Processing math: 100%
  • Simpson
  • Shannon Equitability

Last updated: 2020-05-12

Checks: 7 0

Knit directory: Comparative_APA/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190902) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/chimp_log/
    Ignored:    code/human_log/
    Ignored:    data/.DS_Store
    Ignored:    data/TrialFiltersMeta.txt.sb-9845453e-R58Y0Q/
    Ignored:    data/mediation_prot/
    Ignored:    data/metadata_HCpanel.txt.sb-284518db-RGf0kd/
    Ignored:    data/metadata_HCpanel.txt.sb-a5794dd2-i594qs/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  ._.DS_Store
    Untracked:  Chimp/
    Untracked:  Human/
    Untracked:  analysis/AREstabilityScores.Rmd
    Untracked:  analysis/AllLoc_effectSizeCor.Rmd
    Untracked:  analysis/CrossChimpThreePrime.Rmd
    Untracked:  analysis/DiffTransProtvsExpression.Rmd
    Untracked:  analysis/DiffUsedUTR.Rmd
    Untracked:  analysis/GvizPlots.Rmd
    Untracked:  analysis/HandC.TvN
    Untracked:  analysis/PhenotypeOverlap10.Rmd
    Untracked:  analysis/annotationBias.Rmd
    Untracked:  analysis/assessReadQual.Rmd
    Untracked:  analysis/diffExpressionPantro6.Rmd
    Untracked:  code/._AlignmentScores.sh
    Untracked:  code/._BothFCMM.sh
    Untracked:  code/._BothFCMMPrim.sh
    Untracked:  code/._BothFCnewOInclusive.sh
    Untracked:  code/._ChimpStarMM2.sh
    Untracked:  code/._ClassifyLeafviz.sh
    Untracked:  code/._ClosestorthoEx.sh
    Untracked:  code/._Config_chimp.yaml
    Untracked:  code/._Config_chimp_full.yaml
    Untracked:  code/._Config_human.yaml
    Untracked:  code/._ConvertJunc2Bed.sh
    Untracked:  code/._CountNucleotides.py
    Untracked:  code/._CrossMapChimpRNA.sh
    Untracked:  code/._CrossMapThreeprime.sh
    Untracked:  code/._DiffSplice.sh
    Untracked:  code/._DiffSplicePlots.sh
    Untracked:  code/._DiffSplicePlots_gencode.sh
    Untracked:  code/._DiffSplice_gencode.sh
    Untracked:  code/._DiffSplice_removebad.sh
    Untracked:  code/._Filter255MM.sh
    Untracked:  code/._FilterPrimSec.sh
    Untracked:  code/._FindIntronForDomPAS.sh
    Untracked:  code/._FindIntronForDomPAS_DF.sh
    Untracked:  code/._GetMAPQscore.py
    Untracked:  code/._GetSecondaryMap.py
    Untracked:  code/._Lift5perPAS.sh
    Untracked:  code/._LiftFinalChimpJunc2Human.sh
    Untracked:  code/._LiftOrthoPAS2chimp.sh
    Untracked:  code/._MapBadSamples.sh
    Untracked:  code/._MismatchNumbers.sh
    Untracked:  code/._PAS_ATTAAA.sh
    Untracked:  code/._PAS_ATTAAA_df.sh
    Untracked:  code/._PAS_seqExpanded.sh
    Untracked:  code/._PASsequences.sh
    Untracked:  code/._PASsequences_DF.sh
    Untracked:  code/._PlotNuclearUsagebySpecies.R
    Untracked:  code/._PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/._QuantMergedClusters.sh
    Untracked:  code/._RNATranscriptDTplot.sh
    Untracked:  code/._ReverseLiftFilter.R
    Untracked:  code/._RunFixLeafCluster.sh
    Untracked:  code/._RunNegMCMediation.sh
    Untracked:  code/._RunNegMCMediationDF.sh
    Untracked:  code/._RunPosMCMediationDF.err
    Untracked:  code/._RunPosMCMediationDF.sh
    Untracked:  code/._SAF2Bed.py
    Untracked:  code/._Snakefile
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilePASfilt
    Untracked:  code/._SortIndexBadSamples.sh
    Untracked:  code/._StarMM2.sh
    Untracked:  code/._TestFC.sh
    Untracked:  code/._assignPeak2Intronicregion
    Untracked:  code/._assignPeak2Intronicregion.sh
    Untracked:  code/._bed215upbed.py
    Untracked:  code/._bed2Bedbothstrand.py
    Untracked:  code/._bed2SAF_gen.py
    Untracked:  code/._buildIndecpantro5
    Untracked:  code/._buildIndecpantro5.sh
    Untracked:  code/._buildLeafviz.sh
    Untracked:  code/._buildLeafviz_leadAnno.sh
    Untracked:  code/._buildStarIndex.sh
    Untracked:  code/._chimpChromprder.sh
    Untracked:  code/._chimpMultiCov.sh
    Untracked:  code/._chimpMultiCov255.sh
    Untracked:  code/._chimpMultiCovInclusive.sh
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cleanbed2saf.py
    Untracked:  code/._cluster.json
    Untracked:  code/._cluster2bed.py
    Untracked:  code/._clusterLiftReverse.sh
    Untracked:  code/._clusterLiftReverse_removebad.sh
    Untracked:  code/._clusterLiftprimary.sh
    Untracked:  code/._clusterLiftprimary_removebad.sh
    Untracked:  code/._converBam2Junc.sh
    Untracked:  code/._converBam2Junc_removeBad.sh
    Untracked:  code/._extraSnakefiltpas
    Untracked:  code/._extractPhyloReg.py
    Untracked:  code/._extractPhyloRegGene.py
    Untracked:  code/._extractPhylopGeneral.ph
    Untracked:  code/._extractPhylopGeneral.py
    Untracked:  code/._extractPhylopReg200down.py
    Untracked:  code/._extractPhylopReg200up.py
    Untracked:  code/._filter5percPAS.py
    Untracked:  code/._filterNumChroms.py
    Untracked:  code/._filterPASforMP.py
    Untracked:  code/._filterPostLift.py
    Untracked:  code/._filterPrimaryread.py
    Untracked:  code/._filterSecondaryread.py
    Untracked:  code/._fixExonFC.py
    Untracked:  code/._fixFCheadforExp.py
    Untracked:  code/._fixLeafCluster.py
    Untracked:  code/._fixLiftedJunc.py
    Untracked:  code/._fixUTRexonanno.py
    Untracked:  code/._formathg38Anno.py
    Untracked:  code/._formatpantro6Anno.py
    Untracked:  code/._getRNAseqMapStats.sh
    Untracked:  code/._hg19MapStats.sh
    Untracked:  code/._humanChromorder.sh
    Untracked:  code/._humanMultiCov.sh
    Untracked:  code/._humanMultiCov255.sh
    Untracked:  code/._humanMultiCov_inclusive.sh
    Untracked:  code/._intersectLiftedPAS.sh
    Untracked:  code/._liftJunctionFiles.sh
    Untracked:  code/._liftPAS19to38.sh
    Untracked:  code/._liftedchimpJunc2human.sh
    Untracked:  code/._makeNuclearDapaplots.sh
    Untracked:  code/._makeNuclearDapaplots_DF.sh
    Untracked:  code/._makeSamplyGroupsHuman_TvN.py
    Untracked:  code/._mapRNAseqhg19.sh
    Untracked:  code/._mapRNAseqhg19_newPipeline.sh
    Untracked:  code/._maphg19.sh
    Untracked:  code/._maphg19_subjunc.sh
    Untracked:  code/._mediation_test.R
    Untracked:  code/._mergeChimp3prime_inhg38.sh
    Untracked:  code/._mergeandBWRNAseq.sh
    Untracked:  code/._mergedBam2BW.sh
    Untracked:  code/._nameClusters.py
    Untracked:  code/._negativeMediation_montecarlo.R
    Untracked:  code/._negativeMediation_montecarloDF.R
    Untracked:  code/._numMultimap.py
    Untracked:  code/._overlapMMandOrthoexon.sh
    Untracked:  code/._overlapPASandOrthoexon.sh
    Untracked:  code/._overlapapaQTLPAS.sh
    Untracked:  code/._parseHg38.py
    Untracked:  code/._postiveMediation_montecarlo_DF.R
    Untracked:  code/._prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/._prepareLeafvizAnno.sh
    Untracked:  code/._preparePAS4lift.py
    Untracked:  code/._primaryLift.sh
    Untracked:  code/._processhg38exons.py
    Untracked:  code/._quantJunc.sh
    Untracked:  code/._quantJunc_TEST.sh
    Untracked:  code/._quantJunc_removeBad.sh
    Untracked:  code/._quantLiftedPASPrimary.sh
    Untracked:  code/._quantMerged_seperatly.sh
    Untracked:  code/._recLiftchim2human.sh
    Untracked:  code/._revLiftPAShg38to19.sh
    Untracked:  code/._reverseLift.sh
    Untracked:  code/._runCheckReverseLift.sh
    Untracked:  code/._runChimpDiffIso.sh
    Untracked:  code/._runCountNucleotides.sh
    Untracked:  code/._runFilterNumChroms.sh
    Untracked:  code/._runHumanDiffIso.sh
    Untracked:  code/._runNuclearDiffIso_DF.sh
    Untracked:  code/._runNuclearDifffIso.sh
    Untracked:  code/._runTotalDiffIso.sh
    Untracked:  code/._run_chimpverifybam.sh
    Untracked:  code/._run_verifyBam.sh
    Untracked:  code/._snakemake.batch
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakePASchimp.batch
    Untracked:  code/._snakemakePAShuman.batch
    Untracked:  code/._snakemake_chimp.batch
    Untracked:  code/._snakemake_human.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._snakemakefiltPAS_chimp
    Untracked:  code/._snakemakefiltPAS_chimp.sh
    Untracked:  code/._snakemakefiltPAS_human.sh
    Untracked:  code/._spliceSite2Fasta.py
    Untracked:  code/._submit-snakemake-chimp.sh
    Untracked:  code/._submit-snakemake-human.sh
    Untracked:  code/._submit-snakemakePAS-chimp.sh
    Untracked:  code/._submit-snakemakePAS-human.sh
    Untracked:  code/._submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/._submit-snakemakefiltPAS-human.sh
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/._subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/._subset_diffisopheno_Total_HvC.py
    Untracked:  code/._threeprimeOrthoFC.sh
    Untracked:  code/._transcriptDTplotsNuclear.sh
    Untracked:  code/._verifyBam4973.sh
    Untracked:  code/._verifyBam4973inHuman.sh
    Untracked:  code/._wrap_chimpverifybam.sh
    Untracked:  code/._wrap_verifyBam.sh
    Untracked:  code/._writeMergecode.py
    Untracked:  code/.snakemake/
    Untracked:  code/ALLPAS_sequenceDF.err
    Untracked:  code/ALLPAS_sequenceDF.out
    Untracked:  code/AlignmentScores.err
    Untracked:  code/AlignmentScores.out
    Untracked:  code/AlignmentScores.sh
    Untracked:  code/BothFCMM.err
    Untracked:  code/BothFCMM.out
    Untracked:  code/BothFCMM.sh
    Untracked:  code/BothFCMMPrim.err
    Untracked:  code/BothFCMMPrim.out
    Untracked:  code/BothFCMMPrim.sh
    Untracked:  code/BothFCnewOInclusive.sh
    Untracked:  code/BothFCnewOInclusive.sh.err
    Untracked:  code/BothFCnewOInclusive.sh.out
    Untracked:  code/ChimpStarMM2.err
    Untracked:  code/ChimpStarMM2.out
    Untracked:  code/ChimpStarMM2.sh
    Untracked:  code/ClassifyLeafviz.sh
    Untracked:  code/ClosestorthoEx.err
    Untracked:  code/ClosestorthoEx.out
    Untracked:  code/ClosestorthoEx.sh
    Untracked:  code/Config_chimp.yaml
    Untracked:  code/Config_chimp_full.yaml
    Untracked:  code/Config_human.yaml
    Untracked:  code/ConvertJunc2Bed.err
    Untracked:  code/ConvertJunc2Bed.out
    Untracked:  code/ConvertJunc2Bed.sh
    Untracked:  code/CountNucleotides.py
    Untracked:  code/CrossMapChimpRNA.sh
    Untracked:  code/CrossMapThreeprime.sh
    Untracked:  code/CrossmapChimp3prime.err
    Untracked:  code/CrossmapChimp3prime.out
    Untracked:  code/CrossmapChimpRNA.err
    Untracked:  code/CrossmapChimpRNA.out
    Untracked:  code/DTUTR.sh
    Untracked:  code/DiffSplice.err
    Untracked:  code/DiffSplice.out
    Untracked:  code/DiffSplice.sh
    Untracked:  code/DiffSplicePlots.err
    Untracked:  code/DiffSplicePlots.out
    Untracked:  code/DiffSplicePlots.sh
    Untracked:  code/DiffSplicePlots_gencode.sh
    Untracked:  code/DiffSplice_gencode.sh
    Untracked:  code/DiffSplice_removebad.err
    Untracked:  code/DiffSplice_removebad.out
    Untracked:  code/DiffSplice_removebad.sh
    Untracked:  code/Filter255.err
    Untracked:  code/Filter255.out
    Untracked:  code/Filter255MM.sh
    Untracked:  code/FilterPrimSec.err
    Untracked:  code/FilterPrimSec.out
    Untracked:  code/FilterPrimSec.sh
    Untracked:  code/FilterReverseLift.err
    Untracked:  code/FilterReverseLift.out
    Untracked:  code/FindDomXCutoff.py
    Untracked:  code/FindIntronForDomPAS.err
    Untracked:  code/FindIntronForDomPAS.out
    Untracked:  code/FindIntronForDomPAS.sh
    Untracked:  code/FindIntronForDomPAS_DF.sh
    Untracked:  code/GencodeDiffSplice.err
    Untracked:  code/GencodeDiffSplice.out
    Untracked:  code/GetMAPQscore.py
    Untracked:  code/GetSecondaryMap.py
    Untracked:  code/GetTopminus2Usage.py
    Untracked:  code/H3K36me3DTplot.err
    Untracked:  code/H3K36me3DTplot.out
    Untracked:  code/H3K36me3DTplot.sh
    Untracked:  code/H3K36me3DTplot_DiffIso.err
    Untracked:  code/H3K36me3DTplot_DiffIso.out
    Untracked:  code/H3K36me3DTplot_DiffIso.sh
    Untracked:  code/H3K36me3DTplot_Specific.err
    Untracked:  code/H3K36me3DTplot_Specific.out
    Untracked:  code/H3K36me3DTplot_Specific.sh
    Untracked:  code/H3K36me3DTplot_distalPAS.err
    Untracked:  code/H3K36me3DTplot_distalPAS.out
    Untracked:  code/H3K36me3DTplot_distalPAS.sh
    Untracked:  code/H3K36me3DTplot_transcript.err
    Untracked:  code/H3K36me3DTplot_transcript.out
    Untracked:  code/H3K36me3DTplot_transcript.sh
    Untracked:  code/H3K36me3DTplotwide.err
    Untracked:  code/H3K36me3DTplotwide.out
    Untracked:  code/H3K36me3DTplotwide.sh
    Untracked:  code/H3K9me3DTplot_transcript.err
    Untracked:  code/H3K9me3DTplot_transcript.out
    Untracked:  code/H3K9me3DTplot_transcript.sh
    Untracked:  code/H3K9me3_processandDT.sh
    Untracked:  code/HchromOrder.err
    Untracked:  code/HchromOrder.out
    Untracked:  code/InfoContentShannon.py
    Untracked:  code/InfoContentbyInd.py
    Untracked:  code/IntersectMMandOrtho.err
    Untracked:  code/IntersectMMandOrtho.out
    Untracked:  code/IntersectPASandOrtho.err
    Untracked:  code/IntersectPASandOrtho.out
    Untracked:  code/JunctionLift.err
    Untracked:  code/JunctionLift.out
    Untracked:  code/JunctionLiftFinalChimp.err
    Untracked:  code/JunctionLiftFinalChimp.out
    Untracked:  code/Lift5perPAS.sh
    Untracked:  code/Lift5perPASbed.err
    Untracked:  code/Lift5perPASbed.out
    Untracked:  code/LiftClustersFirst.err
    Untracked:  code/LiftClustersFirst.out
    Untracked:  code/LiftClustersFirst_remove.err
    Untracked:  code/LiftClustersFirst_remove.out
    Untracked:  code/LiftClustersSecond.err
    Untracked:  code/LiftClustersSecond.out
    Untracked:  code/LiftClustersSecond_remove.err
    Untracked:  code/LiftClustersSecond_remove.out
    Untracked:  code/LiftFinalChimpJunc2Human.sh
    Untracked:  code/LiftOrthoPAS2chimp.sh
    Untracked:  code/LiftorthoPAS.err
    Untracked:  code/LiftorthoPASt.out
    Untracked:  code/Log.out
    Untracked:  code/MapBadSamples.err
    Untracked:  code/MapBadSamples.out
    Untracked:  code/MapBadSamples.sh
    Untracked:  code/MapStats.err
    Untracked:  code/MapStats.out
    Untracked:  code/MaxEntCode/
    Untracked:  code/MergeClusters.err
    Untracked:  code/MergeClusters.out
    Untracked:  code/MergeClusters.sh
    Untracked:  code/MismatchNumbers.err
    Untracked:  code/MismatchNumbers.out
    Untracked:  code/MismatchNumbers.sh
    Untracked:  code/NuclearDTUTR.err
    Untracked:  code/NuclearDTUTRt.out
    Untracked:  code/NuclearPlotsDEandDiffDom_4.err
    Untracked:  code/NuclearPlotsDEandDiffDom_4.out
    Untracked:  code/NuclearPlotsDEandDiffDom_4.sh
    Untracked:  code/PAS_ATTAAA.err
    Untracked:  code/PAS_ATTAAA.out
    Untracked:  code/PAS_ATTAAA.sh
    Untracked:  code/PAS_ATTAAADF.err
    Untracked:  code/PAS_ATTAAADF.out
    Untracked:  code/PAS_ATTAAA_df.sh
    Untracked:  code/PAS_seqExpanded.sh
    Untracked:  code/PAS_sequence.err
    Untracked:  code/PAS_sequence.out
    Untracked:  code/PAS_sequenceDF.err
    Untracked:  code/PAS_sequenceDF.out
    Untracked:  code/PASexpanded_sequenceDF.err
    Untracked:  code/PASexpanded_sequenceDF.out
    Untracked:  code/PASsequences.sh
    Untracked:  code/PASsequences_DF.sh
    Untracked:  code/PlotNuclearUsagebySpecies.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF_4DIC.R
    Untracked:  code/PlotNuclearUsagebySpecies_DF_DEout.R
    Untracked:  code/QuantMergeClusters
    Untracked:  code/QuantMergeClusters.err
    Untracked:  code/QuantMergeClusters.out
    Untracked:  code/QuantMergedClusters.sh
    Untracked:  code/RNATranscriptDTplot.err
    Untracked:  code/RNATranscriptDTplot.out
    Untracked:  code/RNATranscriptDTplot.sh
    Untracked:  code/Rev_liftoverPAShg19to38.err
    Untracked:  code/Rev_liftoverPAShg19to38.out
    Untracked:  code/ReverseLiftFilter.R
    Untracked:  code/RunFixCluster.err
    Untracked:  code/RunFixCluster.out
    Untracked:  code/RunFixLeafCluster.sh
    Untracked:  code/RunNegMCMediation.err
    Untracked:  code/RunNegMCMediation.sh
    Untracked:  code/RunNegMCMediationDF.err
    Untracked:  code/RunNegMCMediationDF.out
    Untracked:  code/RunNegMCMediationDF.sh
    Untracked:  code/RunNegMCMediationr.out
    Untracked:  code/RunNewDom.err
    Untracked:  code/RunNewDom.out
    Untracked:  code/RunPosMCMediation.err
    Untracked:  code/RunPosMCMediation.sh
    Untracked:  code/RunPosMCMediationDF.err
    Untracked:  code/RunPosMCMediationDF.out
    Untracked:  code/RunPosMCMediationDF.sh
    Untracked:  code/RunPosMCMediationr.out
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/SAF2Bed.py
    Untracked:  code/Snakefile
    Untracked:  code/SnakefilePAS
    Untracked:  code/SnakefilePASfilt
    Untracked:  code/SortIndexBadSamples.err
    Untracked:  code/SortIndexBadSamples.out
    Untracked:  code/SortIndexBadSamples.sh
    Untracked:  code/StarMM2.err
    Untracked:  code/StarMM2.out
    Untracked:  code/StarMM2.sh
    Untracked:  code/TestFC.err
    Untracked:  code/TestFC.out
    Untracked:  code/TestFC.sh
    Untracked:  code/TotalTranscriptDTplot.err
    Untracked:  code/TotalTranscriptDTplot.out
    Untracked:  code/UTR2FASTA.py
    Untracked:  code/Upstream10Bases_general.py
    Untracked:  code/allPASSeq_df.sh
    Untracked:  code/apaQTLsnake.err
    Untracked:  code/apaQTLsnake.out
    Untracked:  code/apaQTLsnakePAS.err
    Untracked:  code/apaQTLsnakePAS.out
    Untracked:  code/apaQTLsnakePAShuman.err
    Untracked:  code/apaQTLsnakefiltPAS.err
    Untracked:  code/apaQTLsnakefiltPAS.out
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignPeak2Intronicregion.sh
    Untracked:  code/bam2junc.err
    Untracked:  code/bam2junc.out
    Untracked:  code/bam2junc_remove.err
    Untracked:  code/bam2junc_remove.out
    Untracked:  code/bed215upbed.py
    Untracked:  code/bed2Bedbothstrand.py
    Untracked:  code/bed2SAF_gen.py
    Untracked:  code/bed2saf.py
    Untracked:  code/bg_to_cov.py
    Untracked:  code/buildIndecpantro5
    Untracked:  code/buildIndecpantro5.sh
    Untracked:  code/buildLeafviz.err
    Untracked:  code/buildLeafviz.out
    Untracked:  code/buildLeafviz.sh
    Untracked:  code/buildLeafviz_leadAnno.sh
    Untracked:  code/buildLeafviz_leafanno.err
    Untracked:  code/buildLeafviz_leafanno.out
    Untracked:  code/buildStarIndex.sh
    Untracked:  code/callPeaksYL.py
    Untracked:  code/chimpChromprder.sh
    Untracked:  code/chimpMultiCov.err
    Untracked:  code/chimpMultiCov.out
    Untracked:  code/chimpMultiCov.sh
    Untracked:  code/chimpMultiCov255.sh
    Untracked:  code/chimpMultiCovInclusive.err
    Untracked:  code/chimpMultiCovInclusive.out
    Untracked:  code/chimpMultiCovInclusive.sh
    Untracked:  code/chooseAnno2Bed.py
    Untracked:  code/chooseAnno2SAF.py
    Untracked:  code/chooseSignalSite.py
    Untracked:  code/chromOrder.err
    Untracked:  code/chromOrder.out
    Untracked:  code/classifyLeafviz.err
    Untracked:  code/classifyLeafviz.out
    Untracked:  code/cleanbed2saf.py
    Untracked:  code/cluster.json
    Untracked:  code/cluster2bed.py
    Untracked:  code/clusterLiftReverse.sh
    Untracked:  code/clusterLiftReverse_removebad.sh
    Untracked:  code/clusterLiftprimary.sh
    Untracked:  code/clusterLiftprimary_removebad.sh
    Untracked:  code/clusterPAS.json
    Untracked:  code/clusterfiltPAS.json
    Untracked:  code/comands2Mege.sh
    Untracked:  code/converBam2Junc.sh
    Untracked:  code/converBam2Junc_removeBad.sh
    Untracked:  code/convertNumeric.py
    Untracked:  code/environment.yaml
    Untracked:  code/extraSnakefiltpas
    Untracked:  code/extractPhyloReg.py
    Untracked:  code/extractPhyloRegGene.py
    Untracked:  code/extractPhylopGeneral.py
    Untracked:  code/extractPhylopReg200down.py
    Untracked:  code/extractPhylopReg200up.py
    Untracked:  code/filter5perc.R
    Untracked:  code/filter5percPAS.py
    Untracked:  code/filter5percPheno.py
    Untracked:  code/filterBamforMP.pysam2_gen.py
    Untracked:  code/filterJuncChroms.err
    Untracked:  code/filterJuncChroms.out
    Untracked:  code/filterMissprimingInNuc10_gen.py
    Untracked:  code/filterNumChroms.py
    Untracked:  code/filterPASforMP.py
    Untracked:  code/filterPostLift.py
    Untracked:  code/filterPrimaryread.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/filterSecondaryread.py
    Untracked:  code/filterSortBedbyCleanedBed_gen.R
    Untracked:  code/filterpeaks.py
    Untracked:  code/fixExonFC.py
    Untracked:  code/fixFChead.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFCheadforExp.py
    Untracked:  code/fixLeafCluster.py
    Untracked:  code/fixLiftedJunc.py
    Untracked:  code/fixUTRexonanno.py
    Untracked:  code/formathg38Anno.py
    Untracked:  code/generateStarIndex.err
    Untracked:  code/generateStarIndex.out
    Untracked:  code/generateStarIndexHuman.err
    Untracked:  code/generateStarIndexHuman.out
    Untracked:  code/getAlloverlap.py
    Untracked:  code/getRNAseqMapStats.sh
    Untracked:  code/hg19MapStats.err
    Untracked:  code/hg19MapStats.out
    Untracked:  code/hg19MapStats.sh
    Untracked:  code/humanChromorder.sh
    Untracked:  code/humanFiles
    Untracked:  code/humanMultiCov.err
    Untracked:  code/humanMultiCov.out
    Untracked:  code/humanMultiCov.sh
    Untracked:  code/humanMultiCov255.err
    Untracked:  code/humanMultiCov255.out
    Untracked:  code/humanMultiCov255.sh
    Untracked:  code/humanMultiCovInclusive.err
    Untracked:  code/humanMultiCovInclusive.out
    Untracked:  code/humanMultiCov_inclusive.sh
    Untracked:  code/infoContentSimpson.py
    Untracked:  code/intersectAnno.err
    Untracked:  code/intersectAnno.out
    Untracked:  code/intersectAnnoExt.err
    Untracked:  code/intersectAnnoExt.out
    Untracked:  code/intersectLiftedPAS.sh
    Untracked:  code/leafcutter_merge_regtools_redo.py
    Untracked:  code/liftJunctionFiles.sh
    Untracked:  code/liftPAS19to38.sh
    Untracked:  code/liftoverPAShg19to38.err
    Untracked:  code/liftoverPAShg19to38.out
    Untracked:  code/log/
    Untracked:  code/make5percPeakbed.py
    Untracked:  code/makeDIC.err
    Untracked:  code/makeDIC.out
    Untracked:  code/makeFileID.py
    Untracked:  code/makeNuclearDapaplots.sh
    Untracked:  code/makeNuclearDapaplots_DF.sh
    Untracked:  code/makeNuclearPlots.err
    Untracked:  code/makeNuclearPlots.out
    Untracked:  code/makeNuclearPlotsDF.err
    Untracked:  code/makeNuclearPlotsDF.out
    Untracked:  code/makePheno.py
    Untracked:  code/makeSamplyGroupsChimp_TvN.py
    Untracked:  code/makeSamplyGroupsHuman_TvN.py
    Untracked:  code/makedICPlots_DF.sh
    Untracked:  code/mapRNAseqhg19.sh
    Untracked:  code/mapRNAseqhg19_newPipeline.sh
    Untracked:  code/maphg19.err
    Untracked:  code/maphg19.out
    Untracked:  code/maphg19.sh
    Untracked:  code/maphg19_new.err
    Untracked:  code/maphg19_new.out
    Untracked:  code/maphg19_sub.err
    Untracked:  code/maphg19_sub.out
    Untracked:  code/maphg19_subjunc.sh
    Untracked:  code/mediation_test.R
    Untracked:  code/merge.err
    Untracked:  code/mergeChimp3prime_inhg38.sh
    Untracked:  code/mergeChimpRNA.sh
    Untracked:  code/merge_leafcutter_clusters_redo.py
    Untracked:  code/mergeandBWRNAseq.sh
    Untracked:  code/mergeandsort_ChimpinHuman.err
    Untracked:  code/mergeandsort_ChimpinHuman.out
    Untracked:  code/mergeandsort_H3K9me3
    Untracked:  code/mergeandsort_h3k36me3
    Untracked:  code/mergeandsorth3k36me3.sh
    Untracked:  code/mergedBam2BW.sh
    Untracked:  code/mergedbam2bw.err
    Untracked:  code/mergedbam2bw.out
    Untracked:  code/mergedbamRNAand2bw.err
    Untracked:  code/mergedbamRNAand2bw.out
    Untracked:  code/nameClusters.py
    Untracked:  code/namePeaks.py
    Untracked:  code/negativeMediation_montecarlo.R
    Untracked:  code/negativeMediation_montecarloDF.R
    Untracked:  code/nuclearTranscriptDTplot.err
    Untracked:  code/nuclearTranscriptDTplot.out
    Untracked:  code/numMultimap.py
    Untracked:  code/overlapMMandOrthoexon.sh
    Untracked:  code/overlapPAS.err
    Untracked:  code/overlapPAS.out
    Untracked:  code/overlapPASandOrthoexon.sh
    Untracked:  code/overlapapaQTLPAS.sh
    Untracked:  code/overlapapaQTLPAS_extended.sh
    Untracked:  code/overlapapaQTLPAS_samples.sh
    Untracked:  code/parseHg38.py
    Untracked:  code/peak2PAS.py
    Untracked:  code/pheno2countonly.R
    Untracked:  code/postiveMediation_montecarlo.R
    Untracked:  code/postiveMediation_montecarlo_DF.R
    Untracked:  code/prepareAnnoLeafviz.err
    Untracked:  code/prepareAnnoLeafviz.out
    Untracked:  code/prepareCleanLiftedFC_5perc4LC.py
    Untracked:  code/prepareLeafvizAnno.sh
    Untracked:  code/preparePAS4lift.py
    Untracked:  code/prepare_phenotype_table.py
    Untracked:  code/primaryLift.err
    Untracked:  code/primaryLift.out
    Untracked:  code/primaryLift.sh
    Untracked:  code/processhg38exons.py
    Untracked:  code/quantJunc.sh
    Untracked:  code/quantJunc_TEST.sh
    Untracked:  code/quantJunc_removeBad.sh
    Untracked:  code/quantLiftedPAS.err
    Untracked:  code/quantLiftedPAS.out
    Untracked:  code/quantLiftedPAS.sh
    Untracked:  code/quantLiftedPASPrimary.err
    Untracked:  code/quantLiftedPASPrimary.out
    Untracked:  code/quantLiftedPASPrimary.sh
    Untracked:  code/quatJunc.err
    Untracked:  code/quatJunc.out
    Untracked:  code/recChimpback2Human.err
    Untracked:  code/recChimpback2Human.out
    Untracked:  code/recLiftchim2human.sh
    Untracked:  code/revLift.err
    Untracked:  code/revLift.out
    Untracked:  code/revLiftPAShg38to19.sh
    Untracked:  code/reverseLift.sh
    Untracked:  code/runCheckReverseLift.sh
    Untracked:  code/runChimpDiffIso.sh
    Untracked:  code/runChimpDiffIsoDF.sh
    Untracked:  code/runCountNucleotides.err
    Untracked:  code/runCountNucleotides.out
    Untracked:  code/runCountNucleotides.sh
    Untracked:  code/runCountNucleotidesPantro6.err
    Untracked:  code/runCountNucleotidesPantro6.out
    Untracked:  code/runCountNucleotides_pantro6.sh
    Untracked:  code/runFilterNumChroms.sh
    Untracked:  code/runHumanDiffIso.sh
    Untracked:  code/runHumanDiffIsoDF.sh
    Untracked:  code/runNewDom.sh
    Untracked:  code/runNuclearDiffIso_DF.sh
    Untracked:  code/runNuclearDifffIso.sh
    Untracked:  code/runTotalDiffIso.sh
    Untracked:  code/run_Chimpleafcutter_ds.err
    Untracked:  code/run_Chimpleafcutter_ds.out
    Untracked:  code/run_Chimpverifybam.err
    Untracked:  code/run_Chimpverifybam.out
    Untracked:  code/run_Humanleafcutter_dF.err
    Untracked:  code/run_Humanleafcutter_dF.out
    Untracked:  code/run_Humanleafcutter_ds.err
    Untracked:  code/run_Humanleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_ds.err
    Untracked:  code/run_Nuclearleafcutter_ds.out
    Untracked:  code/run_Nuclearleafcutter_dsDF.err
    Untracked:  code/run_Nuclearleafcutter_dsDF.out
    Untracked:  code/run_Totalleafcutter_ds.err
    Untracked:  code/run_Totalleafcutter_ds.out
    Untracked:  code/run_chimpverifybam.sh
    Untracked:  code/run_verifyBam.sh
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/slurm-62824013.out
    Untracked:  code/slurm-62825841.out
    Untracked:  code/slurm-62826116.out
    Untracked:  code/slurm-64108209.out
    Untracked:  code/slurm-64108521.out
    Untracked:  code/slurm-64108557.out
    Untracked:  code/snakePASChimp.err
    Untracked:  code/snakePASChimp.out
    Untracked:  code/snakePAShuman.out
    Untracked:  code/snakemake.batch
    Untracked:  code/snakemakeChimp.err
    Untracked:  code/snakemakeChimp.out
    Untracked:  code/snakemakeHuman.err
    Untracked:  code/snakemakeHuman.out
    Untracked:  code/snakemakePAS.batch
    Untracked:  code/snakemakePASFiltChimp.err
    Untracked:  code/snakemakePASFiltChimp.out
    Untracked:  code/snakemakePASFiltHuman.err
    Untracked:  code/snakemakePASFiltHuman.out
    Untracked:  code/snakemakePAS_Human.batch
    Untracked:  code/snakemakePASchimp.batch
    Untracked:  code/snakemakePAShuman.batch
    Untracked:  code/snakemake_chimp.batch
    Untracked:  code/snakemake_human.batch
    Untracked:  code/snakemakefiltPAS.batch
    Untracked:  code/snakemakefiltPAS_chimp.sh
    Untracked:  code/snakemakefiltPAS_human.batch
    Untracked:  code/snakemakefiltPAS_human.sh
    Untracked:  code/spliceSite2Fasta.py
    Untracked:  code/submit-snakemake-chimp.sh
    Untracked:  code/submit-snakemake-human.sh
    Untracked:  code/submit-snakemakePAS-chimp.sh
    Untracked:  code/submit-snakemakePAS-human.sh
    Untracked:  code/submit-snakemakefiltPAS-chimp.sh
    Untracked:  code/submit-snakemakefiltPAS-human.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN.py
    Untracked:  code/subset_diffisopheno_Chimp_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Huma_tvN.py
    Untracked:  code/subset_diffisopheno_Huma_tvN_DF.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC.py
    Untracked:  code/subset_diffisopheno_Nuclear_HvC_DF.py
    Untracked:  code/subset_diffisopheno_Total_HvC.py
    Untracked:  code/test
    Untracked:  code/test.txt
    Untracked:  code/threeprimeOrthoFC.out
    Untracked:  code/threeprimeOrthoFC.sh
    Untracked:  code/threeprimeOrthoFCcd.err
    Untracked:  code/transcriptDTplotsNuclear.sh
    Untracked:  code/transcriptDTplotsTotal.sh
    Untracked:  code/verifyBam4973.sh
    Untracked:  code/verifyBam4973inHuman.sh
    Untracked:  code/verifybam4973.err
    Untracked:  code/verifybam4973.out
    Untracked:  code/verifybam4973HumanMap.err
    Untracked:  code/verifybam4973HumanMap.out
    Untracked:  code/wrap_Chimpverifybam.err
    Untracked:  code/wrap_Chimpverifybam.out
    Untracked:  code/wrap_chimpverifybam.sh
    Untracked:  code/wrap_verifyBam.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/writeMergecode.py
    Untracked:  data/._.DS_Store
    Untracked:  data/._HC_filenames.txt
    Untracked:  data/._HC_filenames.txt.sb-4426323c-IKIs0S
    Untracked:  data/._HC_filenames.xlsx
    Untracked:  data/._MapPantro6_meta.txt
    Untracked:  data/._MapPantro6_meta.txt.sb-a5794dd2-Cskmlm
    Untracked:  data/._MapPantro6_meta.xlsx
    Untracked:  data/._OppositeSpeciesMap.txt
    Untracked:  data/._OppositeSpeciesMap.txt.sb-a5794dd2-mayWJf
    Untracked:  data/._OppositeSpeciesMap.xlsx
    Untracked:  data/._RNASEQ_metadata.txt
    Untracked:  data/._RNASEQ_metadata.txt.sb-4426323c-TE4ns3
    Untracked:  data/._RNASEQ_metadata.txt.sb-51f67ae1-HXp7Gq
    Untracked:  data/._RNASEQ_metadata_2Removed.txt
    Untracked:  data/._RNASEQ_metadata_2Removed.txt.sb-4426323c-a4lBwx
    Untracked:  data/._RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/._RNASEQ_metadata_stranded.txt
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-D659m2
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-a5794dd2-ImNMoY
    Untracked:  data/._RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl
    Untracked:  data/._RNASEQ_metadata_stranded.xlsx
    Untracked:  data/._TrialFiltersMeta.txt
    Untracked:  data/._TrialFiltersMeta.txt.sb-9845453e-R58Y0Q
    Untracked:  data/._metadata_HCpanel.txt
    Untracked:  data/._metadata_HCpanel.txt.sb-a3d92a2d-b9cYoF
    Untracked:  data/._metadata_HCpanel.txt.sb-a5794dd2-i594qs
    Untracked:  data/._metadata_HCpanel.txt.sb-f4823d1e-qihGek
    Untracked:  data/._metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/._~$RNASEQ_metadata.xlsx
    Untracked:  data/._~$metadata_HCpanel.xlsx
    Untracked:  data/._.xlsx
    Untracked:  data/AREelements/
    Untracked:  data/BaseComp/
    Untracked:  data/CleanLiftedPeaks_FC_primary/
    Untracked:  data/CompapaQTLpas/
    Untracked:  data/DIC_Viz/
    Untracked:  data/DNDS/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffDomandDE_example/
    Untracked:  data/DiffExpression/
    Untracked:  data/DiffIso_Nuclear/
    Untracked:  data/DiffIso_Nuclear_DF/
    Untracked:  data/DiffIso_Total/
    Untracked:  data/DiffSplice/
    Untracked:  data/DiffSplice_liftedJunc/
    Untracked:  data/DiffSplice_removeBad/
    Untracked:  data/DomDefGreaterX/
    Untracked:  data/DomStructure_4/
    Untracked:  data/DominantPAS/
    Untracked:  data/DominantPAS_DF/
    Untracked:  data/DoubleFilterUsageNumeric/
    Untracked:  data/EvalPantro5/
    Untracked:  data/H3K36me3/
    Untracked:  data/HC_filenames.txt
    Untracked:  data/HC_filenames.xlsx
    Untracked:  data/HumanMolPheno/
    Untracked:  data/IndInfoContent/
    Untracked:  data/InfoContent/
    Untracked:  data/Khan_prot/
    Untracked:  data/Li_eqtls/
    Untracked:  data/MapPantro6_meta.txt
    Untracked:  data/MapPantro6_meta.xlsx
    Untracked:  data/MapStats/
    Untracked:  data/NormalizedClusters/
    Untracked:  data/NuclearHvC/
    Untracked:  data/NuclearHvC_DF/
    Untracked:  data/OppositeSpeciesMap.txt
    Untracked:  data/OppositeSpeciesMap.xlsx
    Untracked:  data/OrthoExonBed/
    Untracked:  data/OverlapBenchmark/
    Untracked:  data/OverlappingPAS/
    Untracked:  data/PAS/
    Untracked:  data/PAS_SAF/
    Untracked:  data/PAS_doubleFilter/
    Untracked:  data/Peaks_5perc/
    Untracked:  data/Pheno_5perc/
    Untracked:  data/Pheno_5perc_DF_nuclear/
    Untracked:  data/Pheno_5perc_nuclear/
    Untracked:  data/Pheno_5perc_nuclear_old/
    Untracked:  data/Pheno_5perc_total/
    Untracked:  data/PhyloP/
    Untracked:  data/Pol2Chip/
    Untracked:  data/RNASEQ_metadata.txt
    Untracked:  data/RNASEQ_metadata_2Removed.txt
    Untracked:  data/RNASEQ_metadata_2Removed.xlsx
    Untracked:  data/RNASEQ_metadata_stranded.txt
    Untracked:  data/RNASEQ_metadata_stranded.txt.sb-e4bf31f0-ZGnGgl/
    Untracked:  data/RNASEQ_metadata_stranded.xlsx
    Untracked:  data/SignalSites/
    Untracked:  data/SignalSites_doublefilter/
    Untracked:  data/SpliceSite/
    Untracked:  data/TestAnnoBiasOE/
    Untracked:  data/TestMM2/
    Untracked:  data/TestMM2_AS/
    Untracked:  data/TestMM2_PrimaryRead/
    Untracked:  data/TestMM2_SeondaryRead/
    Untracked:  data/TestMM2_mismatch/
    Untracked:  data/TestMM2_quality/
    Untracked:  data/TestWithinMergePAS/
    Untracked:  data/Test_FC_methods/
    Untracked:  data/Threeprime2Ortho/
    Untracked:  data/TotalFractionPAS/
    Untracked:  data/TotalHvC/
    Untracked:  data/TrialFiltersMeta.txt
    Untracked:  data/TwoBadSampleAnalysis/
    Untracked:  data/Wang_ribo/
    Untracked:  data/apaQTLGenes/
    Untracked:  data/bioGRID/
    Untracked:  data/chainFiles/
    Untracked:  data/cleanPeaks_anno/
    Untracked:  data/cleanPeaks_byspecies/
    Untracked:  data/cleanPeaks_lifted/
    Untracked:  data/files4viz_nuclear/
    Untracked:  data/files4viz_nuclear_DF/
    Untracked:  data/gviz/
    Untracked:  data/leafviz/
    Untracked:  data/liftover_files/
    Untracked:  data/mediation/
    Untracked:  data/mediation_DF/
    Untracked:  data/metadata_HCpanel.txt
    Untracked:  data/metadata_HCpanel.xlsx
    Untracked:  data/metadata_HCpanel_extra.txt
    Untracked:  data/metadata_HCpanel_frompantro5.txt
    Untracked:  data/metadata_HCpanel_frompantro5.xlsx
    Untracked:  data/miRNA/
    Untracked:  data/multimap/
    Untracked:  data/orthoUTR/
    Untracked:  data/paiDecay/
    Untracked:  data/primaryLift/
    Untracked:  data/reverseLift/
    Untracked:  data/testQuant/
    Untracked:  data/~$RNASEQ_metadata.xlsx
    Untracked:  data/~$metadata_HCpanel.xlsx
    Untracked:  data/.xlsx
    Untracked:  output/._.DS_Store
    Untracked:  output/dAPAandDomEnrich.png
    Untracked:  output/dEandDomEnrich.png
    Untracked:  output/dtPlots/
    Untracked:  projectNotes.Rmd
    Untracked:  proteinModelSet.Rmd

Unstaged changes:
    Modified:   analysis/DICNotDEDP.Rmd
    Modified:   analysis/DeandNumPAS.Rmd
    Modified:   analysis/DirSelectionKhan.Rmd
    Modified:   analysis/ExploredAPA.Rmd
    Modified:   analysis/MMExpreiment.Rmd
    Modified:   analysis/OppositeMap.Rmd
    Modified:   analysis/PTM_analysis.Rmd
    Modified:   analysis/TotalDomStructure.Rmd
    Modified:   analysis/TotalVNuclearBothSpecies.Rmd
    Modified:   analysis/annotationInfo.Rmd
    Modified:   analysis/changeMisprimcut.Rmd
    Modified:   analysis/comp2apaQTLPAS.Rmd
    Modified:   analysis/correlationPhenos.Rmd
    Modified:   analysis/establishCutoffs.Rmd
    Modified:   analysis/investigatePantro5.Rmd
    Modified:   analysis/mRNADecay.Rmd
    Modified:   analysis/multiMap.Rmd
    Modified:   analysis/pol2.Rmd
    Modified:   analysis/signalsites_doublefilter.Rmd
    Modified:   analysis/speciesSpecific.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 313ee8a brimittleman 2020-05-12 add number of pas plots
html 33d6feb brimittleman 2020-05-07 Build site.
Rmd d680b86 brimittleman 2020-05-07 add number PAS plot for pp
html 10590ea brimittleman 2020-05-07 Build site.
Rmd ae7d82b brimittleman 2020-05-06 add non colored plot
html cb0a024 brimittleman 2020-04-30 Build site.
Rmd c253b1b brimittleman 2020-04-30 fix same no dapa bug, change simp color
html 81dcd9f brimittleman 2020-04-27 Build site.
Rmd d9ba030 brimittleman 2020-04-27 add equitability
html 7725e4d brimittleman 2020-04-27 Build site.
Rmd b653f27 brimittleman 2020-04-27 add simpson
html 448aa08 brimittleman 2020-04-24 Build site.
Rmd 93d00f3 brimittleman 2020-04-24 add info content

library(tidyverse)
── Attaching packages ────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ───────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(ggpubr)
Loading required package: magrittr

Attaching package: 'magrittr'
The following object is masked from 'package:purrr':

    set_names
The following object is masked from 'package:tidyr':

    extract
library(workflowr)
This is workflowr version 1.6.0
Run ?workflowr for help getting started
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggpubr':

    get_legend
The following object is masked from 'package:ggplot2':

    ggsave

Packages/functions for this:

vegan: diversity, can calculate shannon or simpson

I will probably do this in python because I can go gene by gene easier:

scipy stats example

This is good because I will be able to change the base and see how it effects the measurements

https://kite.com/python/docs/scipy.stats.entropy

default base is e

from scipy.stats import entropy
import numpy as np
from math import log, e
entropy([1/2, 1/2], base=2)
  
#shannon 
Shannon2 = -np.sum(pA*np.log2(pA))

I most likely want to use a uniform prior. for this. I could get more complicated in the future by weighting differences by utr and intron. this would help find “more surpising” results.

simpson- squares the probability

from ecopy import diversity 

diversity(x, medod="simpson")


#x- side x species matrix, sites are rows, columns are species - ie column counts, row == pas
library(vegan)
Loading required package: permute
Loading required package: lattice
This is vegan 2.5-3
data(BCI)
dim(BCI)
[1]  50 225
H <- diversity(BCI)
length(H)
[1] 50
diversity(c(.5,.5,.5))
[1] 1.098612
diversity(c(.25,.75,.25))
[1] 0.9502705
#more peak= lower 


diversity(c(.5,.5,.5), "simpson")
[1] 0.6666667
diversity(c(.25,.75,.25),"simpson")
[1] 0.56
#more peak= lower


diversity(c(.5,.5,.5), "inv")
[1] 3
diversity(c(.25,.75,.25),"inv")
[1] 2.272727

Seem like it is most simple to use the mean usages for this.
##Shannon

First test:

use entropy in python with different bases. -base 2 is the classic shannon and it uses the - when probabilities are given (ie uniform prior)

the python code will work with my meta file for now and take species as an input.

H=si=1pilog2pi

H=si=1pilnpi

mkdir ../data/InfoContent

python InfoContentShannon.py Human
python InfoContentShannon.py Chimp

Results:

HumanResInfo= read.table("../data/InfoContent/Human_InfoContent.txt", header = T,stringsAsFactors = F) %>% rename(Human_Base2=base2, Human_basee= basee)
ChimpResInfo= read.table("../data/InfoContent/Chimp_InfoContent.txt", header = T,stringsAsFactors = F) %>% rename(Chimp_Base2=base2, Chimp_basee= basee)

BothResInfo= HumanResInfo %>% inner_join(ChimpResInfo, by=c("gene", "numPAS")) %>% filter(numPAS > 1)

First plot the distributions:

BothResInfo_2= BothResInfo %>% select(gene, contains("Base2")) %>% gather("species", "base2", -gene)

ggplot(BothResInfo_2, aes(x=base2, fill=species)) + geom_density(alpha=.5) + scale_fill_brewer(palette = "Set1")+ labs(title="Shannon Information Content")
Warning: Removed 1 rows containing non-finite values (stat_density).

Version Author Date
7725e4d brimittleman 2020-04-27
448aa08 brimittleman 2020-04-24
wilcox.test(BothResInfo$Human_Base2, BothResInfo$Chimp_Base2, alternative = "greater")

    Wilcoxon rank sum test with continuity correction

data:  BothResInfo$Human_Base2 and BothResInfo$Chimp_Base2
W = 39254000, p-value < 2.2e-16
alternative hypothesis: true location shift is greater than 0

Human shift higher, ie less density:

BothResInfo_e= BothResInfo %>% select(gene, contains("basee")) %>% gather("species", "basee", -gene)

ggplot(BothResInfo_e, aes(x=basee, fill=species)) + geom_density(alpha=.3)
Warning: Removed 1 rows containing non-finite values (stat_density).

Version Author Date
448aa08 brimittleman 2020-04-24

I want to look at this by dominance:

ggplot(BothResInfo_2,aes(x=base2, fill=species)) + geom_histogram() + facet_grid(~species)
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Warning: Removed 1 rows containing non-finite values (stat_bin).

Version Author Date
448aa08 brimittleman 2020-04-24

Plot human vs chimp:

ggplot(BothResInfo,aes(x=Human_Base2,y= Chimp_Base2 )) + geom_point() + geom_abline(slope=1, intercept = 0) + stat_cor(col="blue") + geom_density_2d(col="blue")
Warning: Removed 1 rows containing non-finite values (stat_cor).
Warning: Removed 1 rows containing non-finite values (stat_density2d).
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
81dcd9f brimittleman 2020-04-27
448aa08 brimittleman 2020-04-24
ggplot(BothResInfo,aes(x=Human_Base2,y= Chimp_Base2 ,col=numPAS)) + geom_point(alpha=.4) + geom_abline(slope=1, intercept = 0) +labs(title="Shannon Index Colored by number of PAS")
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
7725e4d brimittleman 2020-04-27
448aa08 brimittleman 2020-04-24

Does number explain:

summary(lm(BothResInfo$Human_Base2 ~BothResInfo$numPAS))

Call:
lm(formula = BothResInfo$Human_Base2 ~ BothResInfo$numPAS)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.88694 -0.20022  0.06073  0.23527  0.53990 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.209838   0.008559   24.52   <2e-16 ***
BothResInfo$numPAS 0.314404   0.001527  205.93   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3166 on 8448 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared:  0.8339,    Adjusted R-squared:  0.8339 
F-statistic: 4.241e+04 on 1 and 8448 DF,  p-value: < 2.2e-16
summary(lm(BothResInfo$Chimp_Base2 ~BothResInfo$numPAS ))

Call:
lm(formula = BothResInfo$Chimp_Base2 ~ BothResInfo$numPAS)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.76846 -0.25131  0.06184  0.27657  0.67339 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.108685   0.010226   10.63   <2e-16 ***
BothResInfo$numPAS 0.307373   0.001824  168.49   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3784 on 8449 degrees of freedom
Multiple R-squared:  0.7706,    Adjusted R-squared:  0.7706 
F-statistic: 2.839e+04 on 1 and 8449 DF,  p-value: < 2.2e-16

So this is working but the number of PAS explains most of the variation. Maybe I can normalize this out and look at residuals:

BothResInfoRes= BothResInfo %>% mutate(HumanNorm=residuals(BothResInfo$Human_Base2~BothResInfo$numPAS),ChimpNorm=residuals(BothResInfo$Chimp_Base2~BothResInfo$numPAS))

pull in dominance:

HumanRes=read.table("../data/DomDefGreaterX/Human_AllGenes_DiffTop.txt", col.names = c("Human_PAS", "gene","Human_DiffDom"),stringsAsFactors = F)

ChimpRes=read.table("../data/DomDefGreaterX/Chimp_AllGenes_DiffTop.txt", col.names = c("Chimp_PAS", "gene","Chimp_DiffDom"),stringsAsFactors = F)

BothRes=HumanRes %>% inner_join(ChimpRes,by="gene")

BothRes_10=BothRes %>% filter(Chimp_DiffDom >=0.1 | Human_DiffDom>=0.1) %>% mutate(Set= ifelse(Human_PAS==Chimp_PAS,"Same", "Different"),cut=10) 
BothRes_20=BothRes %>% filter(Chimp_DiffDom >=0.2 | Human_DiffDom>=0.2) %>% mutate(Set= ifelse(Human_PAS==Chimp_PAS,"Same", "Different"),cut=20)
BothRes_30=BothRes %>% filter(Chimp_DiffDom >=0.3 | Human_DiffDom>=0.3) %>% mutate(Set= ifelse(Human_PAS==Chimp_PAS,"Same", "Different"),cut=30)
BothRes_40=BothRes %>% filter(Chimp_DiffDom >=0.4 | Human_DiffDom>=0.4) %>% mutate(Set= ifelse(Human_PAS==Chimp_PAS,"Same", "Different"),cut=40)
BothRes_50=BothRes %>% filter(Chimp_DiffDom >=0.5 | Human_DiffDom>=0.5) %>% mutate(Set= ifelse(Human_PAS==Chimp_PAS,"Same", "Different"),cut=50)
BothRes_60=BothRes %>% filter(Chimp_DiffDom >=0.6 | Human_DiffDom>=0.6) %>% mutate(Set= ifelse(Human_PAS==Chimp_PAS,"Same", "Different"),cut=60)
BothRes_70=BothRes %>% filter(Chimp_DiffDom >=0.7 | Human_DiffDom>=0.7) %>% mutate(Set= ifelse(Human_PAS==Chimp_PAS,"Same", "Different"),cut=70)
BothRes_80=BothRes %>% filter(Chimp_DiffDom >=0.8 | Human_DiffDom>=0.8) %>% mutate(Set= ifelse(Human_PAS==Chimp_PAS,"Same", "Different"),cut=80)
BothRes_90=BothRes %>% filter(Chimp_DiffDom >=0.9 | Human_DiffDom>=0.9) %>% mutate(Set= ifelse(Human_PAS==Chimp_PAS,"Same", "Different"),cut=90)

BothResAll=BothRes_10 %>% bind_rows(BothRes_20) %>% bind_rows(BothRes_30) %>% bind_rows(BothRes_40) %>% bind_rows(BothRes_50) %>% bind_rows(BothRes_60) %>% bind_rows(BothRes_70) %>% bind_rows(BothRes_80) %>% bind_rows(BothRes_90)

I want dominance in 1 or both at .4.

BothRes_40_each= BothRes_40 %>% mutate(Dom=ifelse(Human_DiffDom>=.4, ifelse(Chimp_DiffDom >=.4, "Both", "Human"), "Chimp"))

BothRes_40_each %>% group_by(Dom) %>% summarise(n())
# A tibble: 3 x 2
  Dom   `n()`
  <chr> <int>
1 Both   1565
2 Chimp   906
3 Human   257
BothRes_40_each %>% group_by(Set,Dom) %>% summarise(n())
# A tibble: 6 x 3
# Groups:   Set [2]
  Set       Dom   `n()`
  <chr>     <chr> <int>
1 Different Both     22
2 Different Chimp   114
3 Different Human    46
4 Same      Both   1543
5 Same      Chimp   792
6 Same      Human   211
BothRes_40_eachsm= BothRes_40_each %>% select(gene, Set, Dom)


BothResInfoDom= BothResInfo %>% full_join(BothRes_40_eachsm, by="gene", fill="None") %>%  mutate(Set= replace_na(Set, "None"),Dom= replace_na(Dom, "None"))


ggplot(BothResInfoDom,aes(x=Human_Base2,y= Chimp_Base2, col=Dom )) + geom_point(alpha=.3) + geom_abline(slope=1, intercept = 0) + scale_color_brewer(palette = "Set2") + labs(x="Human Information", y="Chimp Information", title="Shannon Information Index colored by whether gene has a dominant PAS")
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
81dcd9f brimittleman 2020-04-27
448aa08 brimittleman 2020-04-24
ggplot(BothResInfoDom,aes(x=Human_Base2,y= Chimp_Base2, col=Set )) + geom_point(alpha=.3) + geom_abline(slope=1, intercept = 0) + scale_color_brewer(palette = "Set2") +geom_density2d()+ labs(x="Human Information", y="Chimp Information", title="Shannon Information Index colored by Dominance Structure ")
Warning: Removed 1 rows containing non-finite values (stat_density2d).

Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
448aa08 brimittleman 2020-04-24
BothResInfoDom$numPAS=as.factor(BothResInfoDom$numPAS)
ggplot(BothResInfoDom,aes(x=Human_Base2,y= Chimp_Base2, col=numPAS )) + geom_point(alpha=.3) + geom_abline(slope=1, intercept = 0) + labs(x="Human Information", y="Chimp Information", title="Shannon Information Index colored by number of PAS") + facet_grid(~Dom)
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
81dcd9f brimittleman 2020-04-27
7725e4d brimittleman 2020-04-27
448aa08 brimittleman 2020-04-24
#+ scale_color_brewer(palette = "Spectral")

Dominance and number of PAS:

BothResInfoDom$numPAS=as.numeric(as.character(BothResInfoDom$numPAS))
ggplot(BothResInfoDom,aes(x=Dom, y=numPAS)) +geom_boxplot() +stat_compare_means() +  labs(x="Dominance Structure",y="Number of PAS", title="Number of PAS differ by dominance structure")

Version Author Date
7725e4d brimittleman 2020-04-27
448aa08 brimittleman 2020-04-24
ggplot(BothResInfoDom,aes(x=Set, y=numPAS)) +geom_boxplot() +stat_compare_means() +  labs(x="Dominance Structure",y="Number of PAS", title="Number of PAS differ by dominance structure")

Version Author Date
7725e4d brimittleman 2020-04-27

Ratio problem!!!!

but the confounder is biological- number of PAS.

Simpson

Try the simpson index.

skit-bio: http://scikit-bio.org/docs/0.1.3/math.diversity.alpha.html

D=Ri=1p2i

and

D=1Ri=1p2i

python infoContentSimpson.py Human
python infoContentSimpson.py Chimp
SimpHuman=read.table("../data/InfoContent/Human_SimpsonInfoContent.txt", header = T, stringsAsFactors = F) %>% rename(simpson_Human=simpson) %>% mutate(simpOpp_Human=1-simpson_Human)
SimpChimp=read.table("../data/InfoContent/Chimp_SimpsonInfoContent.txt", header = T, stringsAsFactors = F)%>% rename(simpson_Chimp=simpson)%>% mutate(simpOpp_Chimp=1-simpson_Chimp)

BothSimp= SimpHuman %>% inner_join(SimpChimp, by=c("gene", "numPAS")) %>% filter(numPAS > 1)

Gather and plot:

BothSimp_g= BothSimp %>% select(-contains("Opp")) %>% gather("species", "Simpson", -gene, -numPAS)
ggplot(BothSimp_g, aes(x=Simpson, fill=species)) + geom_density(alpha=.5) + scale_fill_brewer(palette = "Set1")+labs(title="Simpson Index")

Version Author Date
7725e4d brimittleman 2020-04-27
BothOppSimp_g= BothSimp %>% select(-contains("simpson")) %>% gather("species", "SimpsonOpp", -gene, -numPAS)

ggplot(BothOppSimp_g, aes(x=SimpsonOpp, fill=species)) + geom_density(alpha=.5) + scale_fill_brewer(palette = "Set1")+labs(title="Simpson Index (1-opp)")

Version Author Date
7725e4d brimittleman 2020-04-27
wilcox.test(BothSimp$simpOpp_Human, BothSimp$simpOpp_Chimp, alternative = "greater")

    Wilcoxon rank sum test with continuity correction

data:  BothSimp$simpOpp_Human and BothSimp$simpOpp_Chimp
W = 40925000, p-value < 2.2e-16
alternative hypothesis: true location shift is greater than 0

Histogram:

ggplot(BothSimp_g,aes(x=Simpson, fill=species)) + geom_histogram() + facet_grid(~species)+scale_fill_brewer(palette = "Set1")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Version Author Date
7725e4d brimittleman 2020-04-27
ggplot(BothOppSimp_g, aes(x=SimpsonOpp, fill=species)) + geom_histogram() + facet_grid(~species)+scale_fill_brewer(palette = "Set1")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Version Author Date
7725e4d brimittleman 2020-04-27

here, higher index is lower diversity= more dominance (opposite of shannon)

the opposite one is 1- sum. this is more dominance at lower values like shannon. I will go with this so the sign is the same.

BothInfoTypes=BothSimp %>% inner_join(BothResInfoRes, by=c("gene", "numPAS"))

BothInfoTypes_h=BothInfoTypes %>% select(gene,numPAS, simpOpp_Human, Human_Base2) %>% mutate(species="Human") %>% rename(Simpson= simpOpp_Human, Shannon=Human_Base2)
BothInfoTypes_c=BothInfoTypes %>% select(gene,numPAS, simpOpp_Chimp, Chimp_Base2) %>% mutate(species="Chimp")%>% rename(Simpson= simpOpp_Chimp, Shannon=Chimp_Base2)

BothInfoTypes_both=BothInfoTypes_h %>% bind_rows(BothInfoTypes_c)

ggplot(BothInfoTypes_both,aes(x=Simpson, y=Shannon, by=species, col=species)) +geom_point(alpha=.4) +geom_density2d(col="black") +  stat_cor(label.x=0) + geom_smooth(col="black",method = "lm") + facet_grid(~species) + labs(title="Correlation between Indicies") +theme(legend.position = "none")+scale_color_brewer(palette = "Set1")
Warning: Removed 1 rows containing non-finite values (stat_density2d).
Warning: Removed 1 rows containing non-finite values (stat_cor).
Warning: Removed 1 rows containing non-finite values (stat_smooth).
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
7725e4d brimittleman 2020-04-27

There is more variation at the low end here.

Compare human and chimp simpson by PAS number:

ggplot(BothInfoTypes,aes(x=simpOpp_Human,y= simpOpp_Chimp)) + geom_point(alpha=.4) + geom_abline(slope=1, intercept = 0)+labs(title="Simpson Index") + stat_cor(col="blue")+ geom_density_2d(col="blue")

Version Author Date
81dcd9f brimittleman 2020-04-27
7725e4d brimittleman 2020-04-27
ggplot(BothInfoTypes,aes(x=simpOpp_Human,y= simpOpp_Chimp ,col=numPAS)) + geom_point(alpha=.4) + geom_abline(slope=1, intercept = 0)+labs(title="Simpson Index Colored by number of PAS")

Version Author Date
81dcd9f brimittleman 2020-04-27
summary(lm(BothInfoTypes$simpOpp_Human ~BothResInfo$numPAS))

Call:
lm(formula = BothInfoTypes$simpOpp_Human ~ BothResInfo$numPAS)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.94165 -0.08859  0.00961  0.10528  0.43248 

Coefficients:
                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.4483250  0.0046537   96.34   <2e-16 ***
BothResInfo$numPAS 0.0595955  0.0008302   71.78   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1722 on 8449 degrees of freedom
Multiple R-squared:  0.3788,    Adjusted R-squared:  0.3788 
F-statistic:  5153 on 1 and 8449 DF,  p-value: < 2.2e-16
cor.test(BothInfoTypes$simpOpp_Human,BothResInfo$numPAS)

    Pearson's product-moment correlation

data:  BothInfoTypes$simpOpp_Human and BothResInfo$numPAS
t = 71.784, df = 8449, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.6020812 0.6285731
sample estimates:
     cor 
0.615501 
summary(lm(BothInfoTypes$simpOpp_Chimp ~BothResInfo$numPAS ))

Call:
lm(formula = BothInfoTypes$simpOpp_Chimp ~ BothResInfo$numPAS)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.79002 -0.10111  0.01491  0.11286  0.50115 

Coefficients:
                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)        0.3685223  0.0049596   74.31   <2e-16 ***
BothResInfo$numPAS 0.0651630  0.0008848   73.65   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1835 on 8449 degrees of freedom
Multiple R-squared:  0.391, Adjusted R-squared:  0.3909 
F-statistic:  5424 on 1 and 8449 DF,  p-value: < 2.2e-16
cor.test(BothInfoTypes$simpOpp_Chimp,BothResInfo$numPAS)

    Pearson's product-moment correlation

data:  BothInfoTypes$simpOpp_Chimp and BothResInfo$numPAS
t = 73.649, df = 8449, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.6121253 0.6380995
sample estimates:
      cor 
0.6252856 

Number of PAS is less correlated with this index.

Add in the dominanace structure to compare to simpson:

BothResBothInfoDom= BothInfoTypes %>% full_join(BothRes_40_eachsm, by="gene", fill="None") %>%  mutate(Set= replace_na(Set, "None"),Dom= replace_na(Dom, "None"))


ggplot(BothResBothInfoDom,aes(x=simpOpp_Human,y= simpOpp_Chimp, col=Dom )) + geom_point(alpha=.3) + geom_abline(slope=1, intercept = 0) + scale_color_brewer(palette = "Set2") + labs(x="Human Simpson", y="Chimp Simpson", title="Simpson Information Index colored by whether gene has a dominant PAS")

Version Author Date
81dcd9f brimittleman 2020-04-27
7725e4d brimittleman 2020-04-27
ggplot(BothResBothInfoDom,aes(x=simpOpp_Human,y= simpOpp_Chimp, col=Set )) + geom_point(alpha=.3) + geom_abline(slope=1, intercept = 0) + scale_color_brewer(palette = "Set2") +geom_density2d()+ labs(x="Human Simpson", y="Chimp Simpson", title="Simpson Information Index colored by Dominance Structure ")

Version Author Date
7725e4d brimittleman 2020-04-27
BothResBothInfoDom$numPAS=as.factor(BothResBothInfoDom$numPAS)
ggplot(BothResBothInfoDom,aes(x=simpOpp_Human,y= simpOpp_Chimp, col=numPAS )) + geom_point(alpha=.3) + geom_abline(slope=1, intercept = 0) + labs(x="Human Simpson", y="Chimp Simpson", title="Simpson Information Index colored by number of PAS ") + facet_grid(~Dom)

Version Author Date
81dcd9f brimittleman 2020-04-27
7725e4d brimittleman 2020-04-27
#+ scale_color_brewer(palette = "Spectral")

Shannon Equitability

Equitability. Shannon diversity divided by the logarithm of number of taxa. This measures the evenness with which individuals are divided among the taxa present.

Shannon’s equitability (EH) measures the evenness of a community and can be easily calculated by diving the value of H with H_max, which equals to lnS(S=number of species encountered). Its value ranges between 0 and 1, with being complete evenness. (0-1)

Eh=H/log2(NumPAS)

BothResBothInfoDomEH=BothResBothInfoDom %>% mutate(human_EH=Human_Base2/log2(as.numeric(as.character(numPAS))), chimp_EH=Chimp_Base2/log2(as.numeric(as.character(numPAS))))


BothEH= BothResBothInfoDomEH %>% select(gene, numPAS, human_EH,chimp_EH) %>% gather("species", "ShannonEH", -gene, -numPAS)

ggplot(BothEH, aes(x=ShannonEH, fill=species)) + geom_density(alpha=.5) + scale_fill_brewer(palette = "Set1")+labs(title="Shannon equitability", x="Shannon equitability")
Warning: Removed 1 rows containing non-finite values (stat_density).

Version Author Date
81dcd9f brimittleman 2020-04-27
wilcox.test(BothResBothInfoDomEH$human_EH, BothResBothInfoDomEH$chimp_EH)

    Wilcoxon rank sum test with continuity correction

data:  BothResBothInfoDomEH$human_EH and BothResBothInfoDomEH$chimp_EH
W = 42395000, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
BothResBothInfoDomEH$numPAS=as.numeric(as.character(BothResBothInfoDomEH$numPAS))
ggplot(BothResBothInfoDomEH,aes(x=human_EH,y= chimp_EH )) + geom_point(alpha=.4) + geom_abline(slope=1, intercept = 0) +labs(title="Shannon equitability") + stat_cor(col="blue")+ geom_density_2d(col="blue")
Warning: Removed 1 rows containing non-finite values (stat_cor).
Warning: Removed 1 rows containing non-finite values (stat_density2d).
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
81dcd9f brimittleman 2020-04-27
BothResBothInfoDomEH$numPAS=as.numeric(as.character(BothResBothInfoDomEH$numPAS))
ggplot(BothResBothInfoDomEH,aes(x=human_EH,y= chimp_EH ,col=numPAS)) + geom_point(alpha=.4) + geom_abline(slope=1, intercept = 0) +labs(title="Shannon equitability Colored by number of PAS")
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
81dcd9f brimittleman 2020-04-27
summary(lm(BothResBothInfoDomEH$human_EH ~BothResBothInfoDomEH$numPAS))

Call:
lm(formula = BothResBothInfoDomEH$human_EH ~ BothResBothInfoDomEH$numPAS)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.90216 -0.07951  0.02225  0.10510  0.32953 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                 0.5905281  0.0044589  132.44   <2e-16 ***
BothResBothInfoDomEH$numPAS 0.0399720  0.0007954   50.25   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.165 on 8448 degrees of freedom
  (1 observation deleted due to missingness)
Multiple R-squared:  0.2301,    Adjusted R-squared:   0.23 
F-statistic:  2525 on 1 and 8448 DF,  p-value: < 2.2e-16
summary(lm(BothResBothInfoDomEH$chimp_EH ~BothResBothInfoDomEH$numPAS ))

Call:
lm(formula = BothResBothInfoDomEH$chimp_EH ~ BothResBothInfoDomEH$numPAS)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.82198 -0.10698  0.02453  0.12846  0.40625 

Coefficients:
                             Estimate Std. Error t value Pr(>|t|)    
(Intercept)                 0.5058251  0.0053208   95.06   <2e-16 ***
BothResBothInfoDomEH$numPAS 0.0439612  0.0009492   46.31   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1969 on 8449 degrees of freedom
Multiple R-squared:  0.2025,    Adjusted R-squared:  0.2024 
F-statistic:  2145 on 1 and 8449 DF,  p-value: < 2.2e-16

This normalizes the number of PAS.

Correlation between values:

BothInfoTypes_eh_h=BothResBothInfoDomEH %>% select(gene,numPAS, simpOpp_Human, human_EH) %>% mutate(species="Human") %>% rename(Simpson= simpOpp_Human, ShannonEH=human_EH)
BothInfoTypes_eh_c=BothResBothInfoDomEH %>% select(gene,numPAS, simpOpp_Chimp, chimp_EH) %>% mutate(species="Chimp")%>% rename(Simpson= simpOpp_Chimp, ShannonEH=chimp_EH)

BothInfoTypes_bothEH=BothInfoTypes_eh_h %>% bind_rows(BothInfoTypes_eh_c)

ggplot(BothInfoTypes_bothEH,aes(x=Simpson, y=ShannonEH, by=species, col=species)) +geom_point(alpha=.4) +geom_density2d(col="black") +  stat_cor(label.x=0) + geom_smooth(col="black",method = "lm") + facet_grid(~species) + labs(title="Correlation between Indicies") +theme(legend.position = "none")+scale_color_brewer(palette = "Set1")
Warning: Removed 1 rows containing non-finite values (stat_density2d).
Warning: Removed 1 rows containing non-finite values (stat_cor).
Warning: Removed 1 rows containing non-finite values (stat_smooth).
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
81dcd9f brimittleman 2020-04-27

Look at it with dominance:

ggplot(BothResBothInfoDomEH,aes(x=human_EH,y= chimp_EH, col=Dom )) + geom_point(alpha=.3) + geom_abline(slope=1, intercept = 0) + scale_color_brewer(palette = "Set2") + labs(x="Human equitability", y="Chimp equitability", title="Shannon equitability colored by whether gene has a dominant PAS")
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
81dcd9f brimittleman 2020-04-27
ggplot(BothResBothInfoDomEH,aes(x=human_EH,y= chimp_EH, col=Set )) + geom_point(alpha=.3) + geom_abline(slope=1, intercept = 0) + scale_color_brewer(palette = "Set2") +geom_density2d()+ labs(x="Human equitability", y="Chimp equitability", title="Shannon equitability colored by Dominance Structure")
Warning: Removed 1 rows containing non-finite values (stat_density2d).

Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
81dcd9f brimittleman 2020-04-27
BothResBothInfoDomEH$numPAS=as.factor(BothResBothInfoDomEH$numPAS)
ggplot(BothResBothInfoDomEH,aes(x=human_EH,y= chimp_EH, col=numPAS )) + geom_point(alpha=.3) + geom_abline(slope=1, intercept = 0) + labs(x="Human equitability", y="Chimp equitability", title="Shannon Equitability colored by number of PAS ") + facet_grid(~Dom)
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
81dcd9f brimittleman 2020-04-27

plot simpson h/c colors:

ggplot(BothOppSimp_g, aes(x=SimpsonOpp, fill=species)) + geom_density(alpha=.5) + scale_fill_brewer(palette = "Dark2",labels=c("Chimp", "Human"))+labs(title="Simpson Index", x="Simpson Index")+ theme_classic2()

Version Author Date
cb0a024 brimittleman 2020-04-30

Plot only 1 color to demonstrate:

ggplot(BothOppSimp_g, aes(x=SimpsonOpp )) + geom_density(fill="grey") +labs(title="Simpson Index", x="Simpson Index")+ theme_classic2()

Version Author Date
10590ea brimittleman 2020-05-07

Plot number of PAS and info content to use:

ggplot(BothInfoTypes,aes(x=simpOpp_Human,y= simpOpp_Chimp ,col=numPAS)) + geom_point(alpha=.4) + geom_abline(slope=1, intercept = 0)+labs(title="Simpson Index Colored by number of PAS", x="Human", y="Chimp") + theme_classic()

Version Author Date
33d6feb brimittleman 2020-05-07

Plot shannon with HC colors

ggplot(BothResInfo_2, aes(x=base2, fill=species)) + geom_density(alpha=.5) + scale_fill_brewer(palette = "Dark2",labels=c("Chimp", "Human"))+labs(title="Shannon Index", x="Simpson Index")+ theme_classic2()
Warning: Removed 1 rows containing non-finite values (stat_density).

ggplot(BothInfoTypes,aes(x=Human_Base2,y= Chimp_Base2 ,col=numPAS)) + geom_point(alpha=.4) + geom_abline(slope=1, intercept = 0)+labs(title="Shannon Index Colored by number of PAS", x="Human", y="Chimp") + theme_classic()
Warning: Removed 1 rows containing missing values (geom_point).

Plot number of PAS by index:

ggplot(BothInfoTypes,aes(x=numPAS,y= Chimp_Base2 )) + geom_point(alpha=.4) + stat_cor()+ theme_classic()

ggplot(BothInfoTypes,aes(x=numPAS,y= Human_Base2 )) + geom_point(alpha=.4) + stat_cor()+ theme_classic()
Warning: Removed 1 rows containing non-finite values (stat_cor).
Warning: Removed 1 rows containing missing values (geom_point).

BothInfoTypesShanG= BothInfoTypes %>% select(gene, numPAS,Human_Base2,Chimp_Base2 )  %>% rename(Human=Human_Base2, Chimp=Chimp_Base2) %>% gather("Species", "value", -gene, -numPAS) 

shanoNum=ggplot(BothInfoTypesShanG,aes(x=numPAS,y= value ,col=Species)) + geom_point(alpha=.4) + stat_cor(col="black",label.y.npc="bottom")+ theme_classic() + facet_grid(~Species) + scale_color_brewer(palette = "Dark2") + labs(y="Shannon Information Content", title="Shannon Information Content and PAS number", x= "number of PAS in gene") 

shanoNum
Warning: Removed 1 rows containing non-finite values (stat_cor).
Warning: Removed 1 rows containing missing values (geom_point).

BothInfoTypesSimpG= BothInfoTypes %>% select(gene, numPAS,simpOpp_Human,simpOpp_Chimp )  %>% rename(Human=simpOpp_Human, Chimp=simpOpp_Chimp) %>% gather("Species", "value", -gene, -numPAS) 

simpnum=ggplot(BothInfoTypesSimpG,aes(x=numPAS,y= value ,col=Species)) + geom_point(alpha=.4) + stat_cor(col="black",label.y.npc="bottom")+ theme_classic() + facet_grid(~Species) + scale_color_brewer(palette = "Dark2")+ labs(y="Simpson Diversity", title="Simpson Diversity and PAS number", x= "number of PAS in gene") 

simpnum

plot_grid(shanoNum,simpnum, nrow=2)
Warning: Removed 1 rows containing non-finite values (stat_cor).
Warning: Removed 1 rows containing missing values (geom_point).


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] vegan_2.5-3     lattice_0.20-38 permute_0.9-4   cowplot_0.9.4  
 [5] workflowr_1.6.0 ggpubr_0.2      magrittr_1.5    forcats_0.3.0  
 [9] stringr_1.3.1   dplyr_0.8.0.1   purrr_0.3.2     readr_1.3.1    
[13] tidyr_0.8.3     tibble_2.1.1    ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4.6       lubridate_1.7.4    assertthat_0.2.0  
 [4] rprojroot_1.3-2    digest_0.6.18      utf8_1.1.4        
 [7] R6_2.3.0           cellranger_1.1.0   plyr_1.8.4        
[10] backports_1.1.2    evaluate_0.12      httr_1.3.1        
[13] pillar_1.3.1       rlang_0.4.0        lazyeval_0.2.1    
[16] readxl_1.1.0       rstudioapi_0.10    whisker_0.3-2     
[19] Matrix_1.2-15      reticulate_1.10    rmarkdown_1.10    
[22] labeling_0.3       munsell_0.5.0      broom_0.5.1       
[25] compiler_3.5.1     httpuv_1.4.5       modelr_0.1.2      
[28] pkgconfig_2.0.2    mgcv_1.8-25        htmltools_0.3.6   
[31] tidyselect_0.2.5   fansi_0.4.0        crayon_1.3.4      
[34] withr_2.1.2        later_0.7.5        MASS_7.3-51.1     
[37] grid_3.5.1         nlme_3.1-137       jsonlite_1.6      
[40] gtable_0.2.0       git2r_0.26.1       scales_1.0.0      
[43] cli_1.1.0          stringi_1.2.4      reshape2_1.4.3    
[46] fs_1.3.1           promises_1.0.1     xml2_1.2.0        
[49] generics_0.0.2     RColorBrewer_1.1-2 tools_3.5.1       
[52] glue_1.3.0         hms_0.4.2          parallel_3.5.1    
[55] yaml_2.2.0         colorspace_1.3-2   cluster_2.0.7-1   
[58] rvest_0.3.2        knitr_1.20         haven_1.1.2