Last updated: 2019-05-03
Checks: 6 0
Knit directory: apaQTL/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190411)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: .Rprofile
Untracked: ._.DS_Store
Untracked: .gitignore
Untracked: _workflowr.yml
Untracked: analysis/._PASdescriptiveplots.Rmd
Untracked: analysis/._cuttoffPercUsage.Rmd
Untracked: analysis/cuttoffPercUsage.Rmd
Untracked: apaQTL.Rproj
Untracked: code/._FC_newPeaks_olddata.sh
Untracked: code/._LC_samplegroups.py
Untracked: code/._SnakefilePAS
Untracked: code/._SnakefilefiltPAS
Untracked: code/._aAPAqtl_nominal39ind.sh
Untracked: code/._apaQTLCorrectPvalMakeQQ.R
Untracked: code/._apaQTL_Nominal.sh
Untracked: code/._apaQTL_permuted.sh
Untracked: code/._bed2saf.py
Untracked: code/._bothFrac_FC.sh
Untracked: code/._callPeaksYL.py
Untracked: code/._chooseAnno2SAF.py
Untracked: code/._chooseSignalSite
Untracked: code/._chooseSignalSite.py
Untracked: code/._cluster.json
Untracked: code/._clusterPAS.json
Untracked: code/._clusterfiltPAS.json
Untracked: code/._config.yaml
Untracked: code/._config2.yaml
Untracked: code/._configOLD.yaml
Untracked: code/._convertNumeric.py
Untracked: code/._dag.pdf
Untracked: code/._extractGenotypes.py
Untracked: code/._fc2leafphen.py
Untracked: code/._filter5perc.R
Untracked: code/._filter5percPheno.py
Untracked: code/._filterpeaks.py
Untracked: code/._finalPASbed2SAF.py
Untracked: code/._fixFChead.py
Untracked: code/._fixFChead_bothfrac.py
Untracked: code/._make5percPeakbed.py
Untracked: code/._makeFileID.py
Untracked: code/._makePheno.py
Untracked: code/._makeSAFbothfrac5perc.py
Untracked: code/._mergeAllBam.sh
Untracked: code/._mergeByFracBam.sh
Untracked: code/._mergePeaks.sh
Untracked: code/._namePeaks.py
Untracked: code/._peak2PAS.py
Untracked: code/._peakFC.sh
Untracked: code/._pheno2countonly.R
Untracked: code/._quantassign2parsedpeak.py
Untracked: code/._run_leafcutterDiffIso.sh
Untracked: code/._selectNominalPvalues.py
Untracked: code/._snakemakePAS.batch
Untracked: code/._snakemakefiltPAS.batch
Untracked: code/._submit-snakemakePAS.sh
Untracked: code/._submit-snakemakefiltPAS.sh
Untracked: code/._subset_diffisopheno.py
Untracked: code/.snakemake/
Untracked: code/APAqtl_nominal.err
Untracked: code/APAqtl_nominal.out
Untracked: code/APAqtl_nominal_39.err
Untracked: code/APAqtl_nominal_39.out
Untracked: code/APAqtl_permuted.err
Untracked: code/APAqtl_permuted.out
Untracked: code/BothFracDTPlotGeneRegions.err
Untracked: code/BothFracDTPlotGeneRegions.out
Untracked: code/DistPAS2Sig.py
Untracked: code/FC_newPAS_olddata.err
Untracked: code/FC_newPAS_olddata.out
Untracked: code/FC_newPeaks_olddata.sh
Untracked: code/LC_samplegroups.py
Untracked: code/README.md
Untracked: code/Rplots.pdf
Untracked: code/Upstream100Bases_general.py
Untracked: code/aAPAqtl_nominal39ind.sh
Untracked: code/bam2bw.err
Untracked: code/bam2bw.out
Untracked: code/bothFrac_FC.err
Untracked: code/bothFrac_FC.out
Untracked: code/bothFrac_FC.sh
Untracked: code/dag.pdf
Untracked: code/dagPAS.pdf
Untracked: code/dagfiltPAS.pdf
Untracked: code/extractGenotypes.py
Untracked: code/fc2leafphen.py
Untracked: code/finalPASbed2SAF.py
Untracked: code/findbuginpeaks.R
Untracked: code/fixFChead_bothfrac.py
Untracked: code/get100upPAS.py
Untracked: code/getSeq100up.sh
Untracked: code/getseq100up.err
Untracked: code/getseq100up.out
Untracked: code/log/
Untracked: code/makeSAFbothfrac5perc.py
Untracked: code/run_DistPAS2Sig.err
Untracked: code/run_DistPAS2Sig.out
Untracked: code/run_distPAS2Sig.sh
Untracked: code/run_leafcutterDiffIso.sh
Untracked: code/run_leafcutter_ds.err
Untracked: code/run_leafcutter_ds.out
Untracked: code/selectNominalPvalues.py
Untracked: code/snakePASlog.out
Untracked: code/snakefiltPASlog.out
Untracked: code/subset_diffisopheno.py
Untracked: data/CompareOldandNew/
Untracked: data/DTmatrix/
Untracked: data/DiffIso/
Untracked: data/PAS/
Untracked: data/QTLGenotypes/
Untracked: data/README.md
Untracked: data/SignalSiteFiles/
Untracked: data/ThirtyNineIndQtl_nominal/
Untracked: data/apaQTLNominal/
Untracked: data/apaQTLPermuted/
Untracked: data/apaQTLs/
Untracked: data/assignedPeaks/
Untracked: data/bam/
Untracked: data/bam_clean/
Untracked: data/bam_waspfilt/
Untracked: data/bed_10up/
Untracked: data/bed_clean/
Untracked: data/bed_clean_sort/
Untracked: data/bed_waspfilter/
Untracked: data/bedsort_waspfilter/
Untracked: data/bothFrac_FC/
Untracked: data/exampleQTLs/
Untracked: data/fastq/
Untracked: data/filterPeaks/
Untracked: data/inclusivePeaks/
Untracked: data/inclusivePeaks_FC/
Untracked: data/mergedBG/
Untracked: data/mergedBW_byfrac/
Untracked: data/mergedBam/
Untracked: data/mergedbyFracBam/
Untracked: data/nuc_10up/
Untracked: data/nuc_10upclean/
Untracked: data/peakCoverage/
Untracked: data/peaks_5perc/
Untracked: data/phenotype/
Untracked: data/phenotype_5perc/
Untracked: data/sort/
Untracked: data/sort_clean/
Untracked: data/sort_waspfilter/
Untracked: nohup.out
Untracked: output/._.DS_Store
Untracked: output/dtPlots/
Untracked: output/fastqc/
Unstaged changes:
Modified: analysis/DiffIsoAnalysis.Rmd
Modified: analysis/PASusageQC.Rmd
Modified: analysis/corrbetweenind.Rmd
Deleted: code/Upstream10Bases_general.py
Modified: code/apaQTLCorrectPvalMakeQQ.R
Modified: code/apaQTL_permuted.sh
Modified: code/bed2saf.py
Deleted: code/test.txt
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 18604d4 | brimittleman | 2019-05-03 | remove points in graphs |
html | 208916d | brimittleman | 2019-05-03 | Build site. |
Rmd | 0c16f69 | brimittleman | 2019-05-03 | add result plots |
html | 53eeea4 | brimittleman | 2019-05-02 | Build site. |
Rmd | 2067946 | brimittleman | 2019-05-02 | add old vs new data usage analysis |
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1 ✔ purrr 0.3.2
✔ tibble 2.1.1 ✔ dplyr 0.8.0.1
✔ tidyr 0.8.3 ✔ stringr 1.3.1
✔ readr 1.3.1 ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
library(workflowr)
This is workflowr version 1.3.0
Run ?workflowr for help getting started
library(cowplot)
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
In this analysis I will compute the PAS usage for the new phenotypes in the old data. To make the info comparable and I will rerun feature counts with the filtered phenotypes for both the old and the new data.
Convert the filtered data to an SAF
python finalPASbed2SAF.py ../data/peaks_5perc/APApeak_Peaks_GeneLocAnno.Nuclear.5perc.fc ../data/CompareOldandNew/APApeak_5perc_Nuclear.SAF
python finalPASbed2SAF.py ../data/peaks_5perc/APApeak_Peaks_GeneLocAnno.Total.5perc.fc ../data/CompareOldandNew/APApeak_5perc_Total.SAF
Run feature counts:
sbatch FC_newPeaks_olddata.sh
Convert to phenotypes:
fix headers on FC
python fixFChead.py ../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fc ../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fixed.fc
python fixFChead_bothfrac.py ../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fc ../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fixed.fc
python fixFChead.py ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fc ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fixed.fc
python fixFChead_bothfrac.py ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fc ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fixed.fc
python makePheno.py ../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fixed.fc ../data/peakCoverage/file_id_mapping_Total_Transcript.txt ../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fixed.pheno.fc
python makePheno.py ../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fixed.fc ../data/peakCoverage/file_id_mapping_Total_Transcript.txt ../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fixed.pheno.fc
python makePheno.py ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fixed.fc ../data/peakCoverage/file_id_mapping_Nuclear_Transcript.txt ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fixed.pheno.fc
python makePheno.py ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fixed.fc ../data/peakCoverage/file_id_mapping_Nuclear_Transcript.txt ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fixed.pheno.fc
COunts only:
Rscript pheno2countonly.R -I ../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fixed.pheno.fc -O ../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fixed.pheno.CountsOnly
Rscript pheno2countonly.R -I ../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fixed.pheno.fc -O ../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fixed.pheno.CountsOnly
Rscript pheno2countonly.R -I ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fixed.pheno.fc -O ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fixed.pheno.CountsOnly
Rscript pheno2countonly.R -I ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fixed.pheno.fc -O ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fixed.pheno.CountsOnly
Convert to numeric
python convertNumeric.py ../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fixed.pheno.CountsOnly ../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fixed.pheno.CountsOnlyNumeric
python convertNumeric.py ../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fixed.pheno.CountsOnly ../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fixed.pheno.CountsOnlyNumeric
python convertNumeric.py ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fixed.pheno.CountsOnly ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fixed.pheno.CountsOnlyNumeric
python convertNumeric.py ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fixed.pheno.CountsOnly ../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fixed.pheno.CountsOnlyNumeric
Total New data
totalPeakUs_new=read.table("../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fixed.fc", header = T, stringsAsFactors = F) %>% select(-Chr,-Start,-End,-Strand,-Length)
ind=as.data.frame(colnames(totalPeakUs_new)[2:dim(totalPeakUs_new)[2]])
colnames(ind)=c("x")
ind=ind %>% separate(x,into=c("indiv", "fraction"), sep="_") %>%mutate(Individual=paste("NA",substring(indiv,2, 6), sep=""))
totalPeakUs_new_CountNum=read.table("../data/CompareOldandNew/Total/New5percPeaks_Total_newdata.fixed.pheno.CountsOnlyNumeric", col.names = ind$Individual)
#numeric with anno
totalPeakNew=as.data.frame(cbind(ID=totalPeakUs_new[,1], totalPeakUs_new_CountNum))
Total Old data
totalPeakUs_old=read.table("../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fixed.fc", header = T, stringsAsFactors = F) %>% select(-Chr,-Start,-End,-Strand,-Length)
totalPeakUs_old_CountNum=read.table("../data/CompareOldandNew/Total/New5percPeaks_Total_olddata.fixed.pheno.CountsOnlyNumeric", col.names = ind$Individual)
#numeric with anno
totalPeakold=as.data.frame(cbind(ID=totalPeakUs_old[,1], totalPeakUs_old_CountNum))
Seperate by batch
batch4=read.table("../data/MetaDataSequencing.txt", header=T,stringsAsFactors = F)%>% filter(fraction=="total") %>% select(line, batch) %>% filter(batch == 4)
newInd=batch4$line
totalPeakoldM=melt(totalPeakold, id.vars=c("ID"), value.name = "Usage", variable.name = "Individual") %>% mutate(New15=ifelse(Individual %in%newInd, "Yes", "No")) %>% group_by(New15,ID) %>% summarise(meanUsageOld=mean(Usage)) %>% spread(New15,meanUsageOld)
totalPeaknewM=melt(totalPeakNew, id.vars=c("ID"), value.name = "Usage", variable.name = "Individual") %>% mutate(New15=ifelse(Individual %in%newInd, "Yes", "No")) %>% group_by(New15,ID) %>% summarise(meanUsageNew=mean(Usage)) %>% spread(New15,meanUsageNew)
totalold=ggplot(totalPeakoldM,aes(x=No,y=Yes)) + geom_density2d() + labs(x="39 ind", y="15 ind", title="Total Usage Old data")
totalnew=ggplot(totalPeaknewM,aes(x=No,y=Yes)) + geom_density2d() + labs(x="39 ind", y="15 ind", title="Total Usage New data")
plot_grid(totalold,totalnew)
Version | Author | Date |
---|---|---|
208916d | brimittleman | 2019-05-03 |
Nuclear New data
nuclearPeakUs_new=read.table("../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fixed.fc", header = T, stringsAsFactors = F) %>% select(-Chr,-Start,-End,-Strand,-Length)
nuclearPeakUs_new_CountNum=read.table("../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_newdata.fixed.pheno.CountsOnlyNumeric", col.names = ind$Individual)
#numeric with anno
nuclearPeakNew=as.data.frame(cbind(ID=nuclearPeakUs_new[,1],nuclearPeakUs_new_CountNum))
Nuclear Old data
nuclearPeakUs_old=read.table("../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fixed.fc", header = T, stringsAsFactors = F) %>% select(-Chr,-Start,-End,-Strand,-Length)
nuclearPeakUs_old_CountNum=read.table("../data/CompareOldandNew/Nuclear/New5percPeaks_Nuclear_olddata.fixed.pheno.CountsOnlyNumeric", col.names = ind$Individual)
#numeric with anno
nuclearPeakold=as.data.frame(cbind(ID=nuclearPeakUs_old[,1], nuclearPeakUs_old_CountNum))
Seperate by batch
nuclearPeakoldM=melt(nuclearPeakold, id.vars=c("ID"), value.name = "Usage", variable.name = "Individual") %>% mutate(New15=ifelse(Individual %in%newInd, "Yes", "No")) %>% group_by(New15,ID) %>% summarise(meanUsageOld=mean(Usage)) %>% spread(New15,meanUsageOld)
nuclearPeaknewM=melt(nuclearPeakNew, id.vars=c("ID"), value.name = "Usage", variable.name = "Individual") %>% mutate(New15=ifelse(Individual %in%newInd, "Yes", "No")) %>% group_by(New15,ID) %>% summarise(meanUsageNew=mean(Usage)) %>% spread(New15,meanUsageNew)
nuclearold=ggplot(nuclearPeakoldM,aes(x=No,y=Yes)) + geom_density2d() + labs(x="39 ind", y="15 ind", title="Nuclear Usage Old data")
nuclearnew=ggplot(nuclearPeaknewM,aes(x=No,y=Yes)) + geom_density2d() + labs(x="39 ind", y="15 ind", title="Nuclear Usage New data")
plot_grid(nuclearold,nuclearnew)
Version | Author | Date |
---|---|---|
208916d | brimittleman | 2019-05-03 |
Subset to new peaks:
NewPeak=read.table( file="../data/peaks_5perc/NewVOldPeaks.txt", header = T) %>% filter(New=="new")
Subset total:
totalPeakoldM_new=totalPeakoldM %>% separate(ID, into = c("peak", "chr", "Start", "end","strand","id"),sep=":") %>% filter(peak %in% NewPeak$peak)
totalPeaknewM_new=totalPeaknewM %>% separate(ID, into = c("peak", "chr", "Start", "end","strand","id"),sep=":") %>% filter(peak %in% NewPeak$peak)
Plot:
totaloldnewpeak=ggplot(totalPeakoldM_new,aes(x=No,y=Yes)) + geom_density2d() + labs(x="39 ind", y="15 ind", title="Total Usage Old data \n New Peaks ")
totalnewnewpeak=ggplot(totalPeaknewM_new,aes(x=No,y=Yes))+ geom_density2d() + labs(x="39 ind", y="15 ind", title="Total Usage New data\n New Peaks ")
plot_grid(totaloldnewpeak,totalnewnewpeak)
Version | Author | Date |
---|---|---|
208916d | brimittleman | 2019-05-03 |
Subset total:
nuclearPeakoldM_new=nuclearPeakoldM %>% separate(ID, into = c("peak", "chr", "Start", "end","strand","id"),sep=":") %>% filter(peak %in% NewPeak$peak)
nuclearPeaknewM_new=nuclearPeaknewM %>% separate(ID, into = c("peak", "chr", "Start", "end","strand","id"),sep=":") %>% filter(peak %in% NewPeak$peak)
Plot:
nuclearoldnewpeak=ggplot(nuclearPeakoldM_new,aes(x=No,y=Yes)) + geom_density2d() + labs(x="39 ind", y="15 ind", title="nuclear Usage Old data \n New Peaks ")
nuclearnewnewpeak=ggplot(nuclearPeaknewM_new,aes(x=No,y=Yes)) + geom_density2d() + labs(x="39 ind", y="15 ind", title="nuclear Usage New data\n New Peaks ")
plot_grid(nuclearoldnewpeak,nuclearnewnewpeak)
Version | Author | Date |
---|---|---|
208916d | brimittleman | 2019-05-03 |
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] cowplot_0.9.4 workflowr_1.3.0 reshape2_1.4.3 forcats_0.3.0
[5] stringr_1.3.1 dplyr_0.8.0.1 purrr_0.3.2 readr_1.3.1
[9] tidyr_0.8.3 tibble_2.1.1 ggplot2_3.1.1 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 cellranger_1.1.0 pillar_1.3.1 compiler_3.5.1
[5] git2r_0.23.0 plyr_1.8.4 tools_3.5.1 digest_0.6.18
[9] lubridate_1.7.4 jsonlite_1.6 evaluate_0.12 nlme_3.1-137
[13] gtable_0.2.0 lattice_0.20-38 pkgconfig_2.0.2 rlang_0.3.1
[17] cli_1.0.1 rstudioapi_0.10 yaml_2.2.0 haven_1.1.2
[21] withr_2.1.2 xml2_1.2.0 httr_1.3.1 knitr_1.20
[25] hms_0.4.2 generics_0.0.2 fs_1.2.6 rprojroot_1.3-2
[29] grid_3.5.1 tidyselect_0.2.5 glue_1.3.0 R6_2.3.0
[33] readxl_1.1.0 rmarkdown_1.10 modelr_0.1.2 magrittr_1.5
[37] whisker_0.3-2 MASS_7.3-51.1 backports_1.1.2 scales_1.0.0
[41] htmltools_0.3.6 rvest_0.3.2 assertthat_0.2.0 colorspace_1.3-2
[45] labeling_0.3 stringi_1.2.4 lazyeval_0.2.1 munsell_0.5.0
[49] broom_0.5.1 crayon_1.3.4