Last updated: 2019-11-13

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq/
    Ignored:    data/metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF/
    Ignored:    data/metadata_HCpanel.txt.sb-f4823d1e-qihGek/

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/.snakemake/
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/namePeaks.py
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata.xlsx
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/MapStats/
    Untracked:  data/NuclearHvC/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata.xlsx
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/liftover_files/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd

Unstaged changes:
    Modified:   analysis/CorrbetweenInd.Rmd
    Modified:   analysis/PASnumperSpecies.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/diffSplicing.Rmd
    Modified:   analysis/verifyBAM.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd a52c26d brimittleman 2019-11-13 look at pca and tech factors
html da4bab0 brimittleman 2019-11-12 Build site.
Rmd 98d7f9b brimittleman 2019-11-12 add cpm pca
html 32b435b brimittleman 2019-11-12 Build site.
Rmd 1ce8433 brimittleman 2019-11-12 start normalization
html 2c02d70 brimittleman 2019-11-12 Build site.
Rmd 53642f7 brimittleman 2019-11-12 add mapp stats
html dc91b0a brimittleman 2019-11-11 Build site.
Rmd b5ba82e brimittleman 2019-11-11 add diff expression and diff splicing

library(workflowr)
This is workflowr version 1.5.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ──────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library("scales")

Attaching package: 'scales'
The following object is masked from 'package:purrr':

    discard
The following object is masked from 'package:readr':

    col_factor
library("gplots")

Attaching package: 'gplots'
The following object is masked from 'package:stats':

    lowess
library("edgeR")
Loading required package: limma
library("RColorBrewer")
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths

For this analysis I do preprocessing with the Snakemake pipeline. The snakemake will map the RNA seq and quantify orthologous exons.

From FastQC:

  • Does not look like there is adapter contamination

  • No reads tagged as bad quality

Assess mapping:

metaData=read.table("../data/RNASEQ_metadata.txt", header = T, stringsAsFactors = F)
metaData$Species=as.factor(metaData$Species)
metaData$Collection=as.factor(metaData$Collection)
readInfo=metaData %>% mutate(AAUnMapped= Reads-Mapped, ABNotOrtho= Mapped-AssignedOrtho) %>% select(Line, Species, AAUnMapped, ABNotOrtho, AssignedOrtho) %>%  gather(key="Category", value="Number", -Line, -Species)


ggplot(readInfo, aes(x=Line,y=Number, fill=Category)) + geom_bar(stat="identity") + scale_fill_brewer(palette = "Dark2",name = "Type", labels = c("Unmapped", "Mapped not ortho", "Assigned Ortho Exon"))+theme(axis.text.x = element_text( hjust = 0,vjust = 1, size = 6, angle = 90)) + labs(y="Reads", title="Human and chimp read statistics") 

Version Author Date
32b435b brimittleman 2019-11-12
2c02d70 brimittleman 2019-11-12

Proportion of reads.

readProp=metaData %>% mutate(Aunmapped=1-percentMapped, MappednotOrtho=percentMapped-percentOrtho) %>% select(Line,Species, percentOrtho, MappednotOrtho, Aunmapped) %>%  gather(key="Category", value="Proportion", -Line, -Species)

ggplot(readProp, aes(x=Line,y=Proportion, fill=Category)) + geom_bar(stat="identity") + scale_fill_brewer(palette = "Dark2", name="", labels = c("Unmapped", "Mapped not ortho", "Assigned Ortho Exon"))+theme(axis.text.x = element_text( hjust = 0,vjust = 1, size = 6, angle = 90)) + labs(y="Reads", title="Human and chimp read proportions") 

Version Author Date
32b435b brimittleman 2019-11-12
2c02d70 brimittleman 2019-11-12

By species:

ggplot(readInfo,aes(x=Category, y=Number, by=Species, fill=Species)) + geom_boxplot() +scale_x_discrete( breaks=c("AAUnMapped","ABNotOrtho","AssignedOrtho"),labels=c("Unmapped", "Not in OrthoExon", "Assigned to OrthoExon")) + scale_fill_brewer(palette = "Dark2") + labs(title="Mapped reads by Species", y="Reads", x="")

Version Author Date
2c02d70 brimittleman 2019-11-12
ggplot(readProp,aes(x=Category, y=Proportion, by=Species, fill=Species)) + geom_boxplot() + scale_fill_brewer(palette = "Dark2") + labs(title="Map Proportion by Species", y="Proportion", x="") + scale_x_discrete( breaks=c("Aunmapped","MappedNotOrtho","percentOrtho"),labels=c("Unmapped", "Not in OrthoExon", "Assigned to OrthoExon"))

Version Author Date
2c02d70 brimittleman 2019-11-12

Diffferential Expression

Code originally from Lauren Blake (http://lauren-blake.github.io/Reg_Evo_Primates/analysis/Normalization_plots.html)

Raw Counts

Fix header for fc files:

python fixExonFC.py /project2/gilad/briana/Comparative_APA/Human/data/RNAseq/ExonCounts/RNAseqOrthoExon.fc /project2/gilad/briana/Comparative_APA/Human/data/RNAseq/ExonCounts/RNAseqOrthoExon.fixed.fc

python fixExonFC.py /project2/gilad/briana/Comparative_APA/Chimp/data/RNAseq/ExonCounts/RNAseqOrthoExon.fc /project2/gilad/briana/Comparative_APA/Chimp/data/RNAseq/ExonCounts/RNAseqOrthoExon.fixed.fc
HumanCounts=read.table("../Human/data/RNAseq/ExonCounts/RNAseqOrthoExon.fixed.fc", header = T, stringsAsFactors = F) %>% select(-Chr,-Start,-End,-Strand, -Length)

ChimpCounts=read.table("../Chimp/data/RNAseq/ExonCounts/RNAseqOrthoExon.fixed.fc", header = T, stringsAsFactors = F) %>% select(-Chr,-Start,-End,-Strand, -Length)


counts_genes=HumanCounts %>% inner_join(ChimpCounts,by="Geneid") %>% column_to_rownames(var="Geneid")

head(counts_genes)
                NA18504 NA18510 NA18523 NA18498 NA18499 NA18502 NAPT30
ENSG00000188976      24      50      31      69      34      58      2
ENSG00000188157     106      65     106      12     128      39      5
ENSG00000273443      40      43      54      26      48      11     21
ENSG00000217801      60      36     164      62      61      19     34
ENSG00000237330       0       1       0       0       1       1      0
ENSG00000223823       0       0       0       0       0       0      0
                NAPT91 NA3622 NA3659 NA4973 NA18358
ENSG00000188976      1      1      1      0       0
ENSG00000188157      7      7      9     34       6
ENSG00000273443      2      3     78     59      18
ENSG00000217801      8     19    139     68      31
ENSG00000237330      0      0      2      1       0
ENSG00000223823      0      0      0      0       0
# Load colors 

colors <- colorRampPalette(c(brewer.pal(9, "Blues")[1],brewer.pal(9, "Blues")[9]))(100)

pal <- c(brewer.pal(9, "Set1"), brewer.pal(8, "Set2"), brewer.pal(12, "Set3"))
labels <- paste(metaData$Species,metaData$Line, sep=" ")
#PCA function (original code from Julien Roux)
#Load in the plot_scores function
plot_scores <- function(pca, scores, n, m, cols, points=F, pchs =20, legend=F){
  xmin <- min(scores[,n]) - (max(scores[,n]) - min(scores[,n]))*0.05
  if (legend == T){ ## let some room (35%) for a legend                                                                                                                                                 
    xmax <- max(scores[,n]) + (max(scores[,n]) - min(scores[,n]))*0.50
  }
  else {
    xmax <- max(scores[,n]) + (max(scores[,n]) - min(scores[,n]))*0.05
  }
  ymin <- min(scores[,m]) - (max(scores[,m]) - min(scores[,m]))*0.05
  ymax <- max(scores[,m]) + (max(scores[,m]) - min(scores[,m]))*0.05
  plot(scores[,n], scores[,m], xlab=paste("PC", n, ": ", round(summary(pca)$importance[2,n],3)*100, "% variance explained", sep=""), ylab=paste("PC", m, ": ", round(summary(pca)$importance[2,m],3)*100, "% variance explained", sep=""), xlim=c(xmin, xmax), ylim=c(ymin, ymax), type="n")
  if (points == F){
    text(scores[,n],scores[,m], rownames(scores), col=cols, cex=1)
  }
  else {
    points(scores[,n],scores[,m], col=cols, pch=pchs, cex=1.3)
  }
}
# Clustering (original code from Julien Roux)
cors <- cor(counts_genes, method="spearman", use="pairwise.complete.obs")


heatmap.2( cors, scale="none", col = colors, margins = c(12, 12), trace='none', denscol="white", labCol=labels, ColSideColors=pal[as.integer(as.factor(metaData$Species))], RowSideColors=pal[as.integer(as.factor(metaData$Collection))+9], cexCol = 0.2 + 1/log10(15), cexRow = 0.2 + 1/log10(15))

Version Author Date
32b435b brimittleman 2019-11-12
select <- counts_genes
summary(apply(select, 1, var) == 0) 
   Mode   FALSE    TRUE 
logical   32975   11150 
# Perform PCA

pca_genes <- prcomp(t(counts_genes), scale = F)
scores <- pca_genes$x


#Make PCA plots with the factors colored by species

### PCs 1 and 2 Raw Data
for (n in 1:1){
  col.v <- pal[as.integer(metaData$Species)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
32b435b brimittleman 2019-11-12
### PCs 3 and 4 Raw Data

for (n in 3:3){
  col.v <- pal[as.integer(metaData$Species)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
32b435b brimittleman 2019-11-12

Plot density for raw data:

density_plot_18504 <- ggplot(counts_genes, aes(x = NA18504)) + geom_density() + labs(title = "Density plot of raw gene counts of NA18504") + labs(x = "Raw counts for each gene")

density_plot_18504

Version Author Date
32b435b brimittleman 2019-11-12

Convert to log2

log_counts_genes <- as.data.frame(log2(counts_genes))
head(log_counts_genes)
                 NA18504  NA18510  NA18523  NA18498  NA18499  NA18502
ENSG00000188976 4.584963 5.643856 4.954196 6.108524 5.087463 5.857981
ENSG00000188157 6.727920 6.022368 6.727920 3.584963 7.000000 5.285402
ENSG00000273443 5.321928 5.426265 5.754888 4.700440 5.584963 3.459432
ENSG00000217801 5.906891 5.169925 7.357552 5.954196 5.930737 4.247928
ENSG00000237330     -Inf 0.000000     -Inf     -Inf 0.000000 0.000000
ENSG00000223823     -Inf     -Inf     -Inf     -Inf     -Inf     -Inf
                  NAPT30   NAPT91   NA3622   NA3659   NA4973  NA18358
ENSG00000188976 1.000000 0.000000 0.000000 0.000000     -Inf     -Inf
ENSG00000188157 2.321928 2.807355 2.807355 3.169925 5.087463 2.584963
ENSG00000273443 4.392317 1.000000 1.584963 6.285402 5.882643 4.169925
ENSG00000217801 5.087463 3.000000 4.247928 7.118941 6.087463 4.954196
ENSG00000237330     -Inf     -Inf     -Inf 1.000000 0.000000     -Inf
ENSG00000223823     -Inf     -Inf     -Inf     -Inf     -Inf     -Inf
density_plot_18504 <- ggplot(log_counts_genes, aes(x = 18504)) + geom_density()

density_plot_18504 + labs(title = "Density plot of log2 counts of 18504") + labs(x = "Log2 counts for each gene") + geom_vline(xintercept = 1) 

Version Author Date
32b435b brimittleman 2019-11-12
plotDensities(log_counts_genes, col=pal[as.numeric(metaData$Species)], legend="topright")

Version Author Date
32b435b brimittleman 2019-11-12

Convert to CPM

cpm <- cpm(counts_genes, log=TRUE)
head(cpm)
                   NA18504   NA18510   NA18523    NA18498   NA18499
ENSG00000188976  0.9947425  1.625971  1.213485  1.9873949  1.075299
ENSG00000188157  3.0661207  1.990970  2.931252 -0.3353280  2.923740
ENSG00000273443  1.6951397  1.417837  1.980752  0.6524534  1.547681
ENSG00000217801  2.2614645  1.174529  3.552519  1.8381797  1.880283
ENSG00000237330 -3.0036033 -2.442815 -3.003603 -3.0036033 -2.450115
ENSG00000223823 -3.0036033 -3.003603 -3.003603 -3.0036033 -3.003603
                   NA18502     NAPT30     NAPT91     NA3622     NA3659
ENSG00000188976  1.8489000 -2.0183629 -2.3993239 -2.4294571 -2.4761762
ENSG00000188157  1.3004469 -1.2173800 -0.7890014 -0.8590437 -0.6897168
ENSG00000273443 -0.3506575  0.4928914 -1.9747241 -1.7012034  2.1431252
ENSG00000217801  0.3378719  1.1383145 -0.6357420  0.3591647  2.9586805
ENSG00000237330 -2.4371643 -3.0036033 -3.0036033 -3.0036033 -2.0907904
ENSG00000223823 -3.0036033 -3.0036033 -3.0036033 -3.0036033 -3.0036033
                   NA4973    NA18358
ENSG00000188976 -3.003603 -3.0036033
ENSG00000188157  1.082327 -0.8045812
ENSG00000273443  1.841053  0.5540567
ENSG00000217801  2.039212  1.2860108
ENSG00000237330 -2.447731 -3.0036033
ENSG00000223823 -3.003603 -3.0036033
plotDensities(cpm, col=pal[as.numeric(metaData$Species)], legend="topright")

Version Author Date
32b435b brimittleman 2019-11-12

Log2 CPM

TMM/log2(CPM)

## Create edgeR object (dge) to calculate TMM normalization  
dge_original <- DGEList(counts=as.matrix(counts_genes), genes=rownames(counts_genes), group = as.character(t(labels)))
dge_original <- calcNormFactors(dge_original)

tmm_cpm <- cpm(dge_original, normalized.lib.sizes=TRUE, log=TRUE, prior.count = 0.25)
head(cpm)
                   NA18504   NA18510   NA18523    NA18498   NA18499
ENSG00000188976  0.9947425  1.625971  1.213485  1.9873949  1.075299
ENSG00000188157  3.0661207  1.990970  2.931252 -0.3353280  2.923740
ENSG00000273443  1.6951397  1.417837  1.980752  0.6524534  1.547681
ENSG00000217801  2.2614645  1.174529  3.552519  1.8381797  1.880283
ENSG00000237330 -3.0036033 -2.442815 -3.003603 -3.0036033 -2.450115
ENSG00000223823 -3.0036033 -3.003603 -3.003603 -3.0036033 -3.003603
                   NA18502     NAPT30     NAPT91     NA3622     NA3659
ENSG00000188976  1.8489000 -2.0183629 -2.3993239 -2.4294571 -2.4761762
ENSG00000188157  1.3004469 -1.2173800 -0.7890014 -0.8590437 -0.6897168
ENSG00000273443 -0.3506575  0.4928914 -1.9747241 -1.7012034  2.1431252
ENSG00000217801  0.3378719  1.1383145 -0.6357420  0.3591647  2.9586805
ENSG00000237330 -2.4371643 -3.0036033 -3.0036033 -3.0036033 -2.0907904
ENSG00000223823 -3.0036033 -3.0036033 -3.0036033 -3.0036033 -3.0036033
                   NA4973    NA18358
ENSG00000188976 -3.003603 -3.0036033
ENSG00000188157  1.082327 -0.8045812
ENSG00000273443  1.841053  0.5540567
ENSG00000217801  2.039212  1.2860108
ENSG00000237330 -2.447731 -3.0036033
ENSG00000223823 -3.003603 -3.0036033
pca_genes <- prcomp(t(tmm_cpm), scale = F)
scores <- pca_genes$x

for (n in 1:2){
  col.v <- pal[as.integer(metaData$Species)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12

Version Author Date
da4bab0 brimittleman 2019-11-12
# Plot library size

boxplot_library_size <- ggplot(dge_original$samples, aes(x=metaData$Species, y = dge_original$samples$lib.size, fill = metaData$Species)) + geom_boxplot()
 
boxplot_library_size + labs(title = "Library size by Species") + labs(y = "Library size") + labs(x = "Species") + guides(fill=guide_legend(title="Species"))

Version Author Date
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12
plotDensities(tmm_cpm, col=pal[as.numeric(metaData$Species)], legend="topright")

Version Author Date
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12

Filter low expressed gene

Filter based on log2 cpm

filter log2(cpm >1) in at least 10 of the samples (2/3)

#filter counts
keep.exprs=rowSums(tmm_cpm>1) >8

counts_filtered= counts_genes[keep.exprs,]




plotDensities(counts_filtered, col=pal[as.numeric(metaData$Species)], legend="topright")

Version Author Date
da4bab0 brimittleman 2019-11-12
labels <- paste(metaData$Species, metaData$Line, sep=" ")
dge_in_cutoff <- DGEList(counts=as.matrix(counts_filtered), genes=rownames(counts_filtered), group = as.character(t(labels)))
dge_in_cutoff <- calcNormFactors(dge_in_cutoff)

cpm_in_cutoff <- cpm(dge_in_cutoff, normalized.lib.sizes=TRUE, log=TRUE, prior.count = 0.25)
head(cpm_in_cutoff)
                 NA18504    NA18510  NA18523  NA18498  NA18499   NA18502
ENSG00000217801 2.243163  1.0859263 3.672233 1.802011 1.859359 0.2120175
ENSG00000186891 5.022046  5.0400892 4.902343 6.682104 5.710517 3.3639006
ENSG00000186827 3.102236  4.6574228 1.712312 1.802011 3.968056 1.9042287
ENSG00000078808 6.868747  7.0337697 7.475369 7.036034 6.625443 6.7359729
ENSG00000176022 4.762642  4.6839390 4.801525 5.267970 4.613121 4.7028975
ENSG00000184163 1.427504 -0.1617807 1.712312 1.404540 1.062680 0.3544851
                   NAPT30     NAPT91    NA3622   NA3659   NA4973  NA18358
ENSG00000217801 1.1675009 -0.7849597 0.2795297 3.003758 2.101032 1.307542
ENSG00000186891 4.6403916  3.1655019 4.7307807 6.452972 6.478017 6.488794
ENSG00000186827 0.2591792  2.0129015 3.1544019 0.651737 5.254278 2.181924
ENSG00000078808 6.6946199  6.7706146 6.7797936 6.789003 7.211007 7.067711
ENSG00000176022 4.8386000  5.5562504 4.8490853 5.281245 4.790317 5.568370
ENSG00000184163 2.8929268  2.2016666 1.4133401 1.771404 1.743030 3.229013
hist(cpm_in_cutoff, xlab = "Log2(CPM)", main = "Log2(CPM) values for genes meeting the filtering criteria", breaks = 100 )

Version Author Date
da4bab0 brimittleman 2019-11-12

Voom transformation:

Species <- factor(metaData$Species)
design <- model.matrix(~ 0 + Species)
colnames(design) <- gsub("Species", "", dput(colnames(design)))
c("SpeciesChimp", "SpeciesHuman")
# Voom with individual as a random variable

cpm.voom<- voom(counts_filtered, design, normalize.method="quantile", plot=T)

Version Author Date
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12
boxplot(cpm.voom$E, col = pal[as.numeric(metaData$Species)],las=2)

Version Author Date
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12
plotDensities(cpm.voom, col =  pal[as.numeric(metaData$Species)], legend = "topleft") 

Version Author Date
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12

Looks like i still have a skew on the lower side of the distribution.

# PCA 

pca_genes <- prcomp(t(cpm.voom$E), scale = F)
scores <- pca_genes$x


eigsGene <- pca_genes$sdev^2
proportionG = eigsGene/sum(eigsGene)

plot(proportionG)

Version Author Date
da4bab0 brimittleman 2019-11-12
32b435b brimittleman 2019-11-12
for (n in 1:2){
  col.v <- pal[as.integer(metaData$Species)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

Version Author Date
da4bab0 brimittleman 2019-11-12

#Clustering (original code from Julien Roux)
cors <- cor(cpm.voom$E, method="spearman", use="pairwise.complete.obs")


heatmap.2( cors, scale="none", col = colors, margins = c(12, 12), trace='none', denscol="white", labCol=labels, ColSideColors=pal[as.integer(as.factor(metaData$Species))], RowSideColors=pal[as.integer(as.factor(metaData$Species))+9], cexCol = 0.2 + 1/log10(15), cexRow = 0.2 + 1/log10(15))

Version Author Date
da4bab0 brimittleman 2019-11-12

This is wierd. Normalization moves 2 samples to opposite species clusters but the samples that separate in the correlation are not those samples. 4973 and 18498 are the samples that looked funny on the original 3’ data. This may be a sample swap at the RNA stage. These samples were in the same extraction batch. It could have happened then. I will look into this more.

One thing I can do is look at the correlation between the PCs and other factors in the data.

# PCA 

pca_genes <- prcomp(t(cpm.voom$E), scale = F)
scores <- pca_genes$x

for (n in 1:2){
  col.v <- pal[as.integer(metaData$Collection)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

metaData$Extraction=as.factor(metaData$Extraction)

for (n in 1:2){
  col.v <- pal[as.integer(metaData$Extraction)]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

It does not look like batch (who collected or extraction date batch)

cols = brewer.pal(9, "Blues")
palC = colorRampPalette(cols)


metaData$UndilutedAverageorder = findInterval(metaData$UndilutedAverage, sort(metaData$UndilutedAverage))
for (n in 1:2){
  col.v <- palC(nrow(metaData))[metaData$UndilutedAverageorder]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

metaData$BioAConcorder = findInterval(metaData$BioAConc, sort(metaData$BioAConc))
for (n in 1:2){
  col.v <- palC(nrow(metaData))[metaData$BioAConcorder]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

metaData$RinConcorder = findInterval(metaData$Rin, sort(metaData$Rin))
for (n in 1:2){
  col.v <- palC(nrow(metaData))[metaData$RinConcorder]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

The samples do not cluster by collection concentration, RNA rin score or RNA concentration.

metaData$AssignedOrthoorder = findInterval(metaData$AssignedOrtho, sort(metaData$AssignedOrtho))
for (n in 1:2){
  col.v <- palC(nrow(metaData))[metaData$AssignedOrthoorder]
  plot_scores(pca_genes, scores, n, n+1, col.v)
}

They also do not cluster by number of reads mapping to ortho exons.

I should look at the correlation between PCs and these factors.

Try to run the pca the opposite way:

pca_line=prcomp(cpm.voom$E, center=T,scale=T)

pca_line_df=as.data.frame(pca_line$rotation) %>% rownames_to_column(var="Line") %>% select(1:11)


eigs <- pca_line$sdev^2
proportion = eigs/sum(eigs)

plot(proportion)

metaData_order=metaData %>% arrange(Line)
PCA_order=pca_line_df %>% arrange(Line)
Pc1Spec <- summary(lm(PCA_order$PC1 ~ metaData_order$Species))$adj.r.squared
Pc2Spec <- summary(lm(PCA_order$PC2 ~ metaData_order$Species))$adj.r.squared
Pc3Spec <- summary(lm(PCA_order$PC3 ~ metaData_order$Species))$adj.r.squared
Pc1Spec
[1] -0.09882106
Pc2Spec
[1] 0.6285914
Pc3Spec
[1] -0.0714836

Expand this to full heatmap.


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reshape2_1.4.3     RColorBrewer_1.1-2 edgeR_3.24.0      
 [4] limma_3.38.2       gplots_3.0.1       scales_1.0.0      
 [7] forcats_0.3.0      stringr_1.3.1      dplyr_0.8.0.1     
[10] purrr_0.3.2        readr_1.3.1        tidyr_0.8.3       
[13] tibble_2.1.1       ggplot2_3.1.1      tidyverse_1.2.1   
[16] workflowr_1.5.0   

loaded via a namespace (and not attached):
 [1] gtools_3.8.1       locfit_1.5-9.1     tidyselect_0.2.5  
 [4] haven_1.1.2        lattice_0.20-38    colorspace_1.3-2  
 [7] generics_0.0.2     htmltools_0.3.6    yaml_2.2.0        
[10] rlang_0.4.0        later_0.7.5        pillar_1.3.1      
[13] glue_1.3.0         withr_2.1.2        modelr_0.1.2      
[16] readxl_1.1.0       plyr_1.8.4         munsell_0.5.0     
[19] gtable_0.2.0       cellranger_1.1.0   rvest_0.3.2       
[22] caTools_1.17.1.1   evaluate_0.12      labeling_0.3      
[25] knitr_1.20         httpuv_1.4.5       broom_0.5.1       
[28] Rcpp_1.0.2         KernSmooth_2.23-15 promises_1.0.1    
[31] backports_1.1.2    gdata_2.18.0       jsonlite_1.6      
[34] fs_1.3.1           hms_0.4.2          digest_0.6.18     
[37] stringi_1.2.4      grid_3.5.1         rprojroot_1.3-2   
[40] bitops_1.0-6       cli_1.1.0          tools_3.5.1       
[43] magrittr_1.5       lazyeval_0.2.1     crayon_1.3.4      
[46] whisker_0.3-2      pkgconfig_2.0.2    xml2_1.2.0        
[49] lubridate_1.7.4    assertthat_0.2.0   rmarkdown_1.10    
[52] httr_1.3.1         rstudioapi_0.10    R6_2.3.0          
[55] nlme_3.1-137       git2r_0.26.1       compiler_3.5.1