chimp)/2)
ggplot(BothMean_5M, aes(x=disc, by= Species, fill=Species, y=MeanUsage)) + geom_boxplot() + scale_y_log10()+ scale_fill_brewer(palette = "Dark2")
Warning: Transformation introduced infinite values in continuous y-axis
Warning: Removed 1531 rows containing non-finite values (stat_boxplot).

ChimpUsage_anno_5perc= ChimpUsage_anno %>% filter(PAS %in% BothMean_5$PAS)

write.table(ChimpUsage_anno_5perc, "../data/Pheno_5perc/Chimp_Pheno_5perc.txt", row.names = F, col.names = T, quote = F)

HumaUsage_anno_5perc= HumanUsage_anno %>% filter(PAS %in% BothMean_5$PAS)

write.table(HumaUsage_anno_5perc, "../data/Pheno_5perc/Human_Pheno_5perc.txt", row.names = F, col.names = T, quote = F)

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reshape2_1.4.3  forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.2         RColorBrewer_1.1-2 cellranger_1.1.0  
 [4] pillar_1.3.1       compiler_3.5.1     git2r_0.25.2      
 [7] plyr_1.8.4         workflowr_1.4.0    tools_3.5.1       
[10] digest_0.6.18      lubridate_1.7.4    jsonlite_1.6      
[13] evaluate_0.12      nlme_3.1-137       gtable_0.2.0      
[16] lattice_0.20-38    pkgconfig_2.0.2    rlang_0.4.0       
[19] cli_1.1.0          rstudioapi_0.10    yaml_2.2.0        
[22] haven_1.1.2        withr_2.1.2        xml2_1.2.0        
[25] httr_1.3.1         knitr_1.20         hms_0.4.2         
[28] generics_0.0.2     fs_1.3.1           rprojroot_1.3-2   
[31] grid_3.5.1         tidyselect_0.2.5   glue_1.3.0        
[34] R6_2.3.0           readxl_1.1.0       rmarkdown_1.10    
[37] modelr_0.1.2       magrittr_1.5       whisker_0.3-2     
[40] backports_1.1.2    scales_1.0.0       htmltools_0.3.6   
[43] rvest_0.3.2        assertthat_0.2.0   colorspace_1.3-2  
[46] labeling_0.3       stringi_1.2.4      lazyeval_0.2.1    
[49] munsell_0.5.0      broom_0.5.1        crayon_1.3.4