Last updated: 2020-05-17

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/TrialFiltersMeta.txt.sb-9845453e-R58Y0Q/
    Ignored:    data/mediation_prot/
    Ignored:    data/metadata_HCpanel.txt.sb-284518db-RGf0kd/
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/AREstabilityScores.Rmd
    Untracked:  analysis/AllLoc_effectSizeCor.Rmd
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/DiffUsedUTR.Rmd
    Untracked:  analysis/GvizPlots.Rmd
    Untracked:  analysis/HandC.TvN
    Untracked:  analysis/PhenotypeOverlap10.Rmd
    Untracked:  analysis/annotationBias.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  code/._AlignmentScores.sh
    Untracked:  code/._BothFCMM.sh
    Untracked:  code/._BothFCMMPrim.sh
    Untracked:  code/._BothFCnewOInclusive.sh
    Untracked:  code/._ChimpStarMM2.sh
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._ClosestorthoEx.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._Filter255MM.sh
    Untracked:  code/._FilterPrimSec.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._FindIntronForDomPAS_DF.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._MismatchNumbers.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PAS_ATTAAA_df.sh
    Untracked:  code/._PAS_seqExpanded.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._PASsequences_DF.sh
    Untracked:  code/._PlotNuclearUsagebySpecies.R
    Untracked:  code/._PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._RNATranscriptDTplot.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._RunNegMCMediation.sh
    Untracked:  code/._RunNegMCMediationDF.sh
    Untracked:  code/._RunPosMCMediationDF.err
    Untracked:  code/._RunPosMCMediationDF.sh
    Untracked:  code/._SAF2Bed.py
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._StarMM2.sh
    Untracked:  code/._TestFC.sh
    Untracked:  code/._assignPeak2Intronicregion
    Untracked:  code/._assignPeak2Intronicregion.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2Bedbothstrand.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._chimpMultiCov.sh
    Untracked:  code/._chimpMultiCov255.sh
    Untracked:  code/._chimpMultiCovInclusive.sh
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._extractPhyloReg.py
    Untracked:  code/._extractPhyloRegGene.py
    Untracked:  code/._extractPhylopGeneral.ph
    Untracked:  code/._extractPhylopGeneral.py
    Untracked:  code/._extractPhylopReg200down.py
    Untracked:  code/._extractPhylopReg200up.py
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._filterPrimaryread.py
    Untracked:  code/._filterSecondaryread.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixFCheadforExp.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._humanMultiCov.sh
    Untracked:  code/._humanMultiCov255.sh
    Untracked:  code/._humanMultiCov_inclusive.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeNuclearDapaplots.sh
    Untracked:  code/._makeNuclearDapaplots_DF.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mediation_test.R
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergeandBWRNAseq.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._negativeMediation_montecarlo.R
    Untracked:  code/._negativeMediation_montecarloDF.R
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapMMandOrthoexon.sh
    Untracked:  code/._overlapPASandOrthoexon.sh
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._parseHg38.py
    Untracked:  code/._postiveMediation_montecarlo_DF.R
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantLiftedPASPrimary.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDiffIso_DF.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._spliceSite2Fasta.py
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._threeprimeOrthoFC.sh
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ALLPAS_sequenceDF.err
    Untracked:  code/ALLPAS_sequenceDF.out
    Untracked:  code/AlignmentScores.err
    Untracked:  code/AlignmentScores.out
    Untracked:  code/AlignmentScores.sh
    Untracked:  code/BothFCMM.err
    Untracked:  code/BothFCMM.out
    Untracked:  code/BothFCMM.sh
    Untracked:  code/BothFCMMPrim.err
    Untracked:  code/BothFCMMPrim.out
    Untracked:  code/BothFCMMPrim.sh
    Untracked:  code/BothFCnewOInclusive.sh
    Untracked:  code/BothFCnewOInclusive.sh.err
    Untracked:  code/BothFCnewOInclusive.sh.out
    Untracked:  code/ChimpStarMM2.err
    Untracked:  code/ChimpStarMM2.out
    Untracked:  code/ChimpStarMM2.sh
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/ClosestorthoEx.err
    Untracked:  code/ClosestorthoEx.out
    Untracked:  code/ClosestorthoEx.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DTUTR.sh
    Untracked:  code/DiffDom_RNAmotif_4.err
    Untracked:  code/DiffDom_RNAmotif_4.out
    Untracked:  code/DiffDom_RNAmotif_4.sh
    Untracked:  code/DiffDom_RNAmotif_4_splitDE.err
    Untracked:  code/DiffDom_RNAmotif_4_splitDE.out
    Untracked:  code/DiffDom_RNAmotif_4_splitDE.sh
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/Filter255.err
    Untracked:  code/Filter255.out
    Untracked:  code/Filter255MM.sh
    Untracked:  code/FilterPrimSec.err
    Untracked:  code/FilterPrimSec.out
    Untracked:  code/FilterPrimSec.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindDomXCutoff.py
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/FindIntronForDomPAS_DF.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/GetTopminus2Usage.py
    Untracked:  code/H3K36me3DTplot.err
    Untracked:  code/H3K36me3DTplot.out
    Untracked:  code/H3K36me3DTplot.sh
    Untracked:  code/H3K36me3DTplot_DiffIso.err
    Untracked:  code/H3K36me3DTplot_DiffIso.out
    Untracked:  code/H3K36me3DTplot_DiffIso.sh
    Untracked:  code/H3K36me3DTplot_Specific.err
    Untracked:  code/H3K36me3DTplot_Specific.out
    Untracked:  code/H3K36me3DTplot_Specific.sh
    Untracked:  code/H3K36me3DTplot_distalPAS.err
    Untracked:  code/H3K36me3DTplot_distalPAS.out
    Untracked:  code/H3K36me3DTplot_distalPAS.sh
    Untracked:  code/H3K36me3DTplot_transcript.err
    Untracked:  code/H3K36me3DTplot_transcript.out
    Untracked:  code/H3K36me3DTplot_transcript.sh
    Untracked:  code/H3K36me3DTplotwide.err
    Untracked:  code/H3K36me3DTplotwide.out
    Untracked:  code/H3K36me3DTplotwide.sh
    Untracked:  code/H3K9me3DTplot_transcript.err
    Untracked:  code/H3K9me3DTplot_transcript.out
    Untracked:  code/H3K9me3DTplot_transcript.sh
    Untracked:  code/H3K9me3_processandDT.sh
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/InfoContentShannon.py
    Untracked:  code/InfoContentbyInd.py
    Untracked:  code/IntersectMMandOrtho.err
    Untracked:  code/IntersectMMandOrtho.out
    Untracked:  code/IntersectPASandOrtho.err
    Untracked:  code/IntersectPASandOrtho.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MaxEntCode/
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/MismatchNumbers.err
    Untracked:  code/MismatchNumbers.out
    Untracked:  code/MismatchNumbers.sh
    Untracked:  code/NuclearDTUTR.err
    Untracked:  code/NuclearDTUTRt.out
    Untracked:  code/NuclearPlotsDEandDiffDom_4.err
    Untracked:  code/NuclearPlotsDEandDiffDom_4.out
    Untracked:  code/NuclearPlotsDEandDiffDom_4.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_ATTAAADF.err
    Untracked:  code/PAS_ATTAAADF.out
    Untracked:  code/PAS_ATTAAA_df.sh
    Untracked:  code/PAS_seqExpanded.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PAS_sequenceDF.err
    Untracked:  code/PAS_sequenceDF.out
    Untracked:  code/PASexpanded_sequenceDF.err
    Untracked:  code/PASexpanded_sequenceDF.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/PASsequences_DF.sh
    Untracked:  code/PlotNuclearUsagebySpecies.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF_4DIC.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF_DEout.R
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/RNATranscriptDTplot.err
    Untracked:  code/RNATranscriptDTplot.out
    Untracked:  code/RNATranscriptDTplot.sh
    Untracked:  code/RNAmotif_PAS.err
    Untracked:  code/RNAmotif_PAS.out
    Untracked:  code/RNAmotif_PAS.sh
    Untracked:  code/RNAmotif_PAS_chimp.err
    Untracked:  code/RNAmotif_PAS_chimp.out
    Untracked:  code/RNAmotif_PAS_chimp.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/RunNegMCMediation.err
    Untracked:  code/RunNegMCMediation.sh
    Untracked:  code/RunNegMCMediationDF.err
    Untracked:  code/RunNegMCMediationDF.out
    Untracked:  code/RunNegMCMediationDF.sh
    Untracked:  code/RunNegMCMediationr.out
    Untracked:  code/RunNewDom.err
    Untracked:  code/RunNewDom.out
    Untracked:  code/RunPosMCMediation.err
    Untracked:  code/RunPosMCMediation.sh
    Untracked:  code/RunPosMCMediationDF.err
    Untracked:  code/RunPosMCMediationDF.out
    Untracked:  code/RunPosMCMediationDF.sh
    Untracked:  code/RunPosMCMediationr.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/SAF2Bed.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/StarMM2.err
    Untracked:  code/StarMM2.out
    Untracked:  code/StarMM2.sh
    Untracked:  code/TestFC.err
    Untracked:  code/TestFC.out
    Untracked:  code/TestFC.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/UTR2FASTA.py
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/allPASSeq_df.sh
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/apaQTLsnakefiltPAS.err
    Untracked:  code/apaQTLsnakefiltPAS.out
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignPeak2Intronicregion.sh
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2Bedbothstrand.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chimpMultiCov.err
    Untracked:  code/chimpMultiCov.out
    Untracked:  code/chimpMultiCov.sh
    Untracked:  code/chimpMultiCov255.sh
    Untracked:  code/chimpMultiCovInclusive.err
    Untracked:  code/chimpMultiCovInclusive.out
    Untracked:  code/chimpMultiCovInclusive.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chooseSignalSite.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/extractPhaastConGeneral.py
    Untracked:  code/extractPhyloReg.py
    Untracked:  code/extractPhyloRegGene.py
    Untracked:  code/extractPhylopGeneral.py
    Untracked:  code/extractPhylopReg200down.py
    Untracked:  code/extractPhylopReg200up.py
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterPrimaryread.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSecondaryread.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFCheadforExp.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getAlloverlap.py
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/humanMultiCov.err
    Untracked:  code/humanMultiCov.out
    Untracked:  code/humanMultiCov.sh
    Untracked:  code/humanMultiCov255.err
    Untracked:  code/humanMultiCov255.out
    Untracked:  code/humanMultiCov255.sh
    Untracked:  code/humanMultiCovInclusive.err
    Untracked:  code/humanMultiCovInclusive.out
    Untracked:  code/humanMultiCov_inclusive.sh
    Untracked:  code/infoContentSimpson.py
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectAnnoExt.err
    Untracked:  code/intersectAnnoExt.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeDIC.err
    Untracked:  code/makeDIC.out
    Untracked:  code/makeFileID.py
    Untracked:  code/makeNuclearDapaplots.sh
    Untracked:  code/makeNuclearDapaplots_DF.sh
    Untracked:  code/makeNuclearPlots.err
    Untracked:  code/makeNuclearPlots.out
    Untracked:  code/makeNuclearPlotsDF.err
    Untracked:  code/makeNuclearPlotsDF.out
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/makedICPlots_DF.sh
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mediation_test.R
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/mergeChimpRNA.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandBWRNAseq.sh
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergeandsort_H3K9me3
    Untracked:  code/mergeandsort_h3k36me3
    Untracked:  code/mergeandsorth3k36me3.sh
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/mergedbamRNAand2bw.err
    Untracked:  code/mergedbamRNAand2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/negativeMediation_montecarlo.R
    Untracked:  code/negativeMediation_montecarloDF.R
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapMMandOrthoexon.sh
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapPASandOrthoexon.sh
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/overlapapaQTLPAS_extended.sh
    Untracked:  code/overlapapaQTLPAS_samples.sh
    Untracked:  code/parseHg38.py
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/postiveMediation_montecarlo.R
    Untracked:  code/postiveMediation_montecarlo_DF.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quantLiftedPASPrimary.err
    Untracked:  code/quantLiftedPASPrimary.out
    Untracked:  code/quantLiftedPASPrimary.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runChimpDiffIsoDF.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runHumanDiffIsoDF.sh
    Untracked:  code/runNewDom.sh
    Untracked:  code/runNuclearDiffIso_DF.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_dF.err
    Untracked:  code/run_Humanleafcutter_dF.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_dsDF.err
    Untracked:  code/run_Nuclearleafcutter_dsDF.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePAS_Human.batch
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.batch
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/spliceSite2Fasta.py
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/test.txt
    Untracked:  code/threeprimeOrthoFC.out
    Untracked:  code/threeprimeOrthoFC.sh
    Untracked:  code/threeprimeOrthoFCcd.err
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._TrialFiltersMeta.txt
    Untracked:  data/._TrialFiltersMeta.txt.sb-9845453e-R58Y0Q
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/AREelements/
    Untracked:  data/BaseComp/
    Untracked:  data/CleanLiftedPeaks_FC_primary/
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DIC_Viz/
    Untracked:  data/DNDS/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffDomandDE_example/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Nuclear_DF/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DistTwoDom/
    Untracked:  data/DomDefGreaterX/
    Untracked:  data/DomStructure_4/
    Untracked:  data/DominantPAS/
    Untracked:  data/DominantPAS_DF/
    Untracked:  data/DoubleFilterUsageNumeric/
    Untracked:  data/EvalPantro5/
    Untracked:  data/H3K36me3/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/HumanMolPheno/
    Untracked:  data/IndInfoContent/
    Untracked:  data/InfoContent/
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NormalizedClusters/
    Untracked:  data/NuclearHvC/
    Untracked:  data/NuclearHvC_DF/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/OrthoExonBed/
    Untracked:  data/OverlapBenchmark/
    Untracked:  data/OverlappingPAS/
    Untracked:  data/PAS/
    Untracked:  data/PAS_SAF/
    Untracked:  data/PAS_doubleFilter/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/PhastCon/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_DF_nuclear/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_nuclear_old/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/PhyloP/
    Untracked:  data/Pol2Chip/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/SignalSites_doublefilter/
    Untracked:  data/SpliceSite/
    Untracked:  data/TestAnnoBiasOE/
    Untracked:  data/TestMM2/
    Untracked:  data/TestMM2_AS/
    Untracked:  data/TestMM2_PrimaryRead/
    Untracked:  data/TestMM2_SeondaryRead/
    Untracked:  data/TestMM2_mismatch/
    Untracked:  data/TestMM2_quality/
    Untracked:  data/TestWithinMergePAS/
    Untracked:  data/Test_FC_methods/
    Untracked:  data/Threeprime2Ortho/
    Untracked:  data/TotalFractionPAS/
    Untracked:  data/TotalHvC/
    Untracked:  data/TrialFiltersMeta.txt
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/apaQTLGenes/
    Untracked:  data/bioGRID/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/files4viz_nuclear/
    Untracked:  data/files4viz_nuclear_DF/
    Untracked:  data/gviz/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/mediation/
    Untracked:  data/mediation_DF/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_extra.txt
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/miRNA/
    Untracked:  data/multimap/
    Untracked:  data/orthoUTR/
    Untracked:  data/paiDecay/
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/testQuant/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/._.DS_Store
    Untracked:  output/dAPAandDomEnrich.png
    Untracked:  output/dEandDomEnrich.png
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd
    Untracked:  proteinModelSet.Rmd

Unstaged changes:
    Modified:   analysis/DICNotDEDP.Rmd
    Modified:   analysis/DeandNumPAS.Rmd
    Modified:   analysis/DiffTop2SecondDom.Rmd
    Modified:   analysis/DirSelectionKhan.Rmd
    Modified:   analysis/ExploredAPA.Rmd
    Modified:   analysis/MMExpreiment.Rmd
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/PTM_analysis.Rmd
    Modified:   analysis/TotalDomStructure.Rmd
    Modified:   analysis/TotalVNuclearBothSpecies.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/changeMisprimcut.Rmd
    Modified:   analysis/comp2apaQTLPAS.Rmd
    Modified:   analysis/correlationPhenos.Rmd
    Modified:   analysis/dInforContent.Rmd
    Modified:   analysis/diffExpression.Rmd
    Modified:   analysis/establishCutoffs.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/mRNADecay.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/phastCon.Rmd
    Modified:   analysis/pol2.Rmd
    Modified:   analysis/signalsites_doublefilter.Rmd
    Modified:   analysis/speciesSpecific.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 4b2ff4a brimittleman 2020-05-17 add loc enrich and diff dom plot
html 85826ad brimittleman 2020-05-11 Build site.
Rmd fc1a2bd brimittleman 2020-05-11 add directional selection res
html 1c7e237 brimittleman 2020-05-09 Build site.
Rmd f11ba50 brimittleman 2020-05-09 add ex
html 747e064 brimittleman 2020-05-07 Build site.
Rmd 88c1a33 brimittleman 2020-05-07 plot without protien
html 3fe9930 brimittleman 2020-05-07 Build site.
Rmd 341a5c0 brimittleman 2020-05-07 add seperation with dapa and dic

library(workflowr)
This is workflowr version 1.6.0
Run ?workflowr for help getting started
library(UpSetR)
library(VennDiagram)
Loading required package: grid
Loading required package: futile.logger
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ──────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave

I want to look at regulatory phenotype regulation based on dAPA, both, or dIC.

For this analysis I will use dIC at 5% FDR. Numbers are smaller but overlaps suggest it is more biological.

I will look at genes tested in all analysis then proportion results to only dAPA, dIC and dAPA, or dIC only. I will test for enrichement in each of these sets with expression, translation, and protein.

Load APA data:

For apa I reduce to gene level and count it as sig if at least one PAS is different.

Meta=read.table("../data/PAS_doubleFilter/PAS_5perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt", header = T, stringsAsFactors = F) 


Meta_genes= Meta %>% select(gene) %>% unique()

Meta_PAS=Meta %>%  select(PAS,gene)

dAPAGenes=read.table("../data/DiffIso_Nuclear_DF/SignifianceEitherGENES_Nuclear.txt", header = T, stringsAsFactors = F)
dAPAPAS=read.table("../data/DiffIso_Nuclear_DF/AllPAS_withGeneSig.txt", header = T, stringsAsFactors = F) %>% inner_join(Meta, by=c("chr","start", "end","gene")) %>% select(PAS,gene,SigPAU2 ) 

dAPAPAS_genes= dAPAPAS %>% select(gene) %>% unique()

dAPATestedGenes= dAPAPAS  %>% select(gene) %>% unique() %>% mutate(dAPA=ifelse(gene %in% dAPAGenes$gene,"Yes", "No")) 
dICdata= read.table("../data/IndInfoContent/SimpsonMedianSignificance.txt", header = T, stringsAsFactors = F)%>% select(sIC,gene)
dICdata_sig= dICdata %>% filter(sIC=="Yes")
dAPAandDic= dICdata %>% inner_join(dAPATestedGenes,by="gene") %>% mutate(Both=ifelse(sIC=="Yes" & dAPA=="Yes", "Yes","No"),OnlyIC=ifelse(sIC=="Yes" & dAPA=="No", "Yes","No"),OnlyAPA=ifelse(sIC=="No" & dAPA=="Yes", "Yes","No"))

nrow(dAPAandDic)
[1] 8422

Make an upsetter plot first:

#useCOl <- c("#d73027", "#4575b4","#fee090")


listInput <- list(dAPA=dAPAGenes$gene, dIC=dICdata_sig$gene)

upset(fromList(listInput), order.by = "freq", empty.intersections = "on")

Version Author Date
1c7e237 brimittleman 2020-05-09

Ven diagram:

overlap=intersect(dAPAGenes$gene,dICdata_sig$gene)

grid.newpage()
venn.plot <- draw.pairwise.venn(area1 = length(dAPAGenes$gene),
                           area2 = length(dICdata_sig$gene),
                           cross.area = length(overlap),
                           c("dAPA", "dIC"), scaled = TRUE,
                           fill = c("#d73027", "#fee090"),
                           cex = 1.5,
                           cat.cex = 1.5,
                           cat.pos = c(320, 25),
                           cat.dist = .05) 

Version Author Date
1c7e237 brimittleman 2020-05-09

Expression

nameID=read.table("../../genome_anotation_data/ensemble_to_genename.txt",sep="\t", header = T, stringsAsFactors = F) %>% dplyr::select(Gene_stable_ID, Gene.name)

DiffExp=read.table("../data/DiffExpression/DEtested_allres.txt",stringsAsFactors = F,header = F, col.names = c("Gene_stable_ID" ,"logFC" ,"AveExpr" , "t" ,  "P.Value" ,  "adj.P.Val", "B"  )) %>% inner_join(nameID,by="Gene_stable_ID") %>% dplyr::rename('gene'=Gene.name) %>% dplyr::select(-Gene_stable_ID) %>% mutate(DE=ifelse(adj.P.Val<.05, "Yes", "No")) %>% select(gene,DE)
DEandAPA=DiffExp %>% inner_join(dAPAandDic,by="gene")
nrow(DEandAPA)
[1] 7465

Erichment for only APA:

sets=c("OnlyAPA", "OnlyIC", "Both")
DE_pval=c()
DE_enrich=c()
x=nrow(DEandAPA %>% filter(OnlyAPA=="Yes", DE=="Yes"))
m=nrow(DEandAPA %>% filter(DE=="Yes"))
n=nrow(DEandAPA %>% filter(DE=="No"))
k=nrow(DEandAPA %>% filter(OnlyAPA=="Yes"))
N=nrow(DEandAPA)
phyper(x-1,m,n,k,lower.tail=F)
[1] 0.0005193482
DE_pval=c(DE_pval, phyper(x-1,m,n,k,lower.tail=F))
x
[1] 447
DE_enrich=c(DE_enrich, (x/k)/(m/N))
(x/k)/(m/N)
[1] 1.122516

Only dIC

x=nrow(DEandAPA %>% filter(OnlyIC=="Yes", DE=="Yes"))
m=nrow(DEandAPA %>% filter(DE=="Yes"))
n=nrow(DEandAPA %>% filter(DE=="No"))
k=nrow(DEandAPA %>% filter(OnlyIC=="Yes"))
N=nrow(DEandAPA)
phyper(x-1,m,n,k,lower.tail=F)
[1] 0.2216107
DE_pval=c(DE_pval, phyper(x-1,m,n,k,lower.tail=F))
x
[1] 154
DE_enrich=c(DE_enrich, (x/k)/(m/N))
(x/k)/(m/N)
[1] 1.052215

Both:

x=nrow(DEandAPA %>% filter(Both=="Yes", DE=="Yes"))
m=nrow(DEandAPA %>% filter(DE=="Yes"))
n=nrow(DEandAPA %>% filter(DE=="No"))
k=nrow(DEandAPA %>% filter(Both=="Yes"))
N=nrow(DEandAPA)
phyper(x-1,m,n,k,lower.tail=F)
[1] 0.02681958
DE_pval=c(DE_pval, phyper(x-1,m,n,k,lower.tail=F))
x
[1] 163
DE_enrich=c(DE_enrich, (x/k)/(m/N))
(x/k)/(m/N)
[1] 1.128023

All de res:

DEdf=as.data.frame(cbind(sets,DE_pval, DE_enrich)) %>% rename(Pval=DE_pval, Enrichment=DE_enrich) %>% mutate(Pheno="Expression")
DEdf
     sets                 Pval       Enrichment      Pheno
1 OnlyAPA 0.000519348163532497 1.12251636247181 Expression
2  OnlyIC    0.221610701204403 1.05221488574561 Expression
3    Both   0.0268195798877835 1.12802297586811 Expression

Translation

Ribo=read.table("../data/Wang_ribo/Additionaltable5_translationComparisons.txt",header = T, stringsAsFactors = F) %>% rename("Gene_stable_ID"= ENSG) %>% inner_join(nameID,by="Gene_stable_ID") %>% dplyr::select(Gene.name, HvC.beta, HvC.pvalue, HvC.FDR) %>% rename("gene"=Gene.name) %>% mutate(dTE=ifelse(HvC.FDR <0.05, "Yes","No"))
RiboSmall= Ribo %>% select(gene,dTE)
DTandAPA=Ribo %>% inner_join(dAPAandDic,by="gene")
nrow(DTandAPA)
[1] 6477
#sets=c("OnlyAPA", "OnlyIC", "Both")
DT_pval=c()
DT_enrich=c()

only APA

x=nrow(DTandAPA %>% filter(OnlyAPA=="Yes", dTE=="Yes"))
m=nrow(DTandAPA %>% filter(dTE=="Yes"))
n=nrow(DTandAPA %>% filter(dTE=="No"))
k=nrow(DTandAPA %>% filter(OnlyAPA=="Yes"))
N=nrow(DTandAPA)
phyper(x-1,m,n,k,lower.tail=F)
[1] 0.06327494
DT_pval=c(DT_pval, phyper(x-1,m,n,k,lower.tail=F))
x
[1] 210
DT_enrich=c(DT_enrich, (x/k)/(m/N))
(x/k)/(m/N)
[1] 1.093646

Only dIC

x=nrow(DTandAPA %>% filter(OnlyIC=="Yes", dTE=="Yes"))
m=nrow(DTandAPA %>% filter(dTE=="Yes"))
n=nrow(DTandAPA %>% filter(dTE=="No"))
k=nrow(DTandAPA %>% filter(OnlyIC=="Yes"))
N=nrow(DTandAPA)
phyper(x-1,m,n,k,lower.tail=F)
[1] 0.02205198
DT_pval=c(DT_pval, phyper(x-1,m,n,k,lower.tail=F))
x
[1] 94
DT_enrich=c(DT_enrich, (x/k)/(m/N))
(x/k)/(m/N)
[1] 1.205226
x=nrow(DTandAPA %>% filter(Both=="Yes", dTE=="Yes"))
m=nrow(DTandAPA %>% filter(dTE=="Yes"))
n=nrow(DTandAPA %>% filter(dTE=="No"))
k=nrow(DTandAPA %>% filter(Both=="Yes"))
N=nrow(DTandAPA)
phyper(x-1,m,n,k,lower.tail=F)
[1] 0.01134051
DT_pval=c(DT_pval, phyper(x-1,m,n,k,lower.tail=F))
x
[1] 91
DT_enrich=c(DT_enrich, (x/k)/(m/N))
(x/k)/(m/N)
[1] 1.240121
DTdf=as.data.frame(cbind(sets,DT_pval, DT_enrich)) %>% rename(Pval=DT_pval, Enrichment=DT_enrich) %>% mutate(Pheno="Translation")
DTdf
     sets               Pval       Enrichment       Pheno
1 OnlyAPA 0.0632749366195107 1.09364622715088 Translation
2  OnlyIC 0.0220519791477263 1.20522601526234 Translation
3    Both 0.0113405052499701 1.24012060208466 Translation

Protein

(pval is adjusted already)

Prot= read.table("../data/Khan_prot/ProtData_effectSize.txt",header = T,stringsAsFactors = F)  %>% mutate(dP=ifelse(pval<0.05, "Yes", "No"))


ProtSmall=Prot %>% select(gene, dP)
DPandAPA=Prot %>% inner_join(dAPAandDic,by="gene")
nrow(DPandAPA)
[1] 2641
#sets=c("OnlyAPA", "OnlyIC", "Both")
DP_pval=c()
DP_enrich=c()

only APA

x=nrow(DPandAPA %>% filter(OnlyAPA=="Yes", dP=="Yes"))
m=nrow(DPandAPA %>% filter(dP=="Yes"))
n=nrow(DPandAPA %>% filter(dP=="No"))
k=nrow(DPandAPA %>% filter(OnlyAPA=="Yes"))
N=nrow(DPandAPA)
phyper(x-1,m,n,k,lower.tail=F)
[1] 0.2293006
DP_pval=c(DP_pval, phyper(x-1,m,n,k,lower.tail=F))
x
[1] 130
DP_enrich=c(DP_enrich, (x/k)/(m/N))
(x/k)/(m/N)
[1] 1.052798

Only dIC

x=nrow(DPandAPA %>% filter(OnlyIC=="Yes", dP=="Yes"))
m=nrow(DPandAPA %>% filter(dP=="Yes"))
n=nrow(DPandAPA %>% filter(dP=="No"))
k=nrow(DPandAPA %>% filter(OnlyIC=="Yes"))
N=nrow(DPandAPA)
phyper(x-1,m,n,k,lower.tail=F)
[1] 0.8222889
DP_pval=c(DP_pval, phyper(x-1,m,n,k,lower.tail=F))
x
[1] 68
DP_enrich=c(DP_enrich, (x/k)/(m/N))
(x/k)/(m/N)
[1] 0.925635
x=nrow(DPandAPA %>% filter(Both=="Yes", dP=="Yes"))
m=nrow(DPandAPA %>% filter(dP=="Yes"))
n=nrow(DPandAPA %>% filter(dP=="No"))
k=nrow(DPandAPA %>% filter(Both=="Yes"))
N=nrow(DPandAPA)
phyper(x-1,m,n,k,lower.tail=F)
[1] 0.8802321
DP_pval=c(DP_pval, phyper(x-1,m,n,k,lower.tail=F))
x
[1] 56
DP_enrich=c(DP_enrich, (x/k)/(m/N))
(x/k)/(m/N)
[1] 0.895688
DPdf=as.data.frame(cbind(sets,DP_pval, DP_enrich)) %>% rename(Pval=DP_pval, Enrichment=DP_enrich) %>% mutate(Pheno="Protein")
DPdf
     sets              Pval        Enrichment   Pheno
1 OnlyAPA 0.229300585846805  1.05279781179472 Protein
2  OnlyIC 0.822288948709401 0.925634999175326 Protein
3    Both 0.880232087900127 0.895687984496124 Protein

Plot together:

AllDF= DEdf %>% bind_rows(DTdf) %>% bind_rows(DPdf)
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
AllDF$Pval=as.numeric(AllDF$Pval)
AllDF$Enrichment=as.numeric(AllDF$Enrichment)
AllDF$Pheno=factor(AllDF$Pheno, levels=c("Expression", "Translation", "Protein"))
useCOl <- c("#d73027", "#4575b4","#fee090")

enrichplot=ggplot(AllDF,aes(x=Pheno, by=sets, y=Enrichment,fill=sets)) +geom_bar(stat = "identity",position = "dodge") +geom_hline(yintercept =1) + scale_fill_manual(values=useCOl)

enrichplot

Version Author Date
1c7e237 brimittleman 2020-05-09
747e064 brimittleman 2020-05-07
enrichpoint=ggplot(AllDF,aes(x=sets,col=sets,y=Enrichment,label = round(Enrichment,3)))+ geom_bar(stat="identity",color="grey",aes(y=AllDF$Enrichment),width=.01)+geom_point(size=10) + coord_flip() + geom_hline(yintercept = 1) + facet_grid(~Pheno)+scale_color_manual(values=useCOl)+ labs( title="Enrichment for APA phenotype differences in other regulatory phenotypes",x="Set", y="Enrichement")+geom_text(color = "black", size = 3) + theme(legend.position = "none")


enrichpoint

Version Author Date
1c7e237 brimittleman 2020-05-09
747e064 brimittleman 2020-05-07
pvalplot=ggplot(AllDF,aes(x=Pheno, by=sets, y=-log10(Pval),fill=sets)) +geom_bar(stat = "identity",position = "dodge") +geom_hline(yintercept =1.3)+ scale_fill_manual(values=useCOl)+  theme(legend.position = "bottom")

pvalplot

Version Author Date
1c7e237 brimittleman 2020-05-09

plot together:

plot_grid(enrichpoint,pvalplot, nrow=2)

Version Author Date
1c7e237 brimittleman 2020-05-09
747e064 brimittleman 2020-05-07

Plot without protien:

DETEDF= DEdf %>% bind_rows(DTdf)
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
DETEDF$Pval=as.numeric(DETEDF$Pval)
DETEDF$Enrichment=as.numeric(DETEDF$Enrichment)
DETEDF$Pheno=factor(DETEDF$Pheno, levels=c("Expression", "Translation", "Protein"))


enrichpointnoP=ggplot(DETEDF,aes(x=sets,col=sets,y=Enrichment,label = round(Enrichment,3)))+ geom_bar(stat="identity",color="grey",aes(y=DETEDF$Enrichment),width=.01)+geom_point(size=10) + coord_flip() + geom_hline(yintercept = 1) + facet_grid(~Pheno)+scale_color_manual(values=useCOl)+ labs( title="Enrichment for APA phenotype differences in other regulatory phenotypes",x="Set", y="Enrichement")+geom_text(color = "black", size = 3) + theme(legend.position = "none")


enrichpointnoP

Version Author Date
1c7e237 brimittleman 2020-05-09
pvalplotnoP=ggplot(DETEDF,aes(x=Pheno, by=sets, y=-log10(Pval),fill=sets)) +geom_bar(stat = "identity",position = "dodge") +geom_hline(yintercept =1.3)+ scale_fill_manual(values=useCOl)+  theme(legend.position = "bottom")


pvalplotnoP

Version Author Date
1c7e237 brimittleman 2020-05-09
plot_grid(enrichpointnoP,pvalplotnoP, nrow=2)

Version Author Date
1c7e237 brimittleman 2020-05-09

Examples:

Only dIC

dIConly=dAPAandDic %>% filter(OnlyIC=="Yes") 
dIConly_translation=dIConly  %>% inner_join(Ribo, by="gene") %>% filter(dTE =="Yes")
  • CLECL1 chimp uses 2 more often human uses 1 most often

  • GRHPR- human intronic just enough to change the utr ratio

  • hadha- human proximal, chimp 2 UTR

  • IVNS1ABP- chimp 1, human more

  • OGFOD3 - chimp more PAS used (good igv example)

  • ZNF512B human more spread

dIC_both= dAPAandDic %>% filter(Both=="Yes")

Selection sets from Khan

KhanData=read.csv("../data/Khan_prot/Khan_TableS4.csv",stringsAsFactors = F)  %>% select(gene.symbol,contains("model") ) %>% rename("gene"=gene.symbol, "Protein"=model.num.protein, "RNA"=model.num.rna)

KhanData_g=KhanData %>% gather("Set", "Model", -gene)

KhanData_g$Model= as.factor(KhanData_g$Model)

KhanData_g_RNA= KhanData_g %>% filter(Set=="RNA")


KhanData_g_Prot= KhanData_g %>% filter(Set=="Protein")

Join with all of the tested gene.

KhanWithapa=dAPAandDic %>% inner_join(KhanData_g_RNA, by="gene")

Test only APA:

Model=seq(1,6)
EnrichmentRNA_apaOnly=c()
PvalueRNA_apaOnly=c()
for (i in seq(1:6)){
  x=nrow(KhanWithapa %>% filter(OnlyAPA=="Yes", Model==i))
  m=nrow(KhanWithapa %>% filter(Model==i))
  n=nrow(KhanWithapa %>% filter(Model!=i))
  k=nrow(KhanWithapa %>% filter(OnlyAPA=="Yes"))
  N=nrow(KhanWithapa)
  PvalueRNA_apaOnly=c(PvalueRNA_apaOnly, phyper(x-1,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichmentRNA_apaOnly=c(EnrichmentRNA_apaOnly, enrich)
}

EnrichmentRNA_apaOnly
[1] 0.9684754 1.0722756 1.0057708 0.9978981 0.9306543 0.5480519
PvalueRNA_apaOnly
[1] 0.6235229 0.3663835 0.4837124 0.5336991 0.6393254 0.8579106
EnrichmentRNA_ICOnly=c()
PvalueRNA_ICOnly=c()
for (i in seq(1:6)){
  x=nrow(KhanWithapa %>% filter(OnlyIC=="Yes", Model==i))
  m=nrow(KhanWithapa %>% filter(Model==i))
  n=nrow(KhanWithapa %>% filter(Model!=i))
  k=nrow(KhanWithapa %>% filter(OnlyIC=="Yes"))
  N=nrow(KhanWithapa)
  PvalueRNA_ICOnly=c(PvalueRNA_ICOnly, phyper(x-1,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichmentRNA_ICOnly=c(EnrichmentRNA_ICOnly, enrich)
}

EnrichmentRNA_ICOnly
[1] 1.2218555 1.1258893 0.9778327 0.7900026 1.6286449 2.8772727
PvalueRNA_ICOnly
[1] 0.12806690 0.33083203 0.64093810 0.97070244 0.15863924 0.08092906

Both

EnrichmentRNA_both=c()
PvalueRNA_both=c()
for (i in seq(1:6)){
  x=nrow(KhanWithapa %>% filter(Both=="Yes", Model==i))
  m=nrow(KhanWithapa %>% filter(Model==i))
  n=nrow(KhanWithapa %>% filter(Model!=i))
  k=nrow(KhanWithapa %>% filter(Both=="Yes"))
  N=nrow(KhanWithapa)
  PvalueRNA_both=c(PvalueRNA_both, phyper(x-1,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichmentRNA_both=c(EnrichmentRNA_both, enrich)
}

EnrichmentRNA_both
[1] 0.8269255 1.6039159 0.9402736 0.9207978 1.5819068 2.2357616
PvalueRNA_both
[1] 0.84650091 0.01547134 0.78485772 0.75903782 0.20603443 0.22400482

Prot:

KhanPWithapa=dAPAandDic %>% inner_join(KhanData_g_Prot, by="gene")

Only APA

EnrichmentProt_apaOnly=c()
PvalueProp_apaOnly=c()
for (i in seq(1:6)){
  x=nrow(KhanPWithapa %>% filter(OnlyAPA=="Yes", Model==i))
  m=nrow(KhanPWithapa %>% filter(Model==i))
  n=nrow(KhanPWithapa %>% filter(Model!=i))
  k=nrow(KhanPWithapa %>% filter(OnlyAPA=="Yes"))
  N=nrow(KhanPWithapa)
  PvalueProp_apaOnly=c(PvalueProp_apaOnly, phyper(x-1,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichmentProt_apaOnly=c(EnrichmentProt_apaOnly, enrich)
}

EnrichmentProt_apaOnly
[1] 0.9071205 1.3016234 0.9862340 0.9931703 0.0000000 1.2647353
PvalueProp_apaOnly
[1] 0.7049786 0.1332363 0.6250351 0.5639394 1.0000000 0.4816888
EnrichmentProt_ICOnly=c()
PvalueProt_ICOnly=c()
for (i in seq(1:6)){
  x=nrow(KhanPWithapa %>% filter(OnlyIC=="Yes", Model==i))
  m=nrow(KhanPWithapa %>% filter(Model==i))
  n=nrow(KhanPWithapa %>% filter(Model!=i))
  k=nrow(KhanPWithapa %>% filter(OnlyIC=="Yes"))
  N=nrow(KhanPWithapa)
  PvalueProt_ICOnly=c(PvalueProt_ICOnly, phyper(x-1,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichmentProt_ICOnly=c(EnrichmentProt_ICOnly, enrich)
}

EnrichmentProt_ICOnly
[1] 1.3890282 0.7193182 0.9083734 1.0954084 7.1931818 0.0000000
PvalueProt_ICOnly
[1] 0.1268672 0.8539473 0.9098297 0.1667131 0.1342144 1.0000000

Both:

EnrichmentProt_both=c()
PvalueProt_both=c()
for (i in seq(1:6)){
  x=nrow(KhanPWithapa %>% filter(Both=="Yes", Model==i))
  m=nrow(KhanPWithapa %>% filter(Model==i))
  n=nrow(KhanPWithapa %>% filter(Model!=i))
  k=nrow(KhanPWithapa %>% filter(Both=="Yes"))
  N=nrow(KhanPWithapa)
  PvalueProt_both=c(PvalueProt_both, phyper(x-1,m,n,k,lower.tail=F))
  enrich=(x/k)/(m/N)
  EnrichmentProt_both=c(EnrichmentProt_both, enrich)
}

EnrichmentProt_both
[1] 0.9251427 0.6986755 0.9793589 1.0384375 0.0000000 3.8695874
PvalueProt_both
[1] 0.64571093 0.85534760 0.63516140 0.37920820 1.00000000 0.03822681

Significant:

Both RNA: 2 (1.6X, 0.01547134)

mRNA expression level pattern consistent with directional selection along chimpanzee lineage

nrow(KhanWithapa %>% filter(Both=="Yes", Model==2))
[1] 22

6 = evidence of relaxation of constraint along chimpanzee lineage

nrow(KhanPWithapa %>% filter(Both=="Yes", Model==6))
[1] 3

Both Protien: 6 (3.87X, 0.038)

location enrichment:

For the dAPA only and both. where are the PAS contibuting to the relationship. are they enriched among dAPA PAS

want those that are DE genes

dAPAPAS_wLoc=read.table("../data/DiffIso_Nuclear_DF/AllPAS_withGeneSig.txt", header = T, stringsAsFactors = F) %>% inner_join(Meta, by=c("chr","start", "end","gene")) %>% select(PAS, loc, SigPAU2, gene)

DiffExpSig= DiffExp %>% filter(DE=='Yes')
BothAPAgenes= dAPAandDic %>% filter(Both=="Yes") %>% inner_join(DiffExpSig, by="gene")
OnlyAPAgenes=dAPAandDic %>% filter(OnlyAPA=="Yes")%>% inner_join(DiffExpSig, by="gene")

dAPAPAS_wLocAndBoth= dAPAPAS_wLoc %>% filter(SigPAU2=="Yes") %>% mutate(dAPAonly=ifelse(gene %in%OnlyAPAgenes$gene,"Yes","No"), Both=ifelse(gene %in% BothAPAgenes$gene, "Yes", "No"))
enrichdAPAloc=c()
pvaldAPAloc=c()
expectddAPA=c()
pvaldAPAlocDep=c()
actualdAPA=c()
for (i in c("cds", "end", "intron", "utr3", "utr5")){
  x=nrow(dAPAPAS_wLocAndBoth %>% filter(dAPAonly=="Yes", loc==i))
  m=nrow(dAPAPAS_wLocAndBoth %>% filter(loc==i))
  n=nrow(dAPAPAS_wLocAndBoth %>% filter(loc!=i))
  k=nrow(dAPAPAS_wLocAndBoth %>% filter(dAPAonly=="Yes"))
  N=nrow(dAPAPAS_wLocAndBoth)
  actualdAPA=c(actualdAPA, x)
  exp=k*(m/N)
  expectddAPA=c(expectddAPA,exp)
  pvaldAPAloc=c(pvaldAPAloc, phyper(x-1,m,n,k,lower.tail=F))
  pvaldAPAlocDep=c(pvaldAPAlocDep, phyper(x,m,n,k,lower.tail=T))
  enrichval=(x/k)/(m/N)
  enrichdAPAloc=c(enrichdAPAloc, enrichval)
}

loc=c("cds", "end", "intron", "utr3", "utr5")
enrichdAPAloc
[1] 1.1101576 0.5710053 0.9253642 1.0860081 0.6995221
pvaldAPAloc
[1] 0.144559704 0.999924051 0.895180830 0.003461421 0.966377338
enrichdapalocdf=as.data.frame(cbind(loc, Actual=actualdAPA,Expected=expectddAPA, Enrichment=enrichdAPAloc,PvalEn=pvaldAPAloc, PvalDep=pvaldAPAlocDep)) %>% mutate(set="dAPAOnly")
enrichdapalocdf
     loc Actual         Expected        Enrichment              PvalEn
1    cds     77 69.3595217762596  1.11015759665107   0.144559704469824
2    end     26  45.533731853117 0.571005251312828   0.999924050908696
3 intron    134 144.807856532878 0.925364156395589   0.895180830348247
4   utr3    368 338.855678906917  1.08600806451613 0.00346142063512895
5   utr5     15 21.4432109308284 0.699522102747909   0.966377337513707
               PvalDep      set
1    0.886053815761103 dAPAOnly
2 0.000168192607453154 dAPAOnly
3    0.126610345939535 dAPAOnly
4    0.997406075194543 dAPAOnly
5   0.0601740116394651 dAPAOnly
enrichBothloc=c()
pvalBothloc=c()
pvalBothDepletloc=c()
expectBoth=c()
actualBoth=c()
for (i in c("cds", "end", "intron", "utr3", "utr5")){
  x=nrow(dAPAPAS_wLocAndBoth %>% filter(Both=="Yes", loc==i))
  m=nrow(dAPAPAS_wLocAndBoth %>% filter(loc==i))
  n=nrow(dAPAPAS_wLocAndBoth %>% filter(loc!=i))
  k=nrow(dAPAPAS_wLocAndBoth %>% filter(Both=="Yes"))
  N=nrow(dAPAPAS_wLocAndBoth)
  actualBoth=c(actualBoth, x)
  exp=k*(m/N)
  expectBoth=c(expectBoth,exp)
  pvalBothDepletloc=c(pvalBothDepletloc, phyper(x,m,n,k,lower.tail=T))
  pvalBothloc=c(pvalBothloc, phyper(x-1,m,n,k,lower.tail=F))
  enrichval=(x/k)/(m/N)
  enrichBothloc=c(enrichBothloc, enrichval)
}

loc=c("cds", "end", "intron", "utr3", "utr5")
enrichBothloc
[1] 1.2875004 0.3362044 0.6519211 1.1444959 1.5468171
pvalBothloc
[1] 0.061213041 0.999858359 0.999633975 0.005274121 0.070347462
enrichbothlocdf=as.data.frame(cbind(loc,Actual=actualBoth,Expected=expectBoth, Enrichment=enrichBothloc,PvalEn=pvalBothloc,PvalDep=pvalBothDepletloc))%>% mutate(set="Both")
enrichbothlocdf
     loc Actual         Expected        Enrichment              PvalEn
1    cds     35 27.1844577284372  1.28750039267427  0.0612130405890235
2    end      6 17.8462852263023 0.336204421475739   0.999858358871073
3 intron     37 56.7553373185312 0.651921065896284   0.999633975420797
4   utr3    152 132.809564474808  1.14449588477366 0.00527412051670923
5   utr5     13 8.40435525192144  1.54681705024641  0.0703474621902344
               PvalDep  set
1    0.959605041842023 Both
2 0.000516899738502834 Both
3 0.000683333042635172 Both
4    0.996485012447578 Both
5     0.96410046531306 Both

Join both and plot:

deLocALl=enrichdapalocdf %>% bind_rows(enrichbothlocdf)
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
deLocALl
      loc Actual         Expected        Enrichment              PvalEn
1     cds     77 69.3595217762596  1.11015759665107   0.144559704469824
2     end     26  45.533731853117 0.571005251312828   0.999924050908696
3  intron    134 144.807856532878 0.925364156395589   0.895180830348247
4    utr3    368 338.855678906917  1.08600806451613 0.00346142063512895
5    utr5     15 21.4432109308284 0.699522102747909   0.966377337513707
6     cds     35 27.1844577284372  1.28750039267427  0.0612130405890235
7     end      6 17.8462852263023 0.336204421475739   0.999858358871073
8  intron     37 56.7553373185312 0.651921065896284   0.999633975420797
9    utr3    152 132.809564474808  1.14449588477366 0.00527412051670923
10   utr5     13 8.40435525192144  1.54681705024641  0.0703474621902344
                PvalDep      set
1     0.886053815761103 dAPAOnly
2  0.000168192607453154 dAPAOnly
3     0.126610345939535 dAPAOnly
4     0.997406075194543 dAPAOnly
5    0.0601740116394651 dAPAOnly
6     0.959605041842023     Both
7  0.000516899738502834     Both
8  0.000683333042635172     Both
9     0.996485012447578     Both
10     0.96410046531306     Both
#ggplot(ResDFfix_both,aes(x=set,group=type,col=set,y=Enrich))+ geom_bar(stat="identity",col="grey",alpha=.3,width=.01)+geom_point(size=10) + coord_flip()+ geom_hline(yintercept = 1) +scale_color_brewer(palette="RdYlBu")+geom_text(col="black",aes(label = round(Enrich,2)))+ facet_grid(~type)+labs(x="Dominance Cutoff", y="Enrichment",title="Enrichment for DE by Domianance") + theme(legend.position = "none")
deLocALl$Enrichment=as.numeric(deLocALl$Enrichment)
ggplot(deLocALl, aes(x=loc, col=loc, y=Enrichment)) + geom_bar(stat="identity",col="grey",alpha=.3,width=.01)+geom_point(size=10) + coord_flip()+ geom_hline(yintercept = 1) +scale_color_brewer(palette="RdYlBu")+geom_text(col="black",aes(label = round(Enrichment,2)))+ facet_grid(~set)

Check any dAPA:

dAPAPAS_wLocAndBoth_either =dAPAPAS_wLocAndBoth %>% mutate(anydAPA=ifelse(Both=="Yes" | dAPAonly=="Yes", "Yes","No"))
enrichEither=c()
pvalEither=c()
pvalEitherDep=c()
expectEither=c()
actualEither=c()
for (i in c("cds", "end", "intron", "utr3", "utr5")){
  x=nrow(dAPAPAS_wLocAndBoth_either %>% filter(anydAPA=="Yes", loc==i))
  m=nrow(dAPAPAS_wLocAndBoth_either %>% filter(loc==i))
  n=nrow(dAPAPAS_wLocAndBoth_either %>% filter(loc!=i))
  k=nrow(dAPAPAS_wLocAndBoth_either %>% filter(anydAPA=="Yes"))
  N=nrow(dAPAPAS_wLocAndBoth_either)
  actualEither=c(actualEither, x)
  exp=k*(m/N)
  expectEither=c(expectEither,exp)
  pvalEitherDep=c(pvalEitherDep, phyper(x,m,n,k,lower.tail=T))
  pvalEither=c(pvalEither, phyper(x-1,m,n,k,lower.tail=F))
  enrichval=(x/k)/(m/N)
  enrichEither=c(enrichEither, enrichval)
}

loc=c("cds", "end", "intron", "utr3", "utr5")


enrichEitherDf=as.data.frame(cbind(loc,Actual=actualEither,Expected=expectEither, Enrichment=enrichEither,PvalEn=pvalEither,PvalDep=pvalEitherDep))%>% mutate(set="Both", Location=c("Coding", "End", "intronic","3'UTR", "5'UTR"))
enrichEitherDf
     loc Actual         Expected        Enrichment               PvalEn
1    cds    112 96.5439795046968  1.16009305370048   0.0216944727729284
2    end     32 63.3800170794193 0.504890996793231    0.999999980216832
3 intron    171 201.563193851409 0.848369172628114    0.999236414270241
4   utr3    520 471.665243381725  1.10247682502897 1.85595444296267e-05
5   utr5     28 29.8475661827498 0.938099938486188     0.70650097845013
               PvalDep  set Location
1    0.984367879949983 Both   Coding
2 5.53449882399961e-08 Both      End
3  0.00108331305417675 Both intronic
4    0.999987300694221 Both    3'UTR
5    0.379451460165918 Both    5'UTR

Plot:

enrichEitherDf$Enrichment=as.numeric(as.character(enrichEitherDf$Enrichment))
ggplot(enrichEitherDf, aes(x=Location, col=Location, y=Enrichment)) + geom_bar(stat="identity",col="grey",alpha=.3,width=.01)+geom_point(size=10) + coord_flip()+ geom_hline(yintercept = 1) +scale_color_brewer(palette="RdYlBu")+geom_text(col="black",aes(label = round(Enrichment,2))) + theme(legend.position = "none") +labs(title="Genic location enrichment for dAPA PAS in DE genes")

Barplot:

ggplot(enrichEitherDf, aes(x=Location, fill=Location, y=Enrichment)) + geom_bar(stat="identity") +scale_fill_brewer(palette="RdYlBu") + geom_hline(yintercept = 1)+geom_text(col="black",aes(label = round(Enrichment,2), vjust=2)) + theme(legend.position = "none") +labs(title="Genic location enrichment for dAPA PAS in DE genes")

Either dIC and TE:

RiboSmallSig= RiboSmall %>% filter(dTE=='Yes')
BothgeneTE= dAPAandDic %>% filter(Both=="Yes") %>% inner_join(RiboSmallSig, by="gene")
OnlyICgenes=dAPAandDic %>% filter(OnlyIC=="Yes")%>% inner_join(RiboSmallSig, by="gene")

dAPAPAS_wLocAndBothTE= dAPAPAS_wLoc %>% filter(SigPAU2=="Yes") %>% mutate(dIConly=ifelse(gene %in% OnlyICgenes$gene,"Yes","No"), Both=ifelse(gene %in% BothgeneTE$gene, "Yes", "No"))%>% mutate(anydIC=ifelse(Both=="Yes" | dIConly=="Yes", "Yes","No"))
enrichEitherTE=c()
pvalEitherTE=c()
pvalEitherDepTE=c()
expectEitherTE=c()
actualEitherTE=c()
for (i in c("cds", "end", "intron", "utr3", "utr5")){
  x=nrow(dAPAPAS_wLocAndBothTE %>% filter(anydIC=="Yes", loc==i))
  m=nrow(dAPAPAS_wLocAndBothTE %>% filter(loc==i))
  n=nrow(dAPAPAS_wLocAndBothTE %>% filter(loc!=i))
  k=nrow(dAPAPAS_wLocAndBothTE %>% filter(anydIC=="Yes"))
  N=nrow(dAPAPAS_wLocAndBothTE)
  actualEitherTE=c(actualEitherTE, x)
  exp=k*(m/N)
  expectEitherTE=c(expectEitherTE,exp)
  pvalEitherDepTE=c(pvalEitherDepTE, phyper(x,m,n,k,lower.tail=T))
  pvalEitherTE=c(pvalEitherTE, phyper(x-1,m,n,k,lower.tail=F))
  enrichval=(x/k)/(m/N)
  enrichEitherTE=c(enrichEitherTE, enrichval)
}

loc=c("cds", "end", "intron", "utr3", "utr5")


enrichEitherDfTE=as.data.frame(cbind(loc,Actual=actualEitherTE,Expected=expectEitherTE, Enrichment=enrichEitherTE,PvalEn=pvalEitherTE,PvalDep=pvalEitherDepTE))%>% mutate(set="Both", Location=c("Coding", "End", "intronic","3'UTR", "5'UTR"))
enrichEitherDfTE
     loc Actual         Expected        Enrichment              PvalEn
1    cds     18 14.8787361229718  1.20978017562991   0.224435998901782
2    end      4 9.76771989752348 0.409512152474209   0.991339820772879
3 intron     21 31.0636208368915 0.676031944578081   0.989569116664339
4   utr3     87 72.6900085397097   1.1968632518797 0.00625939079480355
5   utr5      3  4.5999146029035 0.652186020607073    0.85008031316646
             PvalDep  set Location
1  0.847506438642276 Both   Coding
2 0.0261976848806088 Both      End
3 0.0187659660554926 Both intronic
4  0.996328710378025 Both    3'UTR
5  0.313553277553297 Both    5'UTR
enrichEitherDfTE$Enrichment=as.numeric(as.character(enrichEitherDfTE$Enrichment))
ggplot(enrichEitherDfTE, aes(x=Location, fill=Location, y=Enrichment)) + geom_bar(stat="identity") +scale_fill_brewer(palette="RdYlBu") + geom_hline(yintercept = 1)+geom_text(col="black",aes(label = round(Enrichment,2), vjust=2)) + theme(legend.position = "none") +labs(title="Genic location enrichment for dAPA PAS in dT genes")


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] cowplot_0.9.4       forcats_0.3.0       stringr_1.3.1      
 [4] dplyr_0.8.0.1       purrr_0.3.2         readr_1.3.1        
 [7] tidyr_0.8.3         tibble_2.1.1        ggplot2_3.1.1      
[10] tidyverse_1.2.1     VennDiagram_1.6.20  futile.logger_1.4.3
[13] UpSetR_1.3.3        workflowr_1.6.0    

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5     reshape2_1.4.3       haven_1.1.2         
 [4] lattice_0.20-38      colorspace_1.3-2     generics_0.0.2      
 [7] htmltools_0.3.6      yaml_2.2.0           rlang_0.4.0         
[10] later_0.7.5          pillar_1.3.1         withr_2.1.2         
[13] glue_1.3.0           RColorBrewer_1.1-2   lambda.r_1.2.3      
[16] modelr_0.1.2         readxl_1.1.0         plyr_1.8.4          
[19] cellranger_1.1.0     munsell_0.5.0        gtable_0.2.0        
[22] rvest_0.3.2          evaluate_0.12        labeling_0.3        
[25] knitr_1.20           httpuv_1.4.5         broom_0.5.1         
[28] Rcpp_1.0.4.6         promises_1.0.1       scales_1.0.0        
[31] backports_1.1.2      formatR_1.5          jsonlite_1.6        
[34] fs_1.3.1             gridExtra_2.3        hms_0.4.2           
[37] digest_0.6.18        stringi_1.2.4        rprojroot_1.3-2     
[40] cli_1.1.0            tools_3.5.1          magrittr_1.5        
[43] lazyeval_0.2.1       futile.options_1.0.1 crayon_1.3.4        
[46] whisker_0.3-2        pkgconfig_2.0.2      xml2_1.2.0          
[49] lubridate_1.7.4      rstudioapi_0.10      assertthat_0.2.0    
[52] rmarkdown_1.10       httr_1.3.1           R6_2.3.0            
[55] nlme_3.1-137         git2r_0.26.1         compiler_3.5.1