• All PAS
  • MultiMap
  • distance to next annotated ortho exon boundry
    • Proportion of intron

Last updated: 2020-03-31

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/TrialFiltersMeta.txt.sb-9845453e-R58Y0Q/
    Ignored:    data/mediation_prot/
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/DiffUsedUTR.Rmd
    Untracked:  analysis/GvizPlots.Rmd
    Untracked:  analysis/HandC.TvN
    Untracked:  analysis/PhenotypeOverlap10.Rmd
    Untracked:  analysis/annotationBias.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  analysis/pol2.Rmd
    Untracked:  code/._BothFCMM.sh
    Untracked:  code/._BothFCMMPrim.sh
    Untracked:  code/._BothFCnewOInclusive.sh
    Untracked:  code/._ChimpStarMM2.sh
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._ClosestorthoEx.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._Filter255MM.sh
    Untracked:  code/._FilterPrimSec.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._FindIntronForDomPAS_DF.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._MismatchNumbers.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PAS_ATTAAA_df.sh
    Untracked:  code/._PAS_seqExpanded.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._PASsequences_DF.sh
    Untracked:  code/._PlotNuclearUsagebySpecies.R
    Untracked:  code/._PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._RNATranscriptDTplot.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._RunNegMCMediation.sh
    Untracked:  code/._RunNegMCMediationDF.sh
    Untracked:  code/._RunPosMCMediationDF.err
    Untracked:  code/._RunPosMCMediationDF.sh
    Untracked:  code/._SAF2Bed.py
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._StarMM2.sh
    Untracked:  code/._TestFC.sh
    Untracked:  code/._assignPeak2Intronicregion
    Untracked:  code/._assignPeak2Intronicregion.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2Bedbothstrand.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._chimpMultiCov.sh
    Untracked:  code/._chimpMultiCov255.sh
    Untracked:  code/._chimpMultiCovInclusive.sh
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._extractPhyloReg.py
    Untracked:  code/._extractPhyloRegGene.py
    Untracked:  code/._extractPhylopGeneral.ph
    Untracked:  code/._extractPhylopGeneral.py
    Untracked:  code/._extractPhylopReg200down.py
    Untracked:  code/._extractPhylopReg200up.py
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._filterPrimaryread.py
    Untracked:  code/._filterSecondaryread.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixFCheadforExp.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._humanMultiCov.sh
    Untracked:  code/._humanMultiCov255.sh
    Untracked:  code/._humanMultiCov_inclusive.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeNuclearDapaplots.sh
    Untracked:  code/._makeNuclearDapaplots_DF.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mediation_test.R
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergeandBWRNAseq.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._negativeMediation_montecarlo.R
    Untracked:  code/._negativeMediation_montecarloDF.R
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapMMandOrthoexon.sh
    Untracked:  code/._overlapPASandOrthoexon.sh
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._parseHg38.py
    Untracked:  code/._postiveMediation_montecarlo_DF.R
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantLiftedPASPrimary.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDiffIso_DF.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._spliceSite2Fasta.py
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._threeprimeOrthoFC.sh
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/BothFCMM.err
    Untracked:  code/BothFCMM.out
    Untracked:  code/BothFCMM.sh
    Untracked:  code/BothFCMMPrim.err
    Untracked:  code/BothFCMMPrim.out
    Untracked:  code/BothFCMMPrim.sh
    Untracked:  code/BothFCnewOInclusive.sh
    Untracked:  code/BothFCnewOInclusive.sh.err
    Untracked:  code/BothFCnewOInclusive.sh.out
    Untracked:  code/ChimpStarMM2.err
    Untracked:  code/ChimpStarMM2.out
    Untracked:  code/ChimpStarMM2.sh
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/ClosestorthoEx.err
    Untracked:  code/ClosestorthoEx.out
    Untracked:  code/ClosestorthoEx.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/Filter255.err
    Untracked:  code/Filter255.out
    Untracked:  code/Filter255MM.sh
    Untracked:  code/FilterPrimSec.err
    Untracked:  code/FilterPrimSec.out
    Untracked:  code/FilterPrimSec.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/FindIntronForDomPAS_DF.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/IntersectMMandOrtho.err
    Untracked:  code/IntersectMMandOrtho.out
    Untracked:  code/IntersectPASandOrtho.err
    Untracked:  code/IntersectPASandOrtho.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MaxEntCode/
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/MismatchNumbers.err
    Untracked:  code/MismatchNumbers.out
    Untracked:  code/MismatchNumbers.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_ATTAAADF.err
    Untracked:  code/PAS_ATTAAADF.out
    Untracked:  code/PAS_ATTAAA_df.sh
    Untracked:  code/PAS_seqExpanded.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PAS_sequenceDF.err
    Untracked:  code/PAS_sequenceDF.out
    Untracked:  code/PASexpanded_sequenceDF.err
    Untracked:  code/PASexpanded_sequenceDF.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/PASsequences_DF.sh
    Untracked:  code/PlotNuclearUsagebySpecies.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/RNATranscriptDTplot.err
    Untracked:  code/RNATranscriptDTplot.out
    Untracked:  code/RNATranscriptDTplot.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/RunNegMCMediation.err
    Untracked:  code/RunNegMCMediation.sh
    Untracked:  code/RunNegMCMediationDF.err
    Untracked:  code/RunNegMCMediationDF.out
    Untracked:  code/RunNegMCMediationDF.sh
    Untracked:  code/RunNegMCMediationr.out
    Untracked:  code/RunPosMCMediation.err
    Untracked:  code/RunPosMCMediation.sh
    Untracked:  code/RunPosMCMediationDF.err
    Untracked:  code/RunPosMCMediationDF.out
    Untracked:  code/RunPosMCMediationDF.sh
    Untracked:  code/RunPosMCMediationr.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/SAF2Bed.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/StarMM2.err
    Untracked:  code/StarMM2.out
    Untracked:  code/StarMM2.sh
    Untracked:  code/TestFC.err
    Untracked:  code/TestFC.out
    Untracked:  code/TestFC.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignPeak2Intronicregion.sh
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2Bedbothstrand.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chimpMultiCov.err
    Untracked:  code/chimpMultiCov.out
    Untracked:  code/chimpMultiCov.sh
    Untracked:  code/chimpMultiCov255.sh
    Untracked:  code/chimpMultiCovInclusive.err
    Untracked:  code/chimpMultiCovInclusive.out
    Untracked:  code/chimpMultiCovInclusive.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chooseSignalSite.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/extractPhyloReg.py
    Untracked:  code/extractPhyloRegGene.py
    Untracked:  code/extractPhylopGeneral.py
    Untracked:  code/extractPhylopReg200down.py
    Untracked:  code/extractPhylopReg200up.py
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterPrimaryread.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSecondaryread.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFCheadforExp.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/humanMultiCov.err
    Untracked:  code/humanMultiCov.out
    Untracked:  code/humanMultiCov.sh
    Untracked:  code/humanMultiCov255.err
    Untracked:  code/humanMultiCov255.out
    Untracked:  code/humanMultiCov255.sh
    Untracked:  code/humanMultiCovInclusive.err
    Untracked:  code/humanMultiCovInclusive.out
    Untracked:  code/humanMultiCov_inclusive.sh
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectAnnoExt.err
    Untracked:  code/intersectAnnoExt.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeFileID.py
    Untracked:  code/makeNuclearDapaplots.sh
    Untracked:  code/makeNuclearDapaplots_DF.sh
    Untracked:  code/makeNuclearPlots.err
    Untracked:  code/makeNuclearPlots.out
    Untracked:  code/makeNuclearPlotsDF.err
    Untracked:  code/makeNuclearPlotsDF.out
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mediation_test.R
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandBWRNAseq.sh
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/mergedbamRNAand2bw.err
    Untracked:  code/mergedbamRNAand2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/negativeMediation_montecarlo.R
    Untracked:  code/negativeMediation_montecarloDF.R
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapMMandOrthoexon.sh
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapPASandOrthoexon.sh
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/overlapapaQTLPAS_extended.sh
    Untracked:  code/overlapapaQTLPAS_samples.sh
    Untracked:  code/parseHg38.py
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/postiveMediation_montecarlo.R
    Untracked:  code/postiveMediation_montecarlo_DF.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quantLiftedPASPrimary.err
    Untracked:  code/quantLiftedPASPrimary.out
    Untracked:  code/quantLiftedPASPrimary.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runChimpDiffIsoDF.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runHumanDiffIsoDF.sh
    Untracked:  code/runNuclearDiffIso_DF.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_dF.err
    Untracked:  code/run_Humanleafcutter_dF.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_dsDF.err
    Untracked:  code/run_Nuclearleafcutter_dsDF.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/spliceSite2Fasta.py
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/test.txt
    Untracked:  code/threeprimeOrthoFC.out
    Untracked:  code/threeprimeOrthoFC.sh
    Untracked:  code/threeprimeOrthoFCcd.err
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._TrialFiltersMeta.txt
    Untracked:  data/._TrialFiltersMeta.txt.sb-9845453e-R58Y0Q
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel.xlsx
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/BaseComp/
    Untracked:  data/CleanLiftedPeaks_FC_primary/
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DNDS/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Nuclear_DF/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DominantPAS/
    Untracked:  data/DominantPAS_DF/
    Untracked:  data/EvalPantro5/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NormalizedClusters/
    Untracked:  data/NuclearHvC/
    Untracked:  data/NuclearHvC_DF/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/OrthoExonBed/
    Untracked:  data/OverlapBenchmark/
    Untracked:  data/OverlappingPAS/
    Untracked:  data/PAS/
    Untracked:  data/PAS_SAF/
    Untracked:  data/PAS_doubleFilter/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_DF_nuclear/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_nuclear_old/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/PhyloP/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/SignalSites_doublefilter/
    Untracked:  data/SpliceSite/
    Untracked:  data/TestAnnoBiasOE/
    Untracked:  data/TestMM2/
    Untracked:  data/TestMM2_PrimaryRead/
    Untracked:  data/TestMM2_SeondaryRead/
    Untracked:  data/TestMM2_mismatch/
    Untracked:  data/TestMM2_quality/
    Untracked:  data/Test_FC_methods/
    Untracked:  data/Threeprime2Ortho/
    Untracked:  data/TotalHvC/
    Untracked:  data/TrialFiltersMeta.txt
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/apaQTLGenes/
    Untracked:  data/bioGRID/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/files4viz_nuclear/
    Untracked:  data/files4viz_nuclear_DF/
    Untracked:  data/gviz/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/mediation/
    Untracked:  data/mediation_DF/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/multimap/
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/testQuant/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/._.DS_Store
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd
    Untracked:  proteinModelSet.Rmd

Unstaged changes:
    Modified:   analysis/DiffUsedIntronic.Rmd
    Modified:   analysis/ExploredAPA.Rmd
    Modified:   analysis/ExploredAPA_DF.Rmd
    Modified:   analysis/MMExpreiment.Rmd
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/SpliceSiteStrength.Rmd
    Modified:   analysis/TotalVNuclearBothSpecies.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/changeMisprimcut.Rmd
    Modified:   analysis/comp2apaQTLPAS.Rmd
    Modified:   analysis/correlationPhenos.Rmd
    Modified:   analysis/dAPAandapaQTL_DF.Rmd
    Modified:   analysis/establishCutoffs.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/speciesSpecific.Rmd
    Modified:   analysis/upsetter_DF.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 721b56f brimittleman 2020-03-31 add prop
html 4d772b1 brimittleman 2020-03-31 Build site.
Rmd 8280da5 brimittleman 2020-03-31 add distance plots
html 1274a02 brimittleman 2020-03-30 Build site.
html 469010e brimittleman 2020-03-30 Build site.
Rmd ef52dfc brimittleman 2020-03-30 add all overlap orthoexon
html 3d4dd47 brimittleman 2020-03-27 Build site.
Rmd f92b89c brimittleman 2020-03-26 add ortho exon and new mm

library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ───────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()

I am still concerned about annotation. I want to see if using the ortho exon file as an annotation tool would be more appropriate. I want to look at it and see if there is a way to combine exons by gene and see if the spaces inbetween could be introns.

First look at the human one.

HumanOrtho=read.table("/project2/gilad/kenneth/OrthoExonPartialMapping/human.noM.gtf", sep="\t")

Parse this into a bed file with a python script.

mkdir ../data/OrthoExonBed
python SAF2Bed.py /project2/gilad/kenneth/OrthoExonPartialMapping/human.noM.gtf ../data/OrthoExonBed/human.noM.bed

sort -k1,1 -k2,2n ../data/OrthoExonBed/human.noM.bed > ../data/OrthoExonBed/human.noM.sort.bed 

All PAS

sbatch overlapPASandOrthoexon.sh 

Results:

PASMeta=read.table("../data/PAS_doubleFilter/PAS_10perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt",header = T,stringsAsFactors = F) %>% select(PAS, gene,loc)
OverlapPAS=read.table("../data/OrthoExonBed/allPASinOrtho.bed", col.names = c("chr", "start", "end", "PAS", "score", "strand"),stringsAsFactors = F)%>% group_by(PAS) %>% summarize(n=n())%>%  mutate(OE="In") %>% inner_join(PASMeta,by="PAS")
nrow(OverlapPAS)
[1] 25621
NotOverlapPAS=read.table("../data/OrthoExonBed/allPAS_NOT_inOrtho.bed", col.names = c("chr", "start", "end", "PAS", "score", "strand"),stringsAsFactors = F)%>% group_by(PAS) %>% summarize(n=n())%>%  mutate(OE="OUT") %>% inner_join(PASMeta,by="PAS")
nrow(NotOverlapPAS)
[1] 16697
ALLPAS_ortho=OverlapPAS %>% bind_rows(NotOverlapPAS)

ggplot(ALLPAS_ortho, aes(x=OE, by=loc,fill=loc)) +geom_bar(stat="count",position = "dodge") + labs(x="Is PAS overlapping ortho exon", title="All PAS in OrthoExon",y="Number of PAS")+ scale_fill_brewer(palette = "Dark2")

Version Author Date
469010e brimittleman 2020-03-30

Ok this is the expected distribution, We expect the coding and 3’ UTRs to be in the ortho exon file. What is more interesting is genes with and without exons in the ortho exon.

Take this to the gene level.

OrthoBed=read.table("../data/OrthoExonBed/human.noM.sort.bed", col.names = c("chr","start","end","gene", "nExon","strand"),stringsAsFactors = F) %>% group_by(gene) %>% summarise(nExon=n())

Now I look to see which of the PAS are in genes not in the ortho exon.

PASMeta_GeneOE= PASMeta %>% mutate(OE=ifelse(gene %in% OrthoBed$gene, "Yes", "No"))

PASMeta_GeneOEgene= PASMeta_GeneOE %>% group_by(gene, OE) %>% summarise()

ggplot(PASMeta_GeneOEgene, aes(x=OE, fill=OE))+ geom_histogram(stat="count") + labs(x="Is gene in Ortho Exon", y="Genes") + scale_fill_brewer(palette = "Dark2")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
469010e brimittleman 2020-03-30

Look at the genes without:

PASMeta_GeneOE_NO= PASMeta_GeneOE %>% filter(OE=="No")
nrow(PASMeta_GeneOE_NO)
[1] 5293
ggplot(PASMeta_GeneOE_NO,aes(x=loc, fill=OE)) + geom_bar(stat="count")

Version Author Date
469010e brimittleman 2020-03-30
3d4dd47 brimittleman 2020-03-27
Genesnotin=PASMeta_GeneOE_NO %>% group_by(gene) %>% summarise(n=n())

1000 genes not in ortho exons.

#sno
Genesnotin %>% filter(grepl("SNO",gene)) %>% nrow()
[1] 112
#linc
Genesnotin %>% filter(grepl("LINC",gene)) %>% nrow()
[1] 63
#loc
Genesnotin %>% filter(grepl("LOC",gene)) %>% nrow()
[1] 327

Are these the genes with different dominant PAS.

allPAS= read.table("../data/PAS_doubleFilter/PAS_10perc_either_HumanCoord_BothUsage_meta_doubleFilter.txt", header = T) 
ChimpPASwMean =allPAS %>% dplyr::select(-Human)
HumanPASwMean =allPAS %>% dplyr::select(-Chimp)

Chimp_Dom= ChimpPASwMean %>%
  group_by(gene) %>%
  top_n(1,Chimp) %>% 
  mutate(nPer=n()) %>% 
  filter(nPer==1) %>% 
  dplyr::select(gene,loc,PAS,Chimp) %>% 
  rename(ChimpLoc=loc, ChimpPAS=PAS)

Human_Dom= HumanPASwMean %>% 
  group_by(gene) %>% 
  top_n(1, Human) %>% 
  mutate(nPer=n()) %>% 
  filter(nPer==1) %>% 
  dplyr::select(gene,loc,PAS,Human) %>% 
  rename(HumanLoc=loc, HumanPAS=PAS)


#merge

BothDom= Chimp_Dom %>% inner_join(Human_Dom,by="gene")
DifDom= BothDom %>% filter(ChimpPAS!=HumanPAS)

Plot this before I remove those genes.

DifDom_before=DifDom %>% select(gene, ChimpLoc, HumanLoc) %>% gather("species","loc",-gene)

ggplot(DifDom_before, aes(x=loc, by=species, fill=species))+geom_histogram(position = "dodge",stat = "count")+ labs(title="Location of PAS with different Dominant",y="PAS")+scale_fill_brewer(palette = "Dark2")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
469010e brimittleman 2020-03-30

Remove the not ortho genes:

DifDom_after=DifDom_before %>% anti_join(Genesnotin,by="gene")
Warning: Column `gene` joining factor and character vector, coercing into
character vector
ggplot(DifDom_after, aes(x=loc, by=species, fill=species))+geom_histogram(position = "dodge",stat = "count")+ labs(title="Location of PAS with different Dominant\n after removing genes not in orthoexon",y="PAS")+scale_fill_brewer(palette = "Dark2")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
469010e brimittleman 2020-03-30

That didnt help.

Check the matching ones (are these in ortho exon)

SameDom= BothDom %>% filter(ChimpPAS==HumanPAS)
nrow(SameDom)
[1] 7638
SameDom_after=SameDom %>% anti_join(Genesnotin,by="gene")
Warning: Column `gene` joining factor and character vector, coercing into
character vector
nrow(SameDom_after)
[1] 6906

Where did I lose genes.

6906/7638
[1] 0.9041634
3432/4028
[1] 0.8520357

Lose more in the different dominant than in the same dominant. Percent lost=

(7638-6906)/7638
[1] 0.09583661
(4028-3432)/4028
[1] 0.1479643

MultiMap

I will check if some of the problem genes, I found in my pipeline are in this.

ChimpMM=read.table("../data/multimap/Chimp_Uniq_multimapPAS.txt", stringsAsFactors = F, header = T)
HumanMM=read.table("../data/multimap/Human_Uniq_multimapPAS.txt", stringsAsFactors = F, header = T)
BothMM=read.table("../data/multimap/Both_multimapPAS.txt",stringsAsFactors = F, header = T)


AllMM=ChimpMM %>% bind_rows(HumanMM) %>% bind_rows(BothMM)

I will overlap this with the ortho exon file. I will look at those that overlap and those that do not. I need a bed file

AllMM_bed=AllMM %>% mutate(Name=paste(gene, PAS,loc, MultiMap, sep=":")) %>% select(chr, start,end, Name, Human, strandFix)

write.table(AllMM_bed,"../data/multimap/allMM.bed",col.names = F, quote = F, row.names = F, sep="\t")
sort -k1,1 -k2,2n ../data/multimap/allMM.bed > ../data/multimap/allMM.sort.bed

Overlap.

sbatch overlapMMandOrthoexon.sh 

Results:

InOrtho=read.table("../data/OrthoExonBed/allMMinOrtho.bed", col.names = c("chr", "start", "end", "name", "score", "strand")) %>% group_by(name) %>% summarize(n=n())%>% separate(name, into=c("gene", "PAS","loc", "MM"),sep=":") %>% mutate(OE="In")
NotInOrtho=read.table("../data/OrthoExonBed/allMM_NOT_inOrtho.bed", col.names = c("chr", "start", "end", "name", "score", "strand")) %>% group_by(name) %>% summarize(n=n()) %>% separate(name, into=c("gene", "PAS","loc", "MM"),sep=":")  %>% mutate(OE="Out")

AllOrthores=InOrtho %>% bind_rows(NotInOrtho)

ggplot(AllOrthores, aes(x=OE, by=loc,fill=loc)) +geom_bar(stat="count",position = "dodge") + labs(x="Is PAS overlapping ortho exon", title="PAS impacted by multimapping and ortho exon",y="Number of PAS")+ scale_fill_brewer(palette = "Dark2")

Version Author Date
469010e brimittleman 2020-03-30

Proportion:

AllOrthores %>% group_by(OE) %>% summarise(n=n())
# A tibble: 2 x 2
  OE        n
  <chr> <int>
1 In      831
2 Out     578
#look only at utr  

AllOrthores %>% filter(loc=="utr3") %>% group_by(OE) %>% summarise(n=n())
# A tibble: 2 x 2
  OE        n
  <chr> <int>
1 In      492
2 Out     120

Look at the UTR sequences that are in:

AllOrthores %>% filter(OE=="In", loc=="utr3")
# A tibble: 492 x 6
   gene    PAS         loc   MM        n OE   
   <chr>   <chr>       <chr> <chr> <int> <chr>
 1 AARS2   human285010 utr3  Human     2 In   
 2 ABCB10  human30678  utr3  Both      2 In   
 3 ABHD17A human153108 utr3  Both      8 In   
 4 ABR     chimp125493 utr3  Human    10 In   
 5 ACAD8   chimp63259  utr3  Chimp     6 In   
 6 ACAD8   human66039  utr3  Chimp     6 In   
 7 ACTB    human299134 utr3  Both      7 In   
 8 ADAM9   chimp303728 utr3  Human     8 In   
 9 ADAM9   chimp303729 utr3  Human     8 In   
10 ADH5    human247010 utr3  Chimp     2 In   
# … with 482 more rows

distance to next annotated ortho exon boundry

I can look at the intronic PAS in both species to see how far they are from an ortho exon.

I need to merge exons.

sort -k1,1 -k2,2n ../data/OrthoExonBed/chimp.noM.bed >  ../data/OrthoExonBed/chimp.noM.sort.bed 
bedtools merge -s -c 4,5,6 -o distinct,count,distinct  -i  ../data/OrthoExonBed/chimp.noM.sort.bed >  ../data/OrthoExonBed/chimp.noM.sort.merged.bed 
bedtools merge -s -c 4,5,6 -o distinct,count,distinct  -i  ../data/OrthoExonBed/human.noM.sort.bed >  ../data/OrthoExonBed/human.noM.sort.merged.bed 

mkdir ../data/TestAnnoBiasOE

Now I can map all of the intronic PAS

For intronic PAS in genes in the ortho exon, filter the bed files

PASMeta_GeneOE_intronYes= PASMeta_GeneOE %>% filter(loc=="intron", OE=="Yes")

HumanBed=read.table("../data/PAS_doubleFilter/PAS_doublefilter_either_HumanCoordHummanUsage.sort.bed", col.names = c("chr", 'start','end','PAS','usage','strand'),stringsAsFactors = F) %>% semi_join(PASMeta_GeneOE_intronYes, by="PAS")

write.table(HumanBed, "../data/TestAnnoBiasOE/HumanIntronicGeneinOE.bed",col.names = F, row.names = F, quote = F, sep="\t")

ChimpBed=read.table("../data/PAS_doubleFilter/PAS_doublefilter_either_ChimpCoordChimpUsage.sort.bed", col.names = c("chr", 'start','end','PAS','usage','strand'),stringsAsFactors = F) %>% semi_join(PASMeta_GeneOE_intronYes, by="PAS")

write.table(ChimpBed, "../data/TestAnnoBiasOE/ChimpIntronicGeneinOE.bed",col.names = F, row.names = F, quote = F, sep="\t")

Find the closest:

same strand. look only upstream (-id) to say closest annotated 5’ splice site. then do only downstream to say closest annotated 3’ splice site.

sbatch ClosestorthoEx.sh

Look at upstream

If the gene is a different gene, make it 0

HumanUpstream=read.table("../data/TestAnnoBiasOE/HumanUpstream.intronic.txt",stringsAsFactors = F, col.names = c("chrPAS", "startPAS", "endPAS", "PAS", "HumanUsage", "strandPAS", "chrExon","startExon","endExon", "Orthogene", "n","strandIntron", "UpstreamdistancePAS2Exon")) %>% inner_join(PASMeta,by="PAS") %>% mutate(Fixed=ifelse(gene==Orthogene, UpstreamdistancePAS2Exon,0))
HumanDownstream=read.table("../data/TestAnnoBiasOE/HumanDownstream.intronic.txt",stringsAsFactors = F, col.names = c("chrPAS", "startPAS", "endPAS", "PAS", "HumanUsage", "strandPAS", "chrExon","startExon","endExon", "Orthogene", "n","strandIntron", "DownstreamdistancePAS2Exon")) %>% inner_join(PASMeta,by="PAS") %>% mutate(Fixed=ifelse(gene==Orthogene, DownstreamdistancePAS2Exon,0))



HumanBoth=as.data.frame(cbind(HumanUpstream[,1:6],gene=HumanUpstream[,14], "UpstreamHuman"=HumanUpstream[,16],"DownstreamHuman"=HumanDownstream[,16])) %>% 
  mutate(DominanceHuman=ifelse(PAS %in% BothDom$HumanPAS, "yes","no"))

Chimp:

ChimpUpstream=read.table("../data/TestAnnoBiasOE/ChimpUpstream.intronic.txt",stringsAsFactors = F, col.names = c("chrPAS", "startPAS", "endPAS", "PAS", "ChimpUsage", "strandPAS", "chrExon","startExon","endExon", "Orthogene", "n","strandIntron", "UpstreamdistancePAS2Exon"))  %>% inner_join(PASMeta,by="PAS") %>% mutate(Fixed=ifelse(gene==Orthogene, UpstreamdistancePAS2Exon,0))
ChimpDownstream=read.table("../data/TestAnnoBiasOE/ChimpDownstream.intronic.txt",stringsAsFactors = F, col.names = c("chrPAS", "startPAS", "endPAS", "PAS", "ChimpUsage", "strandPAS", "chrExon","startExon","endExon", "Orthogene", "n","strandIntron", "DownstreamdistancePAS2Exon"))  %>% inner_join(PASMeta,by="PAS") %>% mutate(Fixed=ifelse(gene==Orthogene, DownstreamdistancePAS2Exon,0))
ChimpBoth=as.data.frame(cbind(PAS=ChimpUpstream[,4], 'UpstreamChimp'=ChimpUpstream[,16],'DownstreamChimp'=ChimpDownstream[,16])) %>% 
  mutate(DominanceChimp=ifelse(PAS %in% BothDom$ChimpPAS, "yes","no"))

Join together:

BothSpeciesDistance= HumanBoth %>% inner_join(ChimpBoth, by="PAS")
Warning: Column `PAS` joining character vector and factor, coercing into
character vector
BothSpeciesDistance$UpstreamChimp=as.numeric(as.character(BothSpeciesDistance$UpstreamChimp))
BothSpeciesDistance$DownstreamChimp=as.numeric(as.character(BothSpeciesDistance$DownstreamChimp))

Look at distance based on human dominance then chimp dominance

ggplot(BothSpeciesDistance, aes(x=UpstreamHuman, y=UpstreamChimp, col=DominanceHuman)) + geom_point(alpha=.3)+ geom_abline(aes(slope=1,intercept=0))

Version Author Date
4d772b1 brimittleman 2020-03-31
ggplot(BothSpeciesDistance, aes(x=UpstreamHuman, y=UpstreamChimp, col=DominanceHuman)) + geom_point(alpha=.3) + ylim(c(-10000,0)) +xlim(c(-10000,0)) + geom_abline(aes(slope=1,intercept=0)) + scale_color_brewer(palette = "Dark2")
Warning: Removed 1651 rows containing missing values (geom_point).

Version Author Date
4d772b1 brimittleman 2020-03-31

I want to color by dominant in human, chimp, both neither

BothSpeciesDistance_dom=BothSpeciesDistance %>% mutate(Dominance=ifelse(DominanceHuman=="yes", ifelse(DominanceChimp=="yes", "Both", "human"), ifelse(DominanceChimp=="yes", "chimp", "Neither")))

Upstream Plots:

ggplot(BothSpeciesDistance_dom, aes(x=UpstreamHuman, y=UpstreamChimp, col=Dominance)) + geom_point(alpha=.3)+ geom_abline(aes(slope=1,intercept=0)) + geom_smooth(method="lm", alpha=.1)+scale_color_brewer(palette = "Dark2") 

Version Author Date
4d772b1 brimittleman 2020-03-31
ggplot(BothSpeciesDistance_dom, aes(x=UpstreamHuman, y=UpstreamChimp, col=Dominance)) + geom_point(alpha=.3)+ geom_abline(aes(slope=1,intercept=0))+ylim(c(-50000,0)) +xlim(c(-50000,0)) + scale_color_brewer(palette = "Dark2") + geom_smooth(method="lm", alpha=.1)
Warning: Removed 122 rows containing non-finite values (stat_smooth).
Warning: Removed 122 rows containing missing values (geom_point).
Warning: Removed 1 rows containing missing values (geom_smooth).

Version Author Date
4d772b1 brimittleman 2020-03-31

Downstream

ggplot(BothSpeciesDistance_dom, aes(x=DownstreamHuman, y=DownstreamChimp, col=Dominance)) + geom_point(alpha=.3)+ geom_abline(aes(slope=1,intercept=0)) + scale_color_brewer(palette = "Dark2") + geom_smooth(method="lm", alpha=.1) + geom_smooth(method="lm", alpha=.1)

Version Author Date
4d772b1 brimittleman 2020-03-31

There are a lot of PAS that are far from an exon on the human side.

ggplot(BothSpeciesDistance_dom, aes(x=DownstreamHuman, y=DownstreamChimp, col=Dominance)) + geom_point(alpha=.3)+ geom_abline(aes(slope=1,intercept=0))+ylim(c(0,50000)) +xlim(c(0,50000)) + scale_color_brewer(palette = "Dark2") + geom_smooth(method="lm", alpha=.01)
Warning: Removed 395 rows containing non-finite values (stat_smooth).
Warning: Removed 395 rows containing missing values (geom_point).
Warning: Removed 3 rows containing missing values (geom_smooth).

Version Author Date
4d772b1 brimittleman 2020-03-31

Look at the top examples:

BothSpeciesDistance_dom_TopDiffUp=BothSpeciesDistance_dom %>% mutate(Updiff=abs(UpstreamHuman-UpstreamChimp)) %>% select(PAS, gene, Updiff) %>% arrange(desc(Updiff))

head(BothSpeciesDistance_dom_TopDiffUp)
          PAS    gene Updiff
1  human34001  SFMBT2  51262
2 chimp298751  ACTR3C  34423
3 human296634   TFB1M  33486
4 human175470 ANKRD36  31986
5 chimp298752  ACTR3C  31871
6 human175469 ANKRD36  31766

Proportion of intron

I can look at where these are in the “intron”. Here I am calling the space between 2 orthologous exons in the same genes introns. I will remove PAS that have 0 distance on either side in either species first.

BothSpeciesDistance_dom_remove0= BothSpeciesDistance_dom %>% filter(UpstreamHuman!=0,DownstreamHuman!=0,UpstreamChimp!=0, DownstreamChimp!=0 )

nrow(BothSpeciesDistance_dom)-nrow(BothSpeciesDistance_dom_remove0)
[1] 1123
nrow(BothSpeciesDistance_dom_remove0)
[1] 8229

Lose 1123. Looking at 8229.

BothSpeciesDistance_dom_remove0_dist= BothSpeciesDistance_dom_remove0 %>% mutate(HumanLength=abs(UpstreamHuman)+ DownstreamHuman, HumanProp=abs(UpstreamHuman)/HumanLength, ChimpLength=abs(UpstreamChimp)+DownstreamChimp, ChimpProp=abs(UpstreamChimp)/ChimpLength)
ggplot(BothSpeciesDistance_dom_remove0_dist,aes(x=HumanProp, y=ChimpProp,col=Dominance)) + geom_point(alpha=.3)  + scale_color_brewer(palette = "Dark2") + geom_smooth(method="lm") + labs(x="Proportion of Human Intron",y= "Proportion of Chimp Intron", title="Intronic PAS between ortho exons")

BothSpeciesDistance_dom_remove0_dist_filt=BothSpeciesDistance_dom_remove0_dist %>% filter(Dominance !="Neither")


ggplot(BothSpeciesDistance_dom_remove0_dist_filt,aes(x=HumanProp, y=ChimpProp,col=Dominance)) + geom_point(alpha=.3)  + scale_color_brewer(palette = "Dark2") + geom_smooth(method="lm") + labs(x="Proportion of Human Intron", y="Proportion of Chimp Intron", title="Intronic PAS between ortho exons")

What about just length:

ggplot(BothSpeciesDistance_dom_remove0_dist,aes(x=HumanLength, y=ChimpLength,col=Dominance)) + geom_point(alpha=.3)  + scale_color_brewer(palette = "Dark2") + geom_smooth(method="lm") + labs(x="Human Distance between ortho exon", "Chimp Distance between ortho exon", title="Intronic PAS between ortho exons")


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1   purrr_0.3.2    
[5] readr_1.3.1     tidyr_0.8.3     tibble_2.1.1    ggplot2_3.1.1  
[9] tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5   haven_1.1.2        lattice_0.20-38   
 [4] colorspace_1.3-2   generics_0.0.2     htmltools_0.3.6   
 [7] yaml_2.2.0         utf8_1.1.4         rlang_0.4.0       
[10] later_0.7.5        pillar_1.3.1       glue_1.3.0        
[13] withr_2.1.2        RColorBrewer_1.1-2 modelr_0.1.2      
[16] readxl_1.1.0       plyr_1.8.4         munsell_0.5.0     
[19] gtable_0.2.0       workflowr_1.6.0    cellranger_1.1.0  
[22] rvest_0.3.2        evaluate_0.12      labeling_0.3      
[25] knitr_1.20         httpuv_1.4.5       fansi_0.4.0       
[28] broom_0.5.1        Rcpp_1.0.2         promises_1.0.1    
[31] scales_1.0.0       backports_1.1.2    jsonlite_1.6      
[34] fs_1.3.1           hms_0.4.2          digest_0.6.18     
[37] stringi_1.2.4      grid_3.5.1         rprojroot_1.3-2   
[40] cli_1.1.0          tools_3.5.1        magrittr_1.5      
[43] lazyeval_0.2.1     crayon_1.3.4       whisker_0.3-2     
[46] pkgconfig_2.0.2    xml2_1.2.0         lubridate_1.7.4   
[49] assertthat_0.2.0   rmarkdown_1.10     httr_1.3.1        
[52] rstudioapi_0.10    R6_2.3.0           nlme_3.1-137      
[55] git2r_0.26.1       compiler_3.5.1