Processing math: 100%
  • Prepare leafcutter phenotype
    • Run leafcutter
    • Evaluate results
      • Significant clusters
      • Effect sizes
    • Location of high >PAU
      • Total:
      • Nuclear:
      • Stratify by different Δ PAU
    • Distance to TSS:
      • By length of gene

Last updated: 2019-05-22

Checks: 6 0

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/._BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._assignTotIntronpeak2intronlocs.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._encodeRNADTplots.sh
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeBW_norm.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/BothFracDTPlotGeneRegions_norm.err
    Untracked:  code/BothFracDTPlotGeneRegions_norm.out
    Untracked:  code/BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/EncodeRNADTPlotGeneRegions.err
    Untracked:  code/EncodeRNADTPlotGeneRegions.out
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_UTR.sh
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/FC_newPeaks_olddata.sh
    Untracked:  code/LC_samplegroups.py
    Untracked:  code/README.md
    Untracked:  code/Rplots.pdf
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/aAPAqtl_nominal39ind.sh
    Untracked:  code/apaQTLCorrectPvalMakeQQ_4pc.R
    Untracked:  code/apaQTL_Nominal_4pc.sh
    Untracked:  code/apaQTL_permuted.4pc.sh
    Untracked:  code/assignNucIntonpeak2intronlocs.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignTotIntronpeak2intronlocs.sh
    Untracked:  code/assigntotPeak2Intronicregion.err
    Untracked:  code/assigntotPeak2Intronicregion.out
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/bothFrac_FC.sh
    Untracked:  code/codingdms2bed.py
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/encodeRNADTplots.sh
    Untracked:  code/extractGenotypes.py
    Untracked:  code/fc2leafphen.py
    Untracked:  code/finalPASbed2SAF.py
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/fix4su304corr.py
    Untracked:  code/fix4su604corr.py
    Untracked:  code/fix4sukalisto.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFChead_summary.py
    Untracked:  code/fixH3k12ac.py
    Untracked:  code/fixRNAhead4corr.py
    Untracked:  code/fixRNAkalisto.py
    Untracked:  code/fixgroupedtranscript.py
    Untracked:  code/fixhead_netseqfc.py
    Untracked:  code/get100upPAS.py
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/grouptranscripts.py
    Untracked:  code/log/
    Untracked:  code/makeSAFbothfrac5perc.py
    Untracked:  code/makegencondeTSSfile.py
    Untracked:  code/mergeBW_norm.sh
    Untracked:  code/mergeBWnorm.err
    Untracked:  code/mergeBWnorm.out
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/netseqFC.sh
    Untracked:  code/qtlsPvalOppFrac.py
    Untracked:  code/removeloc_pheno.py
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/run_leafcutterDiffIso.sh
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/selectNominalPvalues.py
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/subtractExons.sh
    Untracked:  code/transcriptdm2bed.py
    Untracked:  code/utrdms2saf.py
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/EncodeRNA/
    Untracked:  data/PAS/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/bw_norm/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intron_analysis/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBW_norm/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/netseq/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg

Unstaged changes:
    Modified:   analysis/PASusageQC.Rmd
    Modified:   analysis/Readdistagainstfeatures.Rmd
    Modified:   analysis/choosePCs.Rmd
    Modified:   analysis/corrbetweenind.Rmd
    Modified:   analysis/nascenttranscription.Rmd
    Modified:   analysis/nucintronicanalysis.Rmd
    Modified:   analysis/rerunQTL_changePC.Rmd
    Modified:   analysis/rna_netseq_h3k12ac.Rmd
    Modified:   code/Snakefile
    Deleted:    code/Upstream10Bases_general.py
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/apaQTLsnake.err
    Modified:   code/bed2saf.py
    Modified:   code/cluster.json
    Modified:   code/config.yaml
    Deleted:    code/test.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 312d7d7 brimittleman 2019-05-22 add non facet plot
html bf3a1e0 brimittleman 2019-05-14 Build site.
Rmd 77ca26a brimittleman 2019-05-14 results by logef
html 760b297 brimittleman 2019-05-14 Build site.
Rmd 4c10e8f brimittleman 2019-05-14 add dist to PAS plot
html d0aa6a3 brimittleman 2019-05-13 Build site.
Rmd f514b6e brimittleman 2019-05-13 add combined plot
html 07c9125 brimittleman 2019-05-13 Build site.
Rmd 981ac33 brimittleman 2019-05-13 add location of highly used
html c561b14 brimittleman 2019-05-06 Build site.
Rmd 1d8a0a3 brimittleman 2019-05-06 add res
html 60093ce brimittleman 2019-05-02 Build site.
Rmd 24c2ceb brimittleman 2019-05-02 add diff iso

library(workflowr)
This is workflowr version 1.3.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ─────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths

In this analysis I wil use leafcutter to call PAS with differential ussage between fractions.

Prepare annotation

I first filter the annotated peak SAF file for peaks passing the 5% coverage in either fraction.

python makeSAFbothfrac5perc.py

Peak quantification

mkdir bothFrac_FC

Run feature counts with these peaks with both fractions:

sbatch bothFrac_FC.sh

Fix the header:

python fixFChead_bothfrac.py ../data/bothFrac_FC/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fc ../data/bothFrac_FC/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.fc

Remove location demoniaiton:

Prepare leafcutter phenotype

mkdir ../data/DiffIso
python fc2leafphen.py

Fix pheno to remove location:

python removeloc_pheno.py ../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC.fc ../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC_noloc.fc
python subset_diffisopheno.py 1
python subset_diffisopheno.py 2
python subset_diffisopheno.py 3
python subset_diffisopheno.py 4
python subset_diffisopheno.py 5
python subset_diffisopheno.py 6
python subset_diffisopheno.py 7
python subset_diffisopheno.py 8
python subset_diffisopheno.py 9
python subset_diffisopheno.py 10
python subset_diffisopheno.py 11
python subset_diffisopheno.py 12
python subset_diffisopheno.py 13
python subset_diffisopheno.py 14
python subset_diffisopheno.py 15
python subset_diffisopheno.py 16
python subset_diffisopheno.py 18
python subset_diffisopheno.py 19
python subset_diffisopheno.py 20
python subset_diffisopheno.py 21
python subset_diffisopheno.py 22

Make the sample groups file:

python LC_samplegroups.py 

Run leafcutter

The leafcutter environment is not in the three-prime-seq environment. Make sure leafcutter is installed and working.

sbatch run_leafcutterDiffIso.sh

Concatinate results:

awk '{if(NR>1)print}' ../data/DiffIso/TN_diff_isoform_chr*.txt_effect_sizes.txt > ../data/DiffIso/TN_diff_isoform_allChrom.txt_effect_sizes.txt


awk '{if(NR>1)print}' ../data/DiffIso/TN_diff_isoform_chr*.txt_cluster_significance.txt > ../data/DiffIso/TN_diff_isoform_AllChrom_cluster_significance.txt

Evaluate results

Significant clusters

sig=read.table("../data/DiffIso/TN_diff_isoform_AllChrom_cluster_significance.txt",sep="\t" ,col.names = c('status','loglr','df','p','cluster','p.adjust'),stringsAsFactors = F) %>% filter(status=="Success")

sig$p.adjust=as.numeric(as.character(sig$p.adjust))
qqplot(-log10(runif(nrow(sig))), -log10(sig$p.adjust),ylab="-log10 Total Adjusted Leafcutter pvalue", xlab="-log 10 Uniform expectation", main="Leafcutter differencial isoform analysis between fractions")
abline(0,1)

Version Author Date
c561b14 brimittleman 2019-05-06
tested_genes=nrow(sig)
tested_genes
[1] 10815
sig_genes=sig %>% filter(p.adjust<.05)
number_sig_genes=nrow(sig_genes)
number_sig_genes
[1] 9446
sig_genesonly=sig_genes %>% separate(cluster,into=c("chrom", "geneName"), sep = ":") %>% dplyr::select(geneName)

write.table(sig_genesonly, file="../data/sigDiffGenes.txt", col.names = T, row.names = F, quote = F)

Effect sizes

effectsize=read.table("../data/DiffIso/TN_diff_isoform_AllChrom_effect_sizes.txt", stringsAsFactors = F, col.names=c('intron',  'logef' ,'Nuclear', 'Total','deltaPAU')) %>% filter(intron != "intron")

write.table(effectsize,file="../data/DiffIso/EffectSizes.txt", quote = F, col.names = T, row.names = F)

effectsize$deltaPAU=as.numeric(as.character(effectsize$deltaPAU))
effectsize$logef=as.numeric(as.character(effectsize$logef))

Plot delta PAU:

plot(sort(effectsize$deltaPAU),main="Leafcutter delta PAU", ylab="Delta PAU", xlab="PAS Index")

Version Author Date
c561b14 brimittleman 2019-05-06

Filter PAU > .2

effectsize_deltaPAU= effectsize %>% filter(abs(deltaPAU) > .2) 
nrow(effectsize_deltaPAU)
[1] 2090
effectSize_highdiffGenes=effectsize_deltaPAU %>% separate(intron, into=c("chrom", "start", "end", "GeneName"), sep=":") %>% dplyr::select(GeneName) %>% unique()


write.table(effectSize_highdiffGenes, file="../data/highdiffsiggenes.txt", col.names = F, row.names = F, quote = F)

Genes in this set:

effectsize_deltaPAU_Genes= effectsize_deltaPAU %>% separate(intron, into=c("chrom", "start", "end","gene"),sep=":") %>% group_by(gene) %>% summarise(nperGene=n()) 

nrow(effectsize_deltaPAU_Genes)
[1] 1689

Filter >.2 in Nuclear

effectsize_deltaPAU_nuclear= effectsize_deltaPAU %>% filter(deltaPAU < -0.2)

Filter >.2 in Total:

effectsize_deltaPAU_total= effectsize_deltaPAU %>% filter(deltaPAU > 0.2)

Location of high >PAU

Total:

Pull in location information for each PAS:

PAS=read.table("../data/peaks_5perc/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.SAF",stringsAsFactors = F,header = T) %>% separate(GeneID, into=c("num", "chr", "start", "end", "strand", "geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc"),sep="_") %>%  mutate(intron=paste("chr", Chr, ":", Start, ":", End, ":", gene,sep="")) %>% select(intron, loc)
effectsize_deltaPAU_total_loc=effectsize_deltaPAU_total %>% inner_join(PAS, by="intron") 


ggplot(effectsize_deltaPAU_total_loc,aes(x=loc)) + geom_histogram(stat="count") + labs(title="Location of Total peaks >.2 PAU") 
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
07c9125 brimittleman 2019-05-13

Nuclear:

effectsize_deltaPAU_nuclear_loc=effectsize_deltaPAU_nuclear %>% inner_join(PAS, by="intron") 


ggplot(effectsize_deltaPAU_nuclear_loc,aes(x=loc)) + geom_histogram(stat="count") + labs(title="Location of Nuclear peaks >.2 PAU")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
07c9125 brimittleman 2019-05-13

I will want to look at proportions. I need to know how many peaks are in each location:

PAS_loc =PAS%>% group_by(loc) %>% summarise(nloc=n())
effectsize_deltaPAU_total_locProp=effectsize_deltaPAU_total_loc %>% group_by(loc) %>% summarise(nloctotal=n()) 
effectsize_deltaPAU_nuclear_locProp=effectsize_deltaPAU_nuclear_loc %>% group_by(loc) %>% summarise(nlocnuclear=n()) 

effectsize_deltaPAUProp_tot=effectsize_deltaPAU_total_locProp %>% inner_join(PAS_loc, by="loc") %>% mutate(Proportion_tot=nloctotal/nloc)

effectsize_deltaPAUProp_nuc=effectsize_deltaPAU_nuclear_locProp %>% inner_join(PAS_loc, by="loc") %>% mutate(Proportion_nuc=nlocnuclear/nloc)
ggplot(effectsize_deltaPAUProp_tot, aes(x=loc, y=Proportion_tot)) + geom_bar(stat="identity") + labs(y="Proportion of all called PAS", title="Location of high Total used PAS")

Version Author Date
07c9125 brimittleman 2019-05-13
ggplot(effectsize_deltaPAUProp_nuc, aes(x=loc, y=Proportion_nuc)) + geom_bar(stat="identity") + labs(y="Proportion of all called PAS", title="Location of high nuclear used PAS")

Version Author Date
07c9125 brimittleman 2019-05-13

Merge to 1 figure:

effectsize_deltaPAUProp_both= effectsize_deltaPAUProp_nuc %>% inner_join(effectsize_deltaPAUProp_tot, by=c("loc","nloc")) %>% rename(Nuclear=Proportion_nuc, Total=Proportion_tot) %>% select(loc, Nuclear, Total) 
effectsize_deltaPAUProp_both_melt= effectsize_deltaPAUProp_both %>% melt(id.vars="loc", variable.name="Fraction", value.name = "Proportion") 
ggplot(effectsize_deltaPAUProp_both_melt, aes(x=loc, y=Proportion, by=Fraction, fill=Fraction)) + geom_bar(stat="identity", position="dodge") + scale_fill_manual(values=c("deepskyblue3","darkviolet")) + labs(title="Proportion of PAS differentiall used by location")

Version Author Date
d0aa6a3 brimittleman 2019-05-13

More differentiall used in total. this makes sense because there are more used peaks in the nuclear which evens out the distribution of the ratios.

Stratify by different Δ PAU

I want to create a data frame that has the location proportion distribution based on different Δ PAU. 0-.1 .1-.2 .2-.3 .3-.4 .4-.5 >.5

First I will seperate the total and nuclear but the sign of the Δ PAU.

Total_dpau= effectsize %>% filter(deltaPAU > 0) %>% inner_join(PAS, by="intron") %>% select(-logef, -Nuclear,-Total) %>%  mutate(fraction="Total", PAU_Cat=ifelse(deltaPAU <.1, "<.1", ifelse(deltaPAU >=.1 & deltaPAU <.2, "<.2", ifelse(deltaPAU >=.2 & deltaPAU <.3, "<.3", ifelse(deltaPAU >=.3 & deltaPAU <.4, "<.4", "<.5"))))) 

Nuclear_dpau= effectsize %>% filter(deltaPAU <0) %>% inner_join(PAS, by="intron") %>% select(-logef,-Nuclear,-Total) %>% mutate(fraction="Nuclear", PAU_Cat=ifelse(deltaPAU >-.1, "<.1", ifelse(deltaPAU <=-.1 & deltaPAU > -.2, "<.2", ifelse(deltaPAU <=-.2 & deltaPAU >-.3, "<.3", ifelse(deltaPAU <=-.3 & deltaPAU >-.4, "<.4", "<.5")))))

Merge these together to start grouping:

allPAU=as.data.frame(rbind(Total_dpau, Nuclear_dpau)) %>% group_by(fraction, PAU_Cat, loc ) %>% summarise(nperLoc=n()) %>% full_join(PAS_loc, by ="loc") %>% mutate(Prop=nperLoc/nloc)

Plot it:

ggplot(allPAU, aes(x=loc,y=Prop, group=fraction, fill=fraction)) + geom_bar(stat="identity", position = "dodge") + facet_wrap(~PAU_Cat)+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title="Proportion of PAS by location and delta PAU")

Version Author Date
760b297 brimittleman 2019-05-14
allPAU_remove.1= allPAU %>% filter(PAU_Cat != "<.1")

ggplot(allPAU_remove.1, aes(x=loc,y=Prop, group=fraction, fill=fraction)) + geom_bar(stat="identity", position = "dodge") + facet_wrap(~PAU_Cat)+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title="Proportion of PAS by location and delta PAU")

Version Author Date
760b297 brimittleman 2019-05-14

Proportion within group:

allPAU_ingroup= allPAU %>% mutate(nCat=sum(nperLoc),proppercat=nperLoc/nCat)

ggplot(allPAU_ingroup, aes(x=loc,y=proppercat, group=fraction, fill=fraction)) + geom_bar(stat="identity", position = "dodge") + facet_wrap(~PAU_Cat)+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title="Proportion of PAS by location and delta PAU")

Version Author Date
760b297 brimittleman 2019-05-14

Distance to TSS:

I need to pull in the TSS information so I can look at the distance between the differentially used peaks and by distance .

tss=read.table("../../genome_anotation_data/refseq.ProteinCoding.bed",col.names = c("chrom", "start", "end", "gene", "score", "strand") ,stringsAsFactors = F) %>% mutate(TSS= ifelse(strand=="+", start, end)) %>% select(gene, TSS, strand)

Seperate effect size introns:

PAS base for + strand is end, PAS for neg stand in -

effectsize_TSS= effectsize %>% separate(intron, into=c("chrom", "start", "end", "gene"),sep=":") %>% mutate(fraction=ifelse(deltaPAU < 0, "nuclear", "total")) %>% inner_join(tss, by="gene") %>% mutate(dist2PAS=ifelse(strand=="+", as.numeric(end)-as.numeric(TSS), as.numeric(TSS)-as.numeric(start))) 

effectsize_TSS_tot= effectsize_TSS %>% filter(fraction=="total") %>% mutate( PAU_Cat=ifelse(deltaPAU <.1, "<.1", ifelse(deltaPAU >=.1 & deltaPAU <.2, "<.2", ifelse(deltaPAU >=.2 & deltaPAU <.3, "<.3", ifelse(deltaPAU >=.3 & deltaPAU <.4, "<.4", "<.5"))))) 


effectsize_TSS_nuc=effectsize_TSS %>% filter(fraction=="nuclear") %>% mutate( PAU_Cat=ifelse(deltaPAU >-.1, "<.1", ifelse(deltaPAU <=-.1 & deltaPAU > -.2, "<.2", ifelse(deltaPAU <=-.2 & deltaPAU >-.3, "<.3", ifelse(deltaPAU <=-.3 & deltaPAU >-.4, "<.4", "<.5")))))


effectsize_TSS_cat=as.data.frame(rbind(effectsize_TSS_tot, effectsize_TSS_nuc)) %>% filter(dist2PAS >0)
ggplot(effectsize_TSS_cat, aes(x=log10(dist2PAS), by=fraction, fill=fraction))+ geom_density(alpha=.4) + facet_grid(~PAU_Cat) + labs(title="Distance to TSS for differentialy used PAS")+scale_fill_manual(values=c("deepskyblue3","darkviolet")) 

Version Author Date
760b297 brimittleman 2019-05-14

By length of gene

length=read.table("../../genome_anotation_data/refseq.ProteinCoding.bed",col.names = c("chrom", "start", "end", "gene", "score", "strand") ,stringsAsFactors = F) %>% mutate(length=abs(end-start)) %>%  mutate(TSS= ifelse(strand=="+", start, end)) %>% select(gene, length,TSS, strand)
effectsize_length= effectsize %>% separate(intron, into=c("chrom", "start", "end", "gene"),sep=":") %>% mutate(fraction=ifelse(deltaPAU < 0, "nuclear", "total")) %>% inner_join(length, by="gene") %>% mutate(PercLength=ifelse(strand=="+", ((as.numeric(end)-as.numeric(TSS))/as.numeric(length)), (1-(as.numeric(start)-as.numeric(TSS))/as.numeric(length)))) 

effectsize_length_tot= effectsize_length %>% filter(fraction=="total") %>% mutate( PAU_Cat=ifelse(deltaPAU <.1, "<.1", ifelse(deltaPAU >=.1 & deltaPAU <.2, "<.2", ifelse(deltaPAU >=.2 & deltaPAU <.3, "<.3", ifelse(deltaPAU >=.3 & deltaPAU <.4, "<.4", "<.5"))))) 


effectsize_length_nuc=effectsize_length %>% filter(fraction=="nuclear") %>% mutate( PAU_Cat=ifelse(deltaPAU >-.1, "<.1", ifelse(deltaPAU <=-.1 & deltaPAU > -.2, "<.2", ifelse(deltaPAU <=-.2 & deltaPAU >-.3, "<.3", ifelse(deltaPAU <=-.3 & deltaPAU >-.4, "<.4", "<.5")))))


effectsize_length_cat=as.data.frame(rbind(effectsize_length_tot, effectsize_length_nuc)) %>% filter(PercLength<=1 & PercLength >0)

effectsize_length_catall=as.data.frame(rbind(effectsize_length_tot, effectsize_length_nuc)) 
ggplot(effectsize_length_cat, aes(x=PercLength, by=fraction, fill=fraction))+ geom_histogram(alpha=.4,bins=10) + facet_grid(~PAU_Cat) + labs(title="Location of differentially used PAS within a gene body ")+scale_fill_manual(values=c("deepskyblue3","darkviolet")) 

Version Author Date
bf3a1e0 brimittleman 2019-05-14
summary(effectsize_length_catall$PercLength)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-21231.04      0.68      1.03     17.96      1.73  86510.07 
summary(effectsize$logef)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-2.44401 -0.33443 -0.08779  0.00000  0.34816  2.63940 
ggplot(effectsize_length_cat, aes(x=PercLength, by=fraction, fill=fraction))+ geom_histogram(alpha=.4,bins=50)  + labs(title="Location of differentially used PAS \nwithin a gene body ")+scale_fill_manual(values=c("deepskyblue3","darkviolet")) 


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reshape2_1.4.3  forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.1   tidyverse_1.2.1 workflowr_1.3.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0       cellranger_1.1.0 pillar_1.3.1     compiler_3.5.1  
 [5] git2r_0.23.0     plyr_1.8.4       tools_3.5.1      digest_0.6.18   
 [9] lubridate_1.7.4  jsonlite_1.6     evaluate_0.12    nlme_3.1-137    
[13] gtable_0.2.0     lattice_0.20-38  pkgconfig_2.0.2  rlang_0.3.1     
[17] cli_1.0.1        rstudioapi_0.10  yaml_2.2.0       haven_1.1.2     
[21] withr_2.1.2      xml2_1.2.0       httr_1.3.1       knitr_1.20      
[25] hms_0.4.2        generics_0.0.2   fs_1.2.6         rprojroot_1.3-2 
[29] grid_3.5.1       tidyselect_0.2.5 glue_1.3.0       R6_2.3.0        
[33] readxl_1.1.0     rmarkdown_1.10   modelr_0.1.2     magrittr_1.5    
[37] whisker_0.3-2    backports_1.1.2  scales_1.0.0     htmltools_0.3.6 
[41] rvest_0.3.2      assertthat_0.2.0 colorspace_1.3-2 labeling_0.3    
[45] stringi_1.2.4    lazyeval_0.2.1   munsell_0.5.0    broom_0.5.1     
[49] crayon_1.3.4