Last updated: 2019-06-13

Checks: 6 0

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/QTLexampleplots.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  analysis/eQTLoverlap.Rmd
    Untracked:  analysis/oldstuffNotNeeded.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
    Untracked:  code/._ApaQTL_nominalNonnorm.sh
    Untracked:  code/._BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/._FC_NucintornUpandDown.sh
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_intornUpandDownsteamPAS.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._HMMpermuteTotal.py
    Untracked:  code/._HmmPermute.py
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._NascentRNAdtPlot.sh
    Untracked:  code/._NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/._NascentRNAdtPlotNucPAS.sh
    Untracked:  code/._NascentRNAdtPlotTotPAS.sh
    Untracked:  code/._NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/._NascnetRNAdtPlotPAS.sh
    Untracked:  code/._NetSeq_fourthintronDT.sh
    Untracked:  code/._QTL2bed.py
    Untracked:  code/._QTL2bed_withstrand.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._TESplots100bp.sh
    Untracked:  code/._TESplots150bp.sh
    Untracked:  code/._TESplots200bp.sh
    Untracked:  code/._Untitled
    Untracked:  code/._ZipandTabPheno.sh
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._assignTotIntronpeak2intronlocs.sh
    Untracked:  code/._bam2BW_5primemost.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFracDTplot1stintron.sh
    Untracked:  code/._bothFracDTplot4thintron.sh
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNominal2SNPLOC.py
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._correctNomeqtl.R
    Untracked:  code/._dag.pdf
    Untracked:  code/._eQTLgenestestedapa.py
    Untracked:  code/._encodeRNADTplots.sh
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._extractseqfromqtlfastq.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixExandUnexeQTL
    Untracked:  code/._fixExandUnexeQTL.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._getAPAfromanyeQTL.py
    Untracked:  code/._getApapval4eqtl.py
    Untracked:  code/._getApapval4eqtl_unexp.py
    Untracked:  code/._getDownstreamIntronNuclear.py
    Untracked:  code/._getIntronDownstreamPAS.py
    Untracked:  code/._getIntronUpstreamPAS.py
    Untracked:  code/._getQTLalleles.py
    Untracked:  code/._getQTLfastq.sh
    Untracked:  code/._getUpstreamIntronNuclear.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._keep5perMAF.py
    Untracked:  code/._keepSNP_vcf.sh
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makeSNP2rsidfile.py
    Untracked:  code/._makeeQTLempirical_unexp.py
    Untracked:  code/._makeeQTLempiricaldist.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeBW_norm.sh
    Untracked:  code/._mergeBamNascent.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._mnase1stintron.sh
    Untracked:  code/._mnaseDT_fourthintron.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqDTplot1stIntron.sh
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._processYRIgen.py
    Untracked:  code/._qtlRegionseq.sh
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeXfromHmm.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._runCorrectNomEqtl.sh
    Untracked:  code/._runHMMpermuteAPAqtls.sh
    Untracked:  code/._runHMMpermuteeQTLS.sh
    Untracked:  code/._runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/._runMakeeQTLempirical.sh
    Untracked:  code/._run_getApaPval4eqtl.sh
    Untracked:  code/._run_getapafromeQTL.py
    Untracked:  code/._run_getapafromeQTL.sh
    Untracked:  code/._run_getapapval4eqtl_unexp.sh
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._run_sepUsagephen.sh
    Untracked:  code/._run_sepgenobychrom.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._sepUsagePhen.py
    Untracked:  code/._sepgenobychrom.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subsetApanoteGene.py
    Untracked:  code/._subsetUnexplainedeQTLs.py
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subsetpermAPAwithGenelist.py
    Untracked:  code/._subtrachfiveprimeUTR.sh
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._subtractfiveprimeUTR.sh
    Untracked:  code/._tabixSNPS.sh
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_nominal_nonNorm.err
    Untracked:  code/APAqtl_nominal_nonNorm.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/ApaQTL_nominalNonnorm.sh
    Untracked:  code/BothFracDTPlot1stintron.err
    Untracked:  code/BothFracDTPlot1stintron.out
    Untracked:  code/BothFracDTPlot4stintron.err
    Untracked:  code/BothFracDTPlot4stintron.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/BothFracDTPlotGeneRegions_norm.err
    Untracked:  code/BothFracDTPlotGeneRegions_norm.out
    Untracked:  code/BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/EncodeRNADTPlotGeneRegions.err
    Untracked:  code/EncodeRNADTPlotGeneRegions.out
    Untracked:  code/FC_NucintornUpandDown.sh
    Untracked:  code/FC_NucintronPASupandDown.err
    Untracked:  code/FC_NucintronPASupandDown.out
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_UTR.sh
    Untracked:  code/FC_intornUpandDownsteamPAS.sh
    Untracked:  code/FC_intronPASupandDown.err
    Untracked:  code/FC_intronPASupandDown.out
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/FC_newPeaks_olddata.sh
    Untracked:  code/HMMpermuteTotal.py
    Untracked:  code/HmmPermute.p
    Untracked:  code/HmmPermute.py
    Untracked:  code/LC_samplegroups.py
    Untracked:  code/NascentDTPlotGeneRegions.err
    Untracked:  code/NascentDTPlotGeneRegions.out
    Untracked:  code/NascentDTPlotPAS.err
    Untracked:  code/NascentDTPlotPAS.out
    Untracked:  code/NascentDTPlotPAS_3utr.err
    Untracked:  code/NascentDTPlotPAS_3utr.out
    Untracked:  code/NascentDTPlotPAS_firstintron.err
    Untracked:  code/NascentDTPlotPAS_firstintron.out
    Untracked:  code/NascentDTPlotPAS_intron.err
    Untracked:  code/NascentDTPlotPAS_intron.out
    Untracked:  code/NascentDTPlotPAS_nuc.err
    Untracked:  code/NascentDTPlotPAS_nuc.out
    Untracked:  code/NascentDTPlotPAS_tot.err
    Untracked:  code/NascentDTPlotPAS_tot.out
    Untracked:  code/NascentRNAdtPlot.sh
    Untracked:  code/NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/NascentRNAdtPlotFirstintronicPAS.sh
    Untracked:  code/NascentRNAdtPlotNucPAS.sh
    Untracked:  code/NascentRNAdtPlotTotPAS.sh
    Untracked:  code/NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/NascnetRNAdtPlotPAS.sh
    Untracked:  code/NetSeq_fourthintronDT.sh
    Untracked:  code/QTL2bed.py
    Untracked:  code/QTL2bed_withstrand.py
    Untracked:  code/README.md
    Untracked:  code/Rplots.pdf
    Untracked:  code/TESplots100bp.err
    Untracked:  code/TESplots100bp.out
    Untracked:  code/TESplots100bp.sh
    Untracked:  code/TESplots150bp.err
    Untracked:  code/TESplots150bp.out
    Untracked:  code/TESplots150bp.sh
    Untracked:  code/TESplots200bp.err
    Untracked:  code/TESplots200bp.out
    Untracked:  code/TESplots200bp.sh
    Untracked:  code/Untitled
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/ZipandTabPheno.sh
    Untracked:  code/aAPAqtl_nominal39ind.sh
    Untracked:  code/apaQTLCorrectPvalMakeQQ_4pc.R
    Untracked:  code/apaQTL_Nominal_4pc.sh
    Untracked:  code/apaQTL_permuted.4pc.sh
    Untracked:  code/apafacetboxplots.R
    Untracked:  code/apaqtlfacetboxplots.R
    Untracked:  code/assignNucIntonpeak2intronlocs.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignTotIntronpeak2intronlocs.sh
    Untracked:  code/assigntotPeak2Intronicregion.err
    Untracked:  code/assigntotPeak2Intronicregion.out
    Untracked:  code/bam2BW_5primemost.sh
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bam2bw_5primemost.err
    Untracked:  code/bam2bw_5primemost.out
    Untracked:  code/bothFracDTplot1stintron.sh
    Untracked:  code/bothFracDTplot4thintron.sh
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/bothFrac_FC.sh
    Untracked:  code/codingdms2bed.py
    Untracked:  code/convertNominal2SNPLOC.py
    Untracked:  code/correctNomeqtl.R
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/eQTLgenestestedapa.py
    Untracked:  code/encodeRNADTplots.sh
    Untracked:  code/extractGenotypes.py
    Untracked:  code/extractseqfromqtlfastq.py
    Untracked:  code/fc2leafphen.py
    Untracked:  code/finalPASbed2SAF.py
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/fix4su304corr.py
    Untracked:  code/fix4su604corr.py
    Untracked:  code/fix4sukalisto.py
    Untracked:  code/fixExandUnexeQTL
    Untracked:  code/fixExandUnexeQTL.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFChead_summary.py
    Untracked:  code/fixH3k12ac.py
    Untracked:  code/fixRNAhead4corr.py
    Untracked:  code/fixRNAkalisto.py
    Untracked:  code/fixgroupedtranscript.py
    Untracked:  code/fixhead_netseqfc.py
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.log
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
    Untracked:  code/get100upPAS.py
    Untracked:  code/getAPAfromanyeQTL.py
    Untracked:  code/getApapval4eqtl.py
    Untracked:  code/getApapval4eqtl_unexp.py
    Untracked:  code/getDownstreamIntronNuclear.py
    Untracked:  code/getIntronDownstreamPAS.py
    Untracked:  code/getIntronUpstreamPAS.py
    Untracked:  code/getQTLalleles.py
    Untracked:  code/getQTLfastq.sh
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getUpstreamIntronNuclear.py
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/grouptranscripts.py
    Untracked:  code/keep5perMAF.py
    Untracked:  code/keepSNP_vcf.sh
    Untracked:  code/log/
    Untracked:  code/makeSAFbothfrac5perc.py
    Untracked:  code/makeSNP2rsidfile.py
    Untracked:  code/makeeQTLempirical_unexp.py
    Untracked:  code/makeeQTLempiricaldist.py
    Untracked:  code/makegencondeTSSfile.py
    Untracked:  code/mergeBW_norm.sh
    Untracked:  code/mergeBWnorm.err
    Untracked:  code/mergeBWnorm.out
    Untracked:  code/mergeBamNacent.err
    Untracked:  code/mergeBamNacent.out
    Untracked:  code/mergeBamNascent.sh
    Untracked:  code/mnase1stintron.sh
    Untracked:  code/mnaseDTPlot1stintron.err
    Untracked:  code/mnaseDTPlot1stintron.out
    Untracked:  code/mnaseDTPlot4thintron.err
    Untracked:  code/mnaseDTPlot4thintron.out
    Untracked:  code/mnaseDT_fourthintron.sh
    Untracked:  code/netDTPlot4thintron.out
    Untracked:  code/netseqDTplot1stIntron.sh
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/netseqFC.sh
    Untracked:  code/neyDTPlot4thintron.err
    Untracked:  code/processYRIgen.py
    Untracked:  code/qtlFacetBoxplots.err
    Untracked:  code/qtlFacetBoxplots.out
    Untracked:  code/qtlRegionseq.sh
    Untracked:  code/qtlsPvalOppFrac.py
    Untracked:  code/removeXfromHmm.py
    Untracked:  code/removeloc_pheno.py
    Untracked:  code/runCorrectNomEqtl.sh
    Untracked:  code/runCorrectNomeqtl.err
    Untracked:  code/runCorrectNomeqtl.out
    Untracked:  code/runHMMpermute.err
    Untracked:  code/runHMMpermute.out
    Untracked:  code/runHMMpermuteAPAqtls.sh
    Untracked:  code/runHMMpermuteeQTLS.sh
    Untracked:  code/runHMMpermuteeQTLs.err
    Untracked:  code/runHMMpermuteeQTLs.out
    Untracked:  code/runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/runMakeEmpiricaleQTLs.err
    Untracked:  code/runMakeEmpiricaleQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLsunex.err
    Untracked:  code/runMakeEmpiricaleQTLsunex.out
    Untracked:  code/runMakeeQTLempirical.sh
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/run_getAPAfromanyeQTL.err
    Untracked:  code/run_getAPAfromanyeQTL.out
    Untracked:  code/run_getApaPval4eQTLs.err
    Untracked:  code/run_getApaPval4eQTLs.out
    Untracked:  code/run_getApaPval4eQTLsunexplained.err
    Untracked:  code/run_getApaPval4eQTLsunexplained.out
    Untracked:  code/run_getApaPval4eqtl.sh
    Untracked:  code/run_getapafromeQTL.sh
    Untracked:  code/run_getapapval4eqtl_unexp.sh
    Untracked:  code/run_leafcutterDiffIso.sh
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/run_qtlFacetBoxplots.sh
    Untracked:  code/run_sepUsagephen.sh
    Untracked:  code/run_sepgenobychrom.err
    Untracked:  code/run_sepgenobychrom.out
    Untracked:  code/run_sepgenobychrom.sh
    Untracked:  code/run_sepusage.err
    Untracked:  code/run_sepusage.out
    Untracked:  code/selectNominalPvalues.py
    Untracked:  code/sepUsagePhen.py
    Untracked:  code/sepgenobychrom.py
    Untracked:  code/seqQTLfastq.err
    Untracked:  code/seqQTLfastq.out
    Untracked:  code/seqQTLregion.err
    Untracked:  code/seqQTLregion.out
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/subsetApanoteGene.py
    Untracked:  code/subsetUnexplainedeQTLs.py
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subsetpermAPAwithGenelist.py
    Untracked:  code/subtract5UTR.err
    Untracked:  code/subtract5UTR.out
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/subtractExons.sh
    Untracked:  code/subtractfiveprimeUTR.sh
    Untracked:  code/tabixSNPS.sh
    Untracked:  code/tabixSNPs.err
    Untracked:  code/tabixSNPs.out
    Untracked:  code/transcriptdm2bed.py
    Untracked:  code/utrdms2saf.py
    Untracked:  code/vcf_keepsnps.err
    Untracked:  code/vcf_keepsnps.out
    Untracked:  code/zipandtabPhen.err
    Untracked:  code/zipandtabPhen.out
    Untracked:  data/._.DS_Store
    Untracked:  data/ApaByEgene/
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/EncodeRNA/
    Untracked:  data/ExampleQTLPlots/
    Untracked:  data/GeuvadisRNA/
    Untracked:  data/HMMqtls/
    Untracked:  data/Li_eQTLs/
    Untracked:  data/NascentRNA/
    Untracked:  data/PAS/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/QTLoverlap_nonNorm/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/bw_norm/
    Untracked:  data/eQTLs/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intronRNAratio/
    Untracked:  data/intron_analysis/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBW_norm/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/motifdistrupt/
    Untracked:  data/netseq/
    Untracked:  data/nonNorm_pheno/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/overlapeQTL_try2/
    Untracked:  data/overlapeQTLs/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg

Unstaged changes:
    Modified:   analysis/Readdistagainstfeatures.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/nascenttranscription.Rmd
    Modified:   analysis/nucintronicanalysis.Rmd
    Modified:   analysis/overlapapaqtlsandeqtls.Rmd
    Modified:   analysis/rna_netseq_h3k12ac.Rmd
    Modified:   code/BothFracDTPlotGeneRegions.sh
    Modified:   code/Snakefile
    Deleted:    code/Upstream10Bases_general.py
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_Nominal.sh
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/apaQTLsnake.err
    Modified:   code/bam2bw.sh
    Modified:   code/bed2saf.py
    Modified:   code/cluster.json
    Modified:   code/clusterfiltPAS.json
    Modified:   code/config.yaml
    Modified:   code/environment.yaml
    Modified:   code/makePheno.py
    Deleted:    code/test.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 02db3a7 brimittleman 2019-06-13 fixbug
html e783f5c brimittleman 2019-06-12 Build site.
Rmd 1f203f7 brimittleman 2019-06-12 add examples
html 5d71c2e brimittleman 2019-06-10 Build site.
Rmd c5fe1c2 brimittleman 2019-06-10 add motif disruption

In this analysis I will identify apaQTL that modify signal sites for the associated PAS. To do this I will look at the sequences 5bp up and downtream of each QTL snp and look for evidence of AATAAA disruption.

library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(BSgenome)
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:dplyr':

    combine, intersect, setdiff, union
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind,
    colMeans, colnames, colSums, dirname, do.call, duplicated,
    eval, evalq, Filter, Find, get, grep, grepl, intersect,
    is.unsorted, lapply, lengths, Map, mapply, match, mget, order,
    paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind,
    Reduce, rowMeans, rownames, rowSums, sapply, setdiff, sort,
    table, tapply, union, unique, unsplit, which, which.max,
    which.min
Loading required package: S4Vectors
Loading required package: stats4

Attaching package: 'S4Vectors'
The following objects are masked from 'package:dplyr':

    first, rename
The following object is masked from 'package:tidyr':

    expand
The following object is masked from 'package:base':

    expand.grid
Loading required package: IRanges

Attaching package: 'IRanges'
The following objects are masked from 'package:dplyr':

    collapse, desc, slice
The following object is masked from 'package:purrr':

    reduce
Loading required package: GenomeInfoDb
Loading required package: GenomicRanges
Loading required package: Biostrings
Loading required package: XVector

Attaching package: 'XVector'
The following object is masked from 'package:purrr':

    compact

Attaching package: 'Biostrings'
The following object is masked from 'package:base':

    strsplit
Loading required package: rtracklayer
library(workflowr)
This is workflowr version 1.3.0
Run ?workflowr for help getting started
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths

Get bedfiles for qtls with the strand:

python QTL2bed_withstrand.py Total 
python QTL2bed_withstrand.py Nuclear

Make bedfile with 5 bases upstream and downstream of snp. Names is gene:peak:loc and the score is the distance between PAS and the snp

totQTLbed=read.table("../data/apaQTLs/Total_apaQTLs4pc_5fdr.WITHSTRAND.bed", header = T, stringsAsFactors = F) %>%  mutate(start=as.integer(SNPstart)-4, end=as.integer(SNPend)+6,snpChrint=as.integer(SNPchr) ) %>% select(SNPchr, start, end, name, score, strand)

nucQTLbed=read.table("../data/apaQTLs/Nuclear_apaQTLs4pc_5fdr.WITHSTRAND.bed", header = T, stringsAsFactors = F) %>%  mutate(start=as.integer(SNPstart)-4, end=as.integer(SNPend)+6,snpChrint=as.integer(SNPchr) ) %>% select(SNPchr, start, end, name, score, strand)

Write these files so I can run bedtools nuc on them.

mkdir ../data/motifdistrupt
write.table(totQTLbed, file="../data/motifdistrupt/TotQTLregion.bed", col.names = F, row.names = F, quote = F, sep="\t")
write.table(nucQTLbed, file="../data/motifdistrupt/NucQTLregion.bed", col.names = F, row.names = F, quote = F, sep="\t")
sbatch qtlRegionseq.sh

Evaluate results:

totSeq=read.table("../data/motifdistrupt/TotQTLregionSequences.bed", header = F, stringsAsFactors = F, col.names =c("chr","start", "end", "name", "Dist", "strand", "pctAT", "pctGC", "numA", "numC", "numG", "numT", "numN", "numoth", "length", "seq") )

First plot the distance:

ggplot(totSeq,aes(x=Dist)) + geom_histogram(bins=100)

Version Author Date
e783f5c brimittleman 2019-06-12
nucSeq=read.table("../data/motifdistrupt/NucQTLregionSequences.bed", header = F, stringsAsFactors = F, col.names =c("chr","start", "end", "name", "Dist", "strand", "pctAT", "pctGC", "numA", "numC", "numG", "numT", "numN", "numoth", "length", "seq") )

First plot the distance:

ggplot(nucSeq,aes(x=Dist)) + geom_histogram(bins=100)

Version Author Date
e783f5c brimittleman 2019-06-12

Try with getting the sequences with bedtools getfasta (This reverse compliments the negative strand)

sbatch getQTLfastq.sh

extract the sequences from these to match with the nuc file above. This is important because this uses the reverse compliment. The snp is the 6th letter.
(fraction is Tot /Nuc)

python extractseqfromqtlfastq.py Tot
python extractseqfromqtlfastq.py Nuc
Totsequp=read.table("../data/motifdistrupt/TotQTLregionSequenceOnly.txt", header = F, stringsAsFactors = F, col.names = "CorrectSeq")
TotSeqComp=as.data.frame(cbind(totSeq,Totsequp)) %>% mutate(sig=ifelse(grepl("AATAAA",CorrectSeq),1, 0))
TotSeqCompSig=TotSeqComp %>% filter(sig==1)
TotSeqCompSig
  chr     start       end                     name Dist strand    pctAT
1  15 101610289 101610300     LRRK1:peak47802:utr3   67      + 0.818182
2  19  16438656  16438667      KLF2:peak64649:utr3  454      + 0.909091
3  19  16438656  16438667      KLF2:peak64650:utr3   63      + 0.909091
4  19  43978507  43978518    PHLDB3:peak66481:utr3 -746      - 1.000000
5   2 131132114 131132125    PTPN18:peak74525:utr3 -776      + 0.818182
6   2 197855147 197855158 ANKRD44:peak77452:intron   20      - 1.000000
     pctGC numA numC numG numT numN numoth length         seq  CorrectSeq
1 0.181818    8    1    1    1    0      0     11 AAAATAAACAG AAAATAAACAG
2 0.090909    8    1    0    2    0      0     11 AAAATAAAACT AAAATAAAACT
3 0.090909    8    1    0    2    0      0     11 AAAATAAAACT AAAATAAAACT
4 0.000000    1    0    0   10    0      0     11 ttttatttttt AAAAAATAAAA
5 0.181818    8    0    2    1    0      0     11 AGAAATAAAAG AGAAATAAAAG
6 0.000000    5    0    0    6    0      0     11 TTTATTTAAAA TTTTAAATAAA
  sig
1   1
2   1
3   1
4   1
5   1
6   1
Nucsequp=read.table("../data/motifdistrupt/NucQTLregionSequenceOnly.txt", header = F, stringsAsFactors = F, col.names = "CorrectSeq")
NucSeqComp=as.data.frame(cbind(nucSeq,Nucsequp)) %>% mutate(sig=ifelse(grepl("AATAAA",CorrectSeq),1, 0))
NucSeqCompSig=NucSeqComp %>% filter(sig==1)
NucSeqCompSig
   chr     start       end                   name   Dist strand    pctAT
1   15 101610289 101610300   LRRK1:peak47802:utr3     67      + 0.818182
2   15 101610289 101610300   LRRK1:peak47806:utr3  -2713      + 0.818182
3   19  16438656  16438667    KLF2:peak64649:utr3    454      + 0.909091
4   19  16438656  16438667    KLF2:peak64650:utr3     63      + 0.909091
5   19  43978507  43978518  PHLDB3:peak66481:utr3   -746      - 1.000000
6   19  58433644  58433655  ZNF418:peak68038:utr3     18      - 0.818182
7    2  33775278  33775289 RASGRP3:peak69728:utr3 -12759      + 1.000000
8    4  84367754  84367765 MRPS18C:peak99427:utr3 -14730      + 0.727273
9    6 167409236 167409247 MIR3939:peak119106:end   1476      - 1.000000
10   6 167409236 167409247 MIR3939:peak119107:end  -1662      - 1.000000
      pctGC numA numC numG numT numN numoth length         seq  CorrectSeq
1  0.181818    8    1    1    1    0      0     11 AAAATAAACAG AAAATAAACAG
2  0.181818    8    1    1    1    0      0     11 AAAATAAACAG AAAATAAACAG
3  0.090909    8    1    0    2    0      0     11 AAAATAAAACT AAAATAAAACT
4  0.090909    8    1    0    2    0      0     11 AAAATAAAACT AAAATAAAACT
5  0.000000    1    0    0   10    0      0     11 ttttatttttt AAAAAATAAAA
6  0.181818    3    2    0    6    0      0     11 cttttattaac GTTAATAAAAG
7  0.000000    8    0    0    3    0      0     11 ataataaataa ATAATAAATAA
8  0.272727    7    2    1    1    0      0     11 agccAATAAAA AGCCAATAAAA
9  0.000000    2    0    0    9    0      0     11 tattttttatt AATAAAAAATA
10 0.000000    2    0    0    9    0      0     11 tattttttatt AATAAAAAATA
   sig
1    1
2    1
3    1
4    1
5    1
6    1
7    1
8    1
9    1
10   1

These are pretty far from the peak and probably not the mechanism for these.

I can look at this another way by subsetting to those close to the peak.

TotSeqComp_Close=TotSeqComp %>% filter(abs(Dist)<200) %>% select(name,Dist,CorrectSeq,sig)
NucSeqComp_Close=NucSeqComp %>% filter(abs(Dist)<200) %>% select(name,Dist,CorrectSeq,sig)

Look at examples:

Nuclear:

Disrupt: - ZNF418 rs75991626 T C (break signal site for peak68038), also associated with increased usage of the downstream UTR pas.

  • LRRK1:peak47802:utr3 rs15342 T-C disrupt signal site for peak47802

  • KLF2:peak64650:utr3 rs11086029 T- A disrupt signal site for peak64650, increased usage of upstream pas still in UTR

  • ANKRD44:peak77452:intron rs715185 T-C disrupt signal site for ANKRD44

Creating site: - LOC102725022- peak43230 rs4566122 G->A creates a signal site for PAS

Total:

Disrupt: - ZNF418 rs75991626 T C (break signal site for peak68038), also associated with increased usage of the downstream UTR pas.

  • ANKRD44:peak77452:intron rs715185 T-C disrupt signal site for ANKRD44

  • KLF2:peak64650:utr3 rs11086029 T- A disrupt signal site for peak64650, increased usage of upstream pas still in UTR

Make boxplots for these:

I wrote the code for these in the example plots analysis

Fraction=$1 gene=$2 chrom=$3 snp=$4 peakID=$5

sbatch run_qtlFacetBoxplots.sh Nuclear ZNF418 19 rs75991626 peak68038

This is not the best way to look at this. It may be a snp in LD. Also this is the distance to the peak not the PAS.


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] reshape2_1.4.3       workflowr_1.3.0      BSgenome_1.50.0     
 [4] rtracklayer_1.42.0   Biostrings_2.50.1    XVector_0.22.0      
 [7] GenomicRanges_1.34.0 GenomeInfoDb_1.18.1  IRanges_2.16.0      
[10] S4Vectors_0.20.1     BiocGenerics_0.28.0  forcats_0.3.0       
[13] stringr_1.3.1        dplyr_0.8.0.1        purrr_0.3.2         
[16] readr_1.3.1          tidyr_0.8.3          tibble_2.1.1        
[19] ggplot2_3.1.1        tidyverse_1.2.1     

loaded via a namespace (and not attached):
 [1] Biobase_2.42.0              httr_1.3.1                 
 [3] jsonlite_1.6                modelr_0.1.2               
 [5] assertthat_0.2.0            GenomeInfoDbData_1.2.0     
 [7] cellranger_1.1.0            Rsamtools_1.34.0           
 [9] yaml_2.2.0                  pillar_1.3.1               
[11] backports_1.1.2             lattice_0.20-38            
[13] glue_1.3.0                  digest_0.6.18              
[15] rvest_0.3.2                 colorspace_1.3-2           
[17] htmltools_0.3.6             Matrix_1.2-15              
[19] plyr_1.8.4                  XML_3.98-1.16              
[21] pkgconfig_2.0.2             broom_0.5.1                
[23] haven_1.1.2                 zlibbioc_1.28.0            
[25] scales_1.0.0                whisker_0.3-2              
[27] BiocParallel_1.16.0         git2r_0.25.2               
[29] generics_0.0.2              withr_2.1.2                
[31] SummarizedExperiment_1.12.0 lazyeval_0.2.1             
[33] cli_1.0.1                   magrittr_1.5               
[35] crayon_1.3.4                readxl_1.1.0               
[37] evaluate_0.12               fs_1.2.6                   
[39] nlme_3.1-137                xml2_1.2.0                 
[41] tools_3.5.1                 hms_0.4.2                  
[43] matrixStats_0.54.0          munsell_0.5.0              
[45] DelayedArray_0.8.0          compiler_3.5.1             
[47] rlang_0.3.1                 grid_3.5.1                 
[49] RCurl_1.95-4.11             rstudioapi_0.10            
[51] labeling_0.3                bitops_1.0-6               
[53] rmarkdown_1.10              gtable_0.2.0               
[55] R6_2.3.0                    GenomicAlignments_1.18.0   
[57] lubridate_1.7.4             knitr_1.20                 
[59] rprojroot_1.3-2             stringi_1.2.4              
[61] Rcpp_1.0.0                  tidyselect_0.2.5