Last updated: 2019-05-09

Checks: 6 0

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_UTR.sh
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/FC_newPeaks_olddata.sh
    Untracked:  code/LC_samplegroups.py
    Untracked:  code/README.md
    Untracked:  code/Rplots.pdf
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/aAPAqtl_nominal39ind.sh
    Untracked:  code/apaQTLCorrectPvalMakeQQ_4pc.R
    Untracked:  code/apaQTL_Nominal_4pc.sh
    Untracked:  code/apaQTL_permuted.4pc.sh
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/bothFrac_FC.sh
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/extractGenotypes.py
    Untracked:  code/fc2leafphen.py
    Untracked:  code/finalPASbed2SAF.py
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFChead_summary.py
    Untracked:  code/get100upPAS.py
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/log/
    Untracked:  code/makeSAFbothfrac5perc.py
    Untracked:  code/removeloc_pheno.py
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/run_leafcutterDiffIso.sh
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/selectNominalPvalues.py
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/utrdms2saf.py
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/PAS/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/README.md
    Untracked:  data/Reads2UTR/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/

Unstaged changes:
    Modified:   analysis/PASusageQC.Rmd
    Modified:   analysis/corrbetweenind.Rmd
    Modified:   analysis/rerunQTL_changePC.Rmd
    Deleted:    code/Upstream10Bases_general.py
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/bed2saf.py
    Modified:   code/config.yaml
    Deleted:    code/test.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 1c60a3a brimittleman 2019-05-09 add metadata
html 144c00b brimittleman 2019-05-08 Build site.
Rmd 5e39f1c brimittleman 2019-05-08 choose pcs and start qtl rerun
html f5af9c6 brimittleman 2019-05-08 Build site.
Rmd 1ba7d2b brimittleman 2019-05-08 add pca

library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ─────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
totalqqnorm=read.table("../data/phenotype_5perc/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm.allChrom", col.names = c('Chr',  'start',    'end',  'ID',   'NA18486',  'NA18498',  'NA18499',  'NA18501',  'NA18502',  'NA18504', 'NA18505',   'NA18508',  'NA18510',  'NA18511',  'NA18516',  'NA18517',  'NA18519',  'NA18520',  'NA18522',  'NA18852', 'NA18853',   'NA18855',  'NA18856',  'NA18858',  'NA18861',  'NA18862',  'NA18870',  'NA18907',  'NA18909',  'NA18912', 'NA18913',   'NA18916',  'NA19092',  'NA19093',  'NA19101',  'NA19119',  'NA19128',  'NA19130',  'NA19131',  'NA19137','NA19138',    'NA19140',  'NA19141',  'NA19144',  'NA19152',  'NA19153',  'NA19160',  'NA19171',  'NA19193',  'NA19200','NA19207',    'NA19209',  'NA19210',  'NA19223',  'NA19225',  'NA19238',  'NA19239',  'NA19257'))

totalqqnorm_matrix=as.matrix(totalqqnorm %>% select(-Chr, -start, -end, -ID))

RUn PCA:

pca_tot_peak=prcomp(totalqqnorm_matrix, center=T,scale=T)
pca_tot_df=as.data.frame(pca_tot_peak$rotation) %>% rownames_to_column(var="lib") %>% select(1:11)

pca_tot_df_fix=bind_cols(line=pca_tot_df[,dim(pca_tot_df)[[2]]],pca_tot_df[,3:dim(pca_tot_df)[[2]]-1])

Variance explained:

eigs_tot <- pca_tot_peak$sdev^2
proportion_tot = eigs_tot/sum(eigs_tot)

plot(proportion_tot)

Version Author Date
f5af9c6 brimittleman 2019-05-08
nuclearqqnorm=read.table("../data/phenotype_5perc/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm.allChrom", col.names = c('Chr',  'start',    'end',  'ID',   'NA18486',  'NA18498',  'NA18499',  'NA18501',  'NA18502',  'NA18504', 'NA18505',   'NA18508',  'NA18510',  'NA18511',  'NA18516',  'NA18517',  'NA18519',  'NA18520',  'NA18522',  'NA18852', 'NA18853',   'NA18855',  'NA18856',  'NA18858',  'NA18861',  'NA18862',  'NA18870',  'NA18907',  'NA18909',  'NA18912', 'NA18913',   'NA18916',  'NA19092',  'NA19093',  'NA19101',  'NA19119',  'NA19128',  'NA19130',  'NA19131',  'NA19137','NA19138',    'NA19140',  'NA19141',  'NA19144',  'NA19152',  'NA19153',  'NA19160',  'NA19171',  'NA19193',  'NA19200','NA19207',    'NA19209',  'NA19210',  'NA19223',  'NA19225',  'NA19238',  'NA19239',  'NA19257'))

nuclearqqnorm_matrix=as.matrix(nuclearqqnorm %>% select(-Chr, -start, -end, -ID))
pca_nuc_peak=prcomp(nuclearqqnorm_matrix, center=T,scale=T)
pca_nuc_df=as.data.frame(pca_nuc_peak$rotation) %>% rownames_to_column(var="lib") %>% select(1:11)

pca_nuc_df_fix=bind_cols(line=pca_nuc_df[,dim(pca_nuc_df)[[2]]],pca_nuc_df[,3:dim(pca_nuc_df)[[2]]-1])

Variance explained:

eigs_nuc <- pca_nuc_peak$sdev^2
proportion_nuc = eigs_nuc/sum(eigs_nuc)

plot(proportion_nuc)

Version Author Date
f5af9c6 brimittleman 2019-05-08

Plot together:

both_prop=as.data.frame(cbind(PCs=seq(1,54,1),Total=proportion_tot,Nuclear=proportion_nuc))

both_prop_melt=melt(both_prop, id.var=c("PCs"), variable.name="Fraction",value.name = "VariationExplained" )
ggplot(both_prop_melt, aes(x=PCs, y=VariationExplained,group=Fraction, color=Fraction)) + geom_line() + geom_vline(xintercept = 6, col="red") + annotate("text", label="6 PCs", x=10, y=.1) + labs(title="Proportion of variance explained \nin PCA on normalized APA usage")

Version Author Date
f5af9c6 brimittleman 2019-05-08
both_prop_melt_filt=both_prop_melt %>% filter(PCs<10)

ggplot(both_prop_melt_filt, aes(x=PCs, y=VariationExplained,group=Fraction, color=Fraction)) + geom_line() + geom_vline(xintercept = 4, col="red") + annotate("text", label="4 PCs", x=5, y=.1) + labs(title="Proportion of variance explained \nin PCA on normalized APA usage")

Version Author Date
144c00b brimittleman 2019-05-08

WHich factors correlate with PCs:

metadata=read.table("../data/MetaDataSequencing.txt", stringsAsFactors = F, header = T)
metadata_tot=metadata %>% filter(fraction=="total") %>% select(batch,Sex, alive_avg, undiluted_avg, library_conc,ratio260_280)
metadata_nuc=metadata %>% filter(fraction=="nuclear") %>% select(batch,Sex, alive_avg, undiluted_avg, library_conc,ratio260_280)

Function from Ben

covariate_pc_pve_heatmap <- function(pc_df, covariate_df, title) {
  # Load in data
  pcs <- pc_df
  #pcs=pca_tot_df_fix
  covs <- covariate_df
  #covs=metadata_tot

# Remove unimportant columns
  pcs <- as.matrix(pcs[,2:dim(pcs)[[2]]])
  covs <- data.frame(as.matrix(covs[,1:dim(covs)[[2]]]))

  # Initialize PVE heatmap
  pve_map <- matrix(0, dim(covs)[2], dim(pcs)[2])
  colnames(pve_map) <- colnames(pcs)
  rownames(pve_map) <- colnames(covs)

  # Loop through each PC, COV Pair and take correlation
  num_pcs <- dim(pcs)[2]
  num_covs <- dim(covs)[2]
  for (num_pc in 1:num_pcs) {
    for (num_cov in 1:num_covs) {
      pc_vec <- pcs[,num_pc]
      cov_vec <- covs[,num_cov]
      lin_model <- lm(pc_vec ~ cov_vec)
      pve_map[num_cov, num_pc] <- summary(lin_model)$adj.r.squared
    }
  }
  pve_map
  ord <- hclust( dist(scale(pve_map), method = "euclidean"), method = "ward.D" )$order

  melted_mat <- melt(pve_map)
  colnames(melted_mat) <- c("Covariate", "PC","PVE")

  #  Use factors to represent covariate and pc name
  melted_mat$Covariate <- factor(melted_mat$Covariate, levels = rownames(pve_map)[ord])
  melted_mat$PC <- factor(melted_mat$PC)
  if (dim(pcs)[2] == 10) {
    levels(melted_mat$PC) <- c(levels(melted_mat$PC)[1],levels(melted_mat$PC)[3:10],levels(melted_mat$PC)[2])
  }
  if (dim(pcs)[2] == 21) {
    levels(melted_mat$PC) <- c(levels(melted_mat$PC)[1],levels(melted_mat$PC)[12],levels(melted_mat$PC)[15:21],levels(melted_mat$PC)[2:11], levels(melted_mat$PC)[13:14])
  }

  #  PLOT!
  heatmap <- ggplot(data=melted_mat, aes(x=Covariate, y=PC)) + geom_tile(aes(fill=PVE)) + scale_fill_gradient2(midpoint=-.05, guide="colorbar")
  heatmap <- heatmap + theme(text = element_text(size=14), panel.background = element_blank(), axis.text.x = element_text(angle = 90, vjust=.5))
  heatmap <- heatmap + labs(y="latent factor", title=title)

  # Save File
  return(heatmap)
}
covariate_pc_pve_heatmap(pca_tot_df,metadata_tot, title="Total PCs")

#covariate_pc_pve_heatmap(pca_nuc_df,metadata_nuc, title="Nuclear PCs")

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reshape2_1.4.3  forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0       cellranger_1.1.0 pillar_1.3.1     compiler_3.5.1  
 [5] git2r_0.23.0     plyr_1.8.4       workflowr_1.3.0  tools_3.5.1     
 [9] digest_0.6.18    lubridate_1.7.4  jsonlite_1.6     evaluate_0.12   
[13] nlme_3.1-137     gtable_0.2.0     lattice_0.20-38  pkgconfig_2.0.2 
[17] rlang_0.3.1      cli_1.0.1        rstudioapi_0.10  yaml_2.2.0      
[21] haven_1.1.2      withr_2.1.2      xml2_1.2.0       httr_1.3.1      
[25] knitr_1.20       hms_0.4.2        generics_0.0.2   fs_1.2.6        
[29] rprojroot_1.3-2  grid_3.5.1       tidyselect_0.2.5 glue_1.3.0      
[33] R6_2.3.0         readxl_1.1.0     rmarkdown_1.10   modelr_0.1.2    
[37] magrittr_1.5     whisker_0.3-2    backports_1.1.2  scales_1.0.0    
[41] htmltools_0.3.6  rvest_0.3.2      assertthat_0.2.0 colorspace_1.3-2
[45] labeling_0.3     stringi_1.2.4    lazyeval_0.2.1   munsell_0.5.0   
[49] broom_0.5.1      crayon_1.3.4