Last updated: 2020-01-18
Checks: 7 0
Knit directory: Comparative_APA/analysis/ 
This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated. 
 Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/
Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._PlotNuclearUsagebySpecies.R
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._RunNegMCMediation.sh
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeNuclearDapaplots.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mediation_test.R
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._negativeMediation_montecarlo.R
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._threeprimeOrthoFC.sh
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/PlotNuclearUsagebySpecies.R
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/RunNegMCMediation.err
    Untracked:  code/RunNegMCMediation.sh
    Untracked:  code/RunNegMCMediationr.out
    Untracked:  code/RunPosMCMediation.err
    Untracked:  code/RunPosMCMediation.sh
    Untracked:  code/RunPosMCMediationr.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectAnnoExt.err
    Untracked:  code/intersectAnnoExt.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makeNuclearDapaplots.sh
    Untracked:  code/makeNuclearPlots.err
    Untracked:  code/makeNuclearPlots.out
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mediation_test.R
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/negativeMediation_montecarlo.R
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/overlapapaQTLPAS_extended.sh
    Untracked:  code/overlapapaQTLPAS_samples.sh
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/postiveMediation_montecarlo.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/threeprimeOrthoFC.out
    Untracked:  code/threeprimeOrthoFC.sh
    Untracked:  code/threeprimeOrthoFCcd.err
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DominantPAS/
    Untracked:  data/EvalPantro5/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NormalizedClusters/
    Untracked:  data/NuclearHvC/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/OverlapBenchmark/
    Untracked:  data/PAS/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_nuclear_old/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/Threeprime2Ortho/
    Untracked:  data/TotalHvC/
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/files4viz_nuclear/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/mediation/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd
Unstaged changes:
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/comp2apaQTLPAS.Rmd
    Modified:   analysis/correlationPhenos.Rmd
    Modified:   analysis/expressioncutoff.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/speciesSpecific.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 7a9f608 | brimittleman | 2020-01-18 | finished benchmark | 
| html | 0c14f51 | brimittleman | 2020-01-17 | Build site. | 
| Rmd | 11b26b4 | brimittleman | 2020-01-17 | add benchmark res | 
| html | 9024e86 | brimittleman | 2020-01-17 | Build site. | 
| Rmd | 6c72627 | brimittleman | 2020-01-17 | add code to make sample APS | 
| html | 5eef3eb | brimittleman | 2020-01-16 | Build site. | 
| Rmd | 5c24c0c | brimittleman | 2020-01-16 | add cutoff code files | 
library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(cowplot)
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
    ggsave
In this analyisis I will chose the 3 sets of 6 individuals randomly from my previous study to use for a benchmark analysis.
I will need to rerun the snakefile each time.
indiv=read.table("../../apaQTL/data/MetaDataSequencing.txt", header= T, stringsAsFactors = F) %>% dplyr::select(line) %>% unique()
mkdir ../data/OverlapBenchmark
Randomly choose 3 sets:
#sample1= sample(indiv$line, 6)
#sample2= sample(indiv$line, 6)
#sample3= sample(indiv$line, 6)
#save(sample1, sample2,sample3, file = "../data/OverlapBenchmark/samples.RData")
load("../data/OverlapBenchmark/samples.RData")
sample1
[1] "NA19144" "NA18508" "NA18858" "NA19239" "NA18504" "NA19119"
sample2
[1] "NA18522" "NA18516" "NA18504" "NA19119" "NA19131" "NA19137"
sample3
[1] "NA19131" "NA18486" "NA19210" "NA19223" "NA19092" "NA19200"
mkdir ../../PAS_Sample1
mkdir ../../PAS_Sample1/code
mkdir ../../PAS_Sample1/data
mkdir ../../PAS_Sample1/data/fastq
mkdir ../../PAS_Sample2
mkdir ../../PAS_Sample2/code
mkdir ../../PAS_Sample2/data
mkdir ../../PAS_Sample2/data/fastq
mkdir ../../PAS_Sample3/
mkdir ../../PAS_Sample3/code/
mkdir ../../PAS_Sample3/data/
mkdir ../../PAS_Sample3/data/fastq
Move over these fastq files.
I will also move the necessary snakefile and run files.
Next steps:
’
mkdir ../data/cleanPeaks_anno
bedtools map -a ../data/cleanPeaks/human_APApeaks.ALLChrom.Filtered.Named.Cleaned.bed -b  /project2/gilad/briana/genome_anotation_data/hg38_refseq_anno/hg38_ncbiRefseq_Formatted_Allannotation.sort.bed -c 4 -S -o distinct > ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnno.bed 
python chooseAnno2Bed.py ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnno.bed  ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED.bed
python bed2SAF_gen.py ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED.bed  ../data/cleanPeaks_anno/AllPAS_postLift.sort_LocAnnoPARSED.SAF
mkdir  ../data/CleanLiftedPeaks_FC/
sbatch quantLiftedPAS.sh 
###
python fixFChead_bothfrac.py ../data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human ../data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human_fixed.fc
python makeFileID.py ../data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human ../data/CleanLiftedPeaks_FC/HumanFileID.txt
mkdir ../data/phenotype/
python makePheno.py  ../data/CleanLiftedPeaks_FC/ALLPAS_postLift_LocParsed_Human_fixed.fc ../data/CleanLiftedPeaks_FC/HumanFileID.txt ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt
Rscript pheno2countonly.R -I ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt -O ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnly.txt
python convertNumeric.py ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnly.txt ../data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt
Pull these in, pull just the nuclear and get the mean:
Sample 1
Sample1Anno=read.table("../../PAS_Sample1/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("start1", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "PAS","chr"), sep="-")
Sample1Ind=colnames(Sample1Anno)[9:ncol(Sample1Anno)]
Sample1Usage=read.table("../../PAS_Sample1/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = Sample1Ind) %>% dplyr::select(contains("_N")) 
Sample1All=as.data.frame(cbind(cbind(Sample1Anno[,1:8], Sample1=rowMeans(Sample1Usage))))
Sample 2:
Sample2Anno=read.table("../../PAS_Sample2/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("start1", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "PAS","chr"), sep="-")
Sample2Ind=colnames(Sample2Anno)[9:ncol(Sample2Anno)]
Sample2Usage=read.table("../../PAS_Sample2/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = Sample2Ind) %>% dplyr::select(contains("_N")) 
Sample2All=as.data.frame(cbind(cbind(Sample2Anno[,1:8], Sample2=rowMeans(Sample2Usage))))
Sample 3
Sample3Anno=read.table("../../PAS_Sample3/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno.txt", header = T, stringsAsFactors = F) %>% tidyr::separate(chrom, sep = ":", into = c("start1", "start", "end", "id")) %>% tidyr::separate(id, sep="_", into=c("gene", "strand", "peak"))  %>% separate(peak,into=c("loc", "PAS","chr"), sep="-")
Sample3Ind=colnames(Sample3Anno)[9:ncol(Sample3Anno)]
Sample3Usage=read.table("../../PAS_Sample3/data/phenotype/ALLPAS_postLift_LocParsed_Human_Pheno_countOnlyNumeric.txt", col.names = Sample3Ind) %>% dplyr::select(contains("_N")) 
Sample3All=as.data.frame(cbind(cbind(Sample3Anno[,1:8], Sample3=rowMeans(Sample3Usage))))
I need to make a bed file with these to overlap with the original PAS. I want 100 bp on each side of the end. Positive strand (actual negative strand) take
Sample1bed=Sample1All %>% mutate(PASName=paste(gene,PAS, sep="_"),newStart=ifelse(strand=="+", as.integer(start)-100, as.integer(end)-100), newEnd=ifelse(strand=="+",as.integer(start)+100, as.integer(end)+100)) %>%  dplyr::select(chr, newStart, newEnd, PASName, Sample1, strand)
#write.table(Sample1bed,"../data/OverlapBenchmark/sample1PAS.bed", col.names = F, row.names = F, sep="\t", quote = F )
Sample2bed=Sample2All %>% mutate(PASName=paste(gene,PAS, sep="_"),newStart=ifelse(strand=="+", as.integer(start)-100, as.integer(end)-100), newEnd=ifelse(strand=="+",as.integer(start)+100, as.integer(end)+100)) %>%  dplyr::select(chr, newStart, newEnd, PASName, Sample2, strand)
#write.table(Sample2bed,"../data/OverlapBenchmark/sample2PAS.bed", col.names = F, row.names = F, sep="\t", quote = F )
Sample3bed=Sample3All %>% mutate(PASName=paste(gene,PAS, sep="_"),newStart=ifelse(strand=="+", as.integer(start)-100, as.integer(end)-100), newEnd=ifelse(strand=="+",as.integer(start)+100, as.integer(end)+100)) %>%  dplyr::select(chr, newStart, newEnd, PASName, Sample3, strand)
#write.table(Sample3bed,"../data/OverlapBenchmark/sample3PAS.bed", col.names = F, row.names = F, sep="\t", quote = F )
sort -k1,1 -k2,2n ../data/OverlapBenchmark/sample1PAS.bed > ../data/OverlapBenchmark/sample1PAS_sort.bed
sort -k1,1 -k2,2n ../data/OverlapBenchmark/sample2PAS.bed > ../data/OverlapBenchmark/sample2PAS_sort.bed
sort -k1,1 -k2,2n ../data/OverlapBenchmark/sample3PAS.bed > ../data/OverlapBenchmark/sample3PAS_sort.bed
Next step is to assess the overlap.
sbatch overlapapaQTLPAS_samples.sh
Sample 1 res:
wOverlap1=read.table("../data/OverlapBenchmark/sample1PAS_sort.Intersect.bed", col.names = colnames(Sample1bed)) %>% mutate(overlap="yes")
noOverlap1=read.table("../data/OverlapBenchmark/sample1PAS_sort.Intersect.NoOverlap.bed", col.names = colnames(Sample1bed)) %>% mutate(overlap="no")
AllwOinfo1=as.data.frame(rbind(wOverlap1, noOverlap1))
nrow(AllwOinfo1)
[1] 77850
overlap1=c()
totalvec1=c()
seq_usage=seq(0, .95, .01)
for (i in seq_usage){
  x=AllwOinfo1 %>% filter(Sample1>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlap1=c(overlap1,prop)
  totalvec1=c(totalvec1,total)
}
plot(seq_usage,overlap1,main="Sample 1", ylab="Percent Overlap", xlab="Usage Cutoff")
abline(v=.05,col="red")
abline(v=.1,col="blue")

| Version | Author | Date | 
|---|---|---|
| 0c14f51 | brimittleman | 2020-01-17 | 
Sample 2
wOverlap2=read.table("../data/OverlapBenchmark/sample2PAS_sort.Intersect.bed", col.names = colnames(Sample2bed)) %>% mutate(overlap="yes")
noOverlap2=read.table("../data/OverlapBenchmark/sample2PAS_sort.Intersect.NoOverlap.bed", col.names = colnames(Sample2bed)) %>% mutate(overlap="no")
AllwOinfo2=as.data.frame(rbind(wOverlap2, noOverlap2))
nrow(AllwOinfo2)
[1] 106751
overlap2=c()
totalvec2=c()
seq_usage=seq(0, .95, .01)
for (i in seq_usage){
  x=AllwOinfo2 %>% filter(Sample2>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlap2=c(overlap2,prop)
  totalve2c=c(totalvec2,total)
}
plot(seq_usage,overlap2,main="Sample 2", ylab="Percent Overlap", xlab="Usage Cutoff")
abline(v=.05,col="red")
abline(v=.1,col="blue")

| Version | Author | Date | 
|---|---|---|
| 0c14f51 | brimittleman | 2020-01-17 | 
Sample 3
wOverlap3=read.table("../data/OverlapBenchmark/sample3PAS_sort.Intersect.bed", col.names = colnames(Sample3bed)) %>% mutate(overlap="yes")
noOverlap3=read.table("../data/OverlapBenchmark/sample3PAS_sort.Intersect.NoOverlap.bed", col.names = colnames(Sample3bed)) %>% mutate(overlap="no")
AllwOinfo3=as.data.frame(rbind(wOverlap3, noOverlap3))
nrow(AllwOinfo3)
[1] 96769
overlap3=c()
totalvec3=c()
seq_usage=seq(0, .95, .01)
for (i in seq_usage){
  x=AllwOinfo3 %>% filter(Sample3>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlap3=c(overlap3,prop)
  totalvec3=c(totalvec3,total)
}
plot(seq_usage,overlap3,main="Sample 2", ylab="Percent Overlap", xlab="Usage Cutoff")
abline(v=.05,col="red")
abline(v=.1,col="blue")

| Version | Author | Date | 
|---|---|---|
| 0c14f51 | brimittleman | 2020-01-17 | 
Plot with all:
allSamp=as.data.frame(cbind(seq_usage,overlap1,overlap2,overlap3))
actualres= read.table("../data/CompapaQTLpas/ExtendedResoverlap.txt", header = T)
SampandRes=allSamp %>% inner_join(actualres,by="seq_usage") 
colnames(SampandRes)= c("Cutoff","Sample1", "Sample2", "Sample3", "CompPAS")
SampandRes_gather=SampandRes %>% gather(key="set", value="overlap",-Cutoff)
Plot:
bench=ggplot(SampandRes_gather,aes(x=Cutoff,y=overlap, by=set, col=set))+ geom_line() + labs(title="Benchmark results with 3 sets of 6 samples") + geom_vline(xintercept=.05,col="red")+ geom_vline(xintercept=.1,col="blue")
bench

| Version | Author | Date | 
|---|---|---|
| 0c14f51 | brimittleman | 2020-01-17 | 
I will filter this to only genes passing the filter I established in the previous:
PassingGenes=read.table("../data/OverlapBenchmark/genesPassingCuttoff.txt", header = T, stringsAsFactors = F)
AllwOinfo1_filt=AllwOinfo1 %>% separate(PASName, into=c("gene", "PAS"), sep="_")%>% filter(gene %in% PassingGenes$genes)
AllwOinfo2_filt=AllwOinfo2 %>% separate(PASName, into=c("gene", "PAS"), sep="_") %>% filter(gene %in% PassingGenes$genes)
AllwOinfo3_filt=AllwOinfo3 %>% separate(PASName, into=c("gene", "PAS"), sep="_") %>% filter(gene %in% PassingGenes$genes)
Actual results:
chroms=c('chr10', 'chr11', 'chr12', 'chr13', 'chr14', 'chr15', 'chr16', 'chr17', 'chr18', 'chr19', 'chr1', 'chr2', 'chr20', 'chr21', 'chr22', 'chr3', 'chr4', 'chr5', 'chr6', 'chr7','chr8', 'chr9')
compAPAPAS=read.table("../data/Peaks_5perc/Peaks_5perc_either_HumanCoordHummanUsage.bed", header =   T, stringsAsFactors = F)  %>%  filter(Human>=0.05, chr %in% chroms) 
metaDataPAS=read.table("../data/PAS/PAS_5perc_either_HumanCoord_BothUsage_meta.txt", header = T, stringsAsFactors = F) %>% dplyr::select(PAS, gene)
wOverlapExt=read.table("../data/CompapaQTLpas/PAS_5percHuman.sort.Intersect_ext.bed", col.names = colnames(compAPAPAS)) %>% mutate(overlap="yes")
noOverlapExt=read.table("../data/CompapaQTLpas/PAS_5percHuman.sort.Intersect.NoOverlap_ext.bed", col.names = colnames(compAPAPAS)) %>% mutate(overlap="no")
AllwOinfoExt=as.data.frame(rbind(wOverlapExt, noOverlapExt)) %>% inner_join(metaDataPAS,by="PAS") %>% filter(gene %in% PassingGenes$genes)
Warning: Column `PAS` joining factor and character vector, coercing into
character vector
nrow(AllwOinfoExt)
[1] 36802
overlapFilt1=c()
seq_usage=seq(0, .95, .01)
for (i in seq_usage){
  x=AllwOinfo1_filt %>% filter(Sample1>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlapFilt1=c(overlapFilt1,prop)
}
overlapFilt2=c()
for (i in seq_usage){
  x=AllwOinfo2_filt %>% filter(Sample2>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlapFilt2=c(overlapFilt2,prop)
}
overlapFilt3=c()
for (i in seq_usage){
  x=AllwOinfo3_filt %>% filter(Sample3>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlapFilt3=c(overlapFilt3,prop)
}
overlapFiltActual=c()
for (i in seq_usage){
  x=AllwOinfoExt %>% filter(Human>i) %>% group_by(overlap) %>% summarise(n=n())
  yes=as.numeric(x[2,2])
  total=as.numeric(x[2,2])+ as.numeric(x[1,2])
  prop=yes/total
  overlapFiltActual=c(overlapFiltActual,prop)
}
FilteredRes=as.data.frame(cbind(seq_usage,overlapFilt1,overlapFilt2,overlapFilt3,overlapFiltActual))
colnames(FilteredRes)= c("Cutoff","Sample1", "Sample2", "Sample3", "CompPAS")
FilteredRes_gather=FilteredRes %>% gather(key="set", value="overlap",-Cutoff)
filteredbench=ggplot(FilteredRes_gather,aes(x=Cutoff,y=overlap, by=set, col=set))+ geom_line() + labs(title="Benchmark results with 3 sets of 6 samples, filtered genes") + geom_vline(xintercept=.05,col="red")+ geom_vline(xintercept=.1,col="blue")
filteredbench
 Plot together:
plot_grid(bench,filteredbench)

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
 [1] cowplot_0.9.4   forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.1   tidyverse_1.2.1
loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5 haven_1.1.2      lattice_0.20-38  colorspace_1.3-2
 [5] generics_0.0.2   htmltools_0.3.6  yaml_2.2.0       rlang_0.4.0     
 [9] later_0.7.5      pillar_1.3.1     glue_1.3.0       withr_2.1.2     
[13] modelr_0.1.2     readxl_1.1.0     plyr_1.8.4       munsell_0.5.0   
[17] gtable_0.2.0     workflowr_1.5.0  cellranger_1.1.0 rvest_0.3.2     
[21] evaluate_0.12    labeling_0.3     knitr_1.20       httpuv_1.4.5    
[25] broom_0.5.1      Rcpp_1.0.2       promises_1.0.1   scales_1.0.0    
[29] backports_1.1.2  jsonlite_1.6     fs_1.3.1         hms_0.4.2       
[33] digest_0.6.18    stringi_1.2.4    grid_3.5.1       rprojroot_1.3-2 
[37] cli_1.1.0        tools_3.5.1      magrittr_1.5     lazyeval_0.2.1  
[41] crayon_1.3.4     whisker_0.3-2    pkgconfig_2.0.2  xml2_1.2.0      
[45] lubridate_1.7.4  assertthat_0.2.0 rmarkdown_1.10   httr_1.3.1      
[49] rstudioapi_0.10  R6_2.3.0         nlme_3.1-137     git2r_0.26.1    
[53] compiler_3.5.1