Last updated: 2020-02-03

Checks: 7 0

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.5.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/logs/
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  @
    Untracked:  GEO_brimittleman/
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/QTLexampleplots.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  analysis/eQTLoverlap.Rmd
    Untracked:  analysis/interpret verify bam.Rmd
    Untracked:  analysis/interpret_verifybam.Rmd
    Untracked:  analysis/mergeRNA.Rmd
    Untracked:  analysis/oldstuffNotNeeded.Rmd
    Untracked:  analysis/remove_badlines.Rmd
    Untracked:  analysis/totSpecInNuclear.Rmd
    Untracked:  analysis/totSpecIncludenotTested.Rmd
    Untracked:  analysis/totalspec.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  checksumsfastq.txt.gz
    Untracked:  code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
    Untracked:  code/._ApaQTL_nominalNonnorm.sh
    Untracked:  code/._BothFracDTPlotGeneRegions.sh
    Untracked:  code/._BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/._DistPAS2Sig_RandomIntron.py
    Untracked:  code/._EandPqtl_perm.sh
    Untracked:  code/._EandPqtls.sh
    Untracked:  code/._FC_NucintornUpandDown.sh
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_intornUpandDownsteamPAS.sh
    Untracked:  code/._FC_nascentseq.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._HMMpermuteTotal.py
    Untracked:  code/._HmmPermute.py
    Untracked:  code/._IntronicPASDT.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._LD_qtl.sh
    Untracked:  code/._LD_snpsproxy.sh
    Untracked:  code/._MapAllRBP.sh
    Untracked:  code/._NascentRNAdtPlot.sh
    Untracked:  code/._NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/._NascentRNAdtPlotNucPAS.sh
    Untracked:  code/._NascentRNAdtPlotTotPAS.sh
    Untracked:  code/._NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/._NascnetRNAdtPlotPAS.sh
    Untracked:  code/._NetSeq_fourthintronDT.sh
    Untracked:  code/._NomResfromPASSNP.py
    Untracked:  code/._NuclearPAS_5per.bed.py
    Untracked:  code/._NuclearandRNA5samp_dtplots.sh
    Untracked:  code/._PTTfacetboxplots.R
    Untracked:  code/._PrematureQTLNominal.sh
    Untracked:  code/._PrematureQTLPermuted.sh
    Untracked:  code/._QTL2bed.py
    Untracked:  code/._QTL2bed_withstrand.py
    Untracked:  code/._RNAbam2bw.sh
    Untracked:  code/._RNAseqDTplot.sh
    Untracked:  code/._RunRes2PAS.sh
    Untracked:  code/._SAF215upbed.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._TESplots100bp.sh
    Untracked:  code/._TESplots150bp.sh
    Untracked:  code/._TESplots200bp.sh
    Untracked:  code/._TotalPAS_5perc.bed.py
    Untracked:  code/._Untitled
    Untracked:  code/._ZipandTabPheno.sh
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._allNucSpecQTLine.py
    Untracked:  code/._allNucSpecfromNonNorm.py
    Untracked:  code/._annotatePacBioPASregion.sh
    Untracked:  code/._annotatedPAS2bed.py
    Untracked:  code/._apaInPandE.py
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTLCorrectpval_6or7a.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_nominalInclusive.sh
    Untracked:  code/._apaQTL_nominalv67.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._apaQTL_permuted_test6A7A.sh
    Untracked:  code/._apainRibo.py
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._assignTotIntronpeak2intronlocs.sh
    Untracked:  code/._bam2BW_5primemost.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFracDTplot1stintron.sh
    Untracked:  code/._bothFracDTplot4thintron.sh
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._changeRibonomQTLres2genename.py
    Untracked:  code/._changenomQTLres2geneName.py
    Untracked:  code/._chooseAnno2PAS_pacbio.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._closestannotated.sh
    Untracked:  code/._closestannotated_byfrac.sh
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNominal2SNPLOC.py
    Untracked:  code/._convertNominal2SNPloc2Versions.py
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._correctNomeqtl.R
    Untracked:  code/._createPlinkSampfile.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._eQTL_switch2snploc.py
    Untracked:  code/._eQTLgenestestedapa.py
    Untracked:  code/._encodeRNADTplots.sh
    Untracked:  code/._extactPAS100meanphyloP.py
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._extractPACmeanPhyloP.py
    Untracked:  code/._extractseqfromqtlfastq.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._fc_filteredPAS6and7As.sh
    Untracked:  code/._fifteenBPupstreamPAS.py
    Untracked:  code/._fiftyBPupstreamPAS.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterLDsnps.py
    Untracked:  code/._filterMPPAS.py
    Untracked:  code/._filterMPPAS_15.py
    Untracked:  code/._filterMPPAS_15_7As.py
    Untracked:  code/._filterMPPAS_50.py
    Untracked:  code/._filterSAFforMP.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixExandUnexeQTL
    Untracked:  code/._fixExandUnexeQTL.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixFChead_short.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixPASregionSNPs.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fix_randomIntron.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._getAPAfromanyeQTL.py
    Untracked:  code/._getApapval4eqtl.py
    Untracked:  code/._getApapval4eqtl_unexp.py
    Untracked:  code/._getApapval4eqtl_version67.py
    Untracked:  code/._getDownstreamIntronNuclear.py
    Untracked:  code/._getIntronDownstreamPAS.py
    Untracked:  code/._getIntronUpstreamPAS.py
    Untracked:  code/._getQTLalleles.py
    Untracked:  code/._getQTLfastq.sh
    Untracked:  code/._getUpstreamIntronNuclear.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._intersectVCFandupPAS.sh
    Untracked:  code/._keep5perMAF.py
    Untracked:  code/._keepSNP_vcf.sh
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makeSNP2rsidfile.py
    Untracked:  code/._makeeQTLempirical_unexp.py
    Untracked:  code/._makeeQTLempiricaldist.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mapSSsnps2PAS.sh
    Untracked:  code/._mergRNABam.sh
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeAnnotations.sh
    Untracked:  code/._mergeBW_norm.sh
    Untracked:  code/._mergeBamNascent.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._mnase1stintron.sh
    Untracked:  code/._mnaseDT_fourthintron.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqDTplot1stIntron.sh
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._nucQTLGWAS.py
    Untracked:  code/._nucSpecQTLineData.py
    Untracked:  code/._nucSpeceffectsize.py
    Untracked:  code/._nucspecnucPASine.py
    Untracked:  code/._pQTLsotherdata.py
    Untracked:  code/._pacbioDT.sh
    Untracked:  code/._pacbioIntronicDT.sh
    Untracked:  code/._parseBestbamid.py
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._phenoQTLfromlist.py
    Untracked:  code/._processYRIgen.py
    Untracked:  code/._pttQTLsinapaQTL.py
    Untracked:  code/._qtlRegionseq.sh
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeXfromHmm.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._riboQTL.sh
    Untracked:  code/._runCorrectNomEqtl.sh
    Untracked:  code/._runHMMpermuteAPAqtls.sh
    Untracked:  code/._runHMMpermuteeQTLS.sh
    Untracked:  code/._runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/._runMakeeQTLempirical.sh
    Untracked:  code/._run_bam2bw_all3prime.sh
    Untracked:  code/._run_bam2bw_extra3.sh
    Untracked:  code/._run_bestbamid.sj
    Untracked:  code/._run_dist2sig_randomintron.sh
    Untracked:  code/._run_filtersnpLD.sh
    Untracked:  code/._run_getAPAfromeQTL_version6.7.sh
    Untracked:  code/._run_getApaPval4eqtl.sh
    Untracked:  code/._run_getapafromeQTL.py
    Untracked:  code/._run_getapafromeQTL.sh
    Untracked:  code/._run_getapapval4eqtl_unexp.sh
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._run_prxySNP.sh
    Untracked:  code/._run_pttfacetboxplot.sh
    Untracked:  code/._run_sepUsagephen.sh
    Untracked:  code/._run_sepgenobychrom.sh
    Untracked:  code/._run_verifybam.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._sepUsagePhen.py
    Untracked:  code/._sepgenobychrom.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._sortindexRNAbam.sh
    Untracked:  code/._specAPAinE.py
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subsetAPAnotEorPgene.py
    Untracked:  code/._subsetAPAnotEorPgene_2versions.py
    Untracked:  code/._subsetApanoteGene.py
    Untracked:  code/._subsetApanoteGene_2versions.py
    Untracked:  code/._subsetUnexplainedeQTLs.py
    Untracked:  code/._subsetVCF_SS.sh
    Untracked:  code/._subsetVCF_noSSregions.sh
    Untracked:  code/._subsetVCF_upstreamPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subsetpermAPAwithGenelist.py
    Untracked:  code/._subsetpermAPAwithGenelist_2versions.py
    Untracked:  code/._subsetvcf_otherreg.sh
    Untracked:  code/._subsetvcf_permSS.sh
    Untracked:  code/._subtrachfiveprimeUTR.sh
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._subtractfiveprimeUTR.sh
    Untracked:  code/._tabixSNPS.sh
    Untracked:  code/._tenBPupstreamPAS.py
    Untracked:  code/._testVerifyBam.sh
    Untracked:  code/._totSeceffectsize.py
    Untracked:  code/._twentyBPupstreamPAS.py
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/._vcf2bed.py
    Untracked:  code/._verifyBam18517N.sh
    Untracked:  code/._verifyBam18517T.sh
    Untracked:  code/._verifyBam19128N.sh
    Untracked:  code/._verifyBam19128T.sh
    Untracked:  code/._wrap_verifybam.sh
    Untracked:  code/._writePTTexamplecode.py
    Untracked:  code/._writePTTexamplecode.sh
    Untracked:  code/.pversion
    Untracked:  code/.snakemake/
    Untracked:  code/1
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_nominal_inclusive.err
    Untracked:  code/APAqtl_nominal_inclusive.out
    Untracked:  code/APAqtl_nominal_nonNorm.err
    Untracked:  code/APAqtl_nominal_nonNorm.out
    Untracked:  code/APAqtl_nominal_versions67.err
    Untracked:  code/APAqtl_nominal_versions67.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/APAqtl_permuted_versions67.err
    Untracked:  code/APAqtl_permuted_versions67.out
    Untracked:  code/BothFracDTPlot1stintron.err
    Untracked:  code/BothFracDTPlot1stintron.out
    Untracked:  code/BothFracDTPlot4stintron.err
    Untracked:  code/BothFracDTPlot4stintron.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/BothFracDTPlotGeneRegions_norm.err
    Untracked:  code/BothFracDTPlotGeneRegions_norm.out
    Untracked:  code/DistPAS2Sig_RandomIntron.py
    Untracked:  code/EandPqtl.err
    Untracked:  code/EandPqtl.out
    Untracked:  code/EncodeRNADTPlotGeneRegions.err
    Untracked:  code/EncodeRNADTPlotGeneRegions.out
    Untracked:  code/FC_NucintronPASupandDown.err
    Untracked:  code/FC_NucintronPASupandDown.out
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_intronPASupandDown.err
    Untracked:  code/FC_intronPASupandDown.out
    Untracked:  code/FC_nascent.err
    Untracked:  code/FC_nascentout
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/HmmPermute.p
    Untracked:  code/IntronicPASDT.err
    Untracked:  code/IntronicPASDT.out
    Untracked:  code/LD_vcftools.hap.out
    Untracked:  code/MapAllRBP.sh
    Untracked:  code/MapRBP.err
    Untracked:  code/MapRBP.out
    Untracked:  code/NascentDTPlotGeneRegions.err
    Untracked:  code/NascentDTPlotGeneRegions.out
    Untracked:  code/NascentDTPlotPAS.err
    Untracked:  code/NascentDTPlotPAS.out
    Untracked:  code/NascentDTPlotPAS_3utr.err
    Untracked:  code/NascentDTPlotPAS_3utr.out
    Untracked:  code/NascentDTPlotPAS_firstintron.err
    Untracked:  code/NascentDTPlotPAS_firstintron.out
    Untracked:  code/NascentDTPlotPAS_intron.err
    Untracked:  code/NascentDTPlotPAS_intron.out
    Untracked:  code/NascentDTPlotPAS_nuc.err
    Untracked:  code/NascentDTPlotPAS_nuc.out
    Untracked:  code/NascentDTPlotPAS_tot.err
    Untracked:  code/NascentDTPlotPAS_tot.out
    Untracked:  code/Nuclear_example.err
    Untracked:  code/Nuclear_example.out
    Untracked:  code/NuclearandRNA5samp_dtplots.sh
    Untracked:  code/NuclearandRNAFracDTPlotGeneRegions.err
    Untracked:  code/NuclearandRNAFracDTPlotGeneRegions.out
    Untracked:  code/PACbioDT.err
    Untracked:  code/PACbioDT.out
    Untracked:  code/PACbioDTitronic.err
    Untracked:  code/PACbioDTitronic.out
    Untracked:  code/Prematureqtl_nominal.err
    Untracked:  code/Prematureqtl_nominal.out
    Untracked:  code/Prematureqtl_permuted.err
    Untracked:  code/Prematureqtl_permuted.out
    Untracked:  code/README.md
    Untracked:  code/RNABam2BW.err
    Untracked:  code/RNABam2BW.out
    Untracked:  code/RNAseqDTPlotGeneRegions.err
    Untracked:  code/RNAseqDTPlotGeneRegions.out
    Untracked:  code/Rplots.pdf
    Untracked:  code/TESplots100bp.err
    Untracked:  code/TESplots100bp.out
    Untracked:  code/TESplots150bp.err
    Untracked:  code/TESplots150bp.out
    Untracked:  code/TESplots200bp.err
    Untracked:  code/TESplots200bp.out
    Untracked:  code/Total_example.err
    Untracked:  code/Total_example.out
    Untracked:  code/Untitled
    Untracked:  code/YRI_LCL.vcf.gz
    Untracked:  code/YRI_LCL_chr1.vcf.gz.log
    Untracked:  code/YRI_LCL_chr1.vcf.gz.recode.vcf
    Untracked:  code/annotatedPASregion.err
    Untracked:  code/annotatedPASregion.out
    Untracked:  code/apaQTL_nominalInclusive.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assigntotPeak2Intronicregion.err
    Untracked:  code/assigntotPeak2Intronicregion.out
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bam2bw_5primemost.err
    Untracked:  code/bam2bw_5primemost.out
    Untracked:  code/binary_fileset.log
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/callSHscripts.txt
    Untracked:  code/closestannotated.err
    Untracked:  code/closestannotated.out
    Untracked:  code/closestannotatedbyfrac.err
    Untracked:  code/closestannotatedbyfrac.out
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/extactPAS100meanphyloP.py
    Untracked:  code/extractPACmeanPhyloP.py
    Untracked:  code/fixExandUnexeQTL
    Untracked:  code/fix_randomIntron.py
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.log
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/intersectPAS_ssSNPS.err
    Untracked:  code/intersectPAS_ssSNPS.out
    Untracked:  code/intersectVCFPAS.err
    Untracked:  code/intersectVCFPAS.out
    Untracked:  code/log/
    Untracked:  code/merge53PRIMEbam.err
    Untracked:  code/merge53PRIMEbam.out
    Untracked:  code/merge53RNAbam.err
    Untracked:  code/merge53prime.sh
    Untracked:  code/merge5RNABam.err
    Untracked:  code/merge5RNABam.out
    Untracked:  code/merge5RNAbam.out
    Untracked:  code/merge5RNAbam.sh
    Untracked:  code/mergeAnno.err
    Untracked:  code/mergeAnno.out
    Untracked:  code/mergeBWnorm.err
    Untracked:  code/mergeBWnorm.out
    Untracked:  code/mergeBamNacent.err
    Untracked:  code/mergeBamNacent.out
    Untracked:  code/mergeRNAbam.err
    Untracked:  code/mergeRNAbam.out
    Untracked:  code/mnaseDTPlot1stintron.err
    Untracked:  code/mnaseDTPlot1stintron.out
    Untracked:  code/mnaseDTPlot4thintron.err
    Untracked:  code/mnaseDTPlot4thintron.out
    Untracked:  code/netDTPlot4thintron.out
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/neyDTPlot4thintron.err
    Untracked:  code/nucspecinE.py
    Untracked:  code/plink.log
    Untracked:  code/prxySNP.err
    Untracked:  code/prxySNP.out
    Untracked:  code/pttFacetBoxplots.err
    Untracked:  code/pttFacetBoxplots.out
    Untracked:  code/qtlFacetBoxplots.err
    Untracked:  code/qtlFacetBoxplots.out
    Untracked:  code/rLD_vcftools.hap.err
    Untracked:  code/riboqtl.err
    Untracked:  code/riboqtl.out
    Untracked:  code/runBestBamID.err
    Untracked:  code/runCorrectNomeqtl.err
    Untracked:  code/runCorrectNomeqtl.out
    Untracked:  code/runFilterLD.err
    Untracked:  code/runFilterLD.out
    Untracked:  code/runHMMpermute.err
    Untracked:  code/runHMMpermute.out
    Untracked:  code/runHMMpermuteeQTLs.err
    Untracked:  code/runHMMpermuteeQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLs.err
    Untracked:  code/runMakeEmpiricaleQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLsunex.err
    Untracked:  code/runMakeEmpiricaleQTLsunex.out
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_DistPAS2Sig_intron.err
    Untracked:  code/run_DistPAS2Sig_intron.out
    Untracked:  code/run_bam2bw.err
    Untracked:  code/run_bam2bw.out
    Untracked:  code/run_bam2bwexta.err
    Untracked:  code/run_bam2bwexta.out
    Untracked:  code/run_dist2sig_randomintron.sh
    Untracked:  code/run_getAPAfromanyeQTL.err
    Untracked:  code/run_getAPAfromanyeQTL.out
    Untracked:  code/run_getApaPval4eQTLs.err
    Untracked:  code/run_getApaPval4eQTLs.out
    Untracked:  code/run_getApaPval4eQTLsunexplained.err
    Untracked:  code/run_getApaPval4eQTLsunexplained.out
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/run_sepgenobychrom.err
    Untracked:  code/run_sepgenobychrom.out
    Untracked:  code/run_sepusage.err
    Untracked:  code/run_sepusage.out
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/run_verifybam128N.err
    Untracked:  code/run_verifybam128N.out
    Untracked:  code/run_verifybam128T.err
    Untracked:  code/run_verifybam128T.out
    Untracked:  code/run_verifybam517N.err
    Untracked:  code/run_verifybam517N.out
    Untracked:  code/run_verifybam517T.err
    Untracked:  code/run_verifybam517T.out
    Untracked:  code/runprxySNP.err
    Untracked:  code/runprxySNP.out
    Untracked:  code/runres2pas.err
    Untracked:  code/runres2pas.out
    Untracked:  code/scripts/
    Untracked:  code/scripts_PAS_500_Lymph/
    Untracked:  code/seqQTLfastq.err
    Untracked:  code/seqQTLfastq.out
    Untracked:  code/seqQTLregion.err
    Untracked:  code/seqQTLregion.out
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/sortindexRNABam.err
    Untracked:  code/sortindexRNABam.out
    Untracked:  code/specAPAinE.py
    Untracked:  code/subsetvcf_SS.err
    Untracked:  code/subsetvcf_SS.out
    Untracked:  code/subsetvcf_noSS.err
    Untracked:  code/subsetvcf_noSS.out
    Untracked:  code/subsetvcf_pas.err
    Untracked:  code/subsetvcf_pas.out
    Untracked:  code/subsetvcf_perm.err
    Untracked:  code/subsetvcf_perm.out
    Untracked:  code/subsetvcf_rand.err
    Untracked:  code/subsetvcf_rand.out
    Untracked:  code/subtract5UTR.err
    Untracked:  code/subtract5UTR.out
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/tabixSNPs.err
    Untracked:  code/tabixSNPs.out
    Untracked:  code/test_verifybam.err
    Untracked:  code/test_verifybam.out
    Untracked:  code/vcf_keepsnps.err
    Untracked:  code/vcf_keepsnps.out
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/zipandtabPhen.err
    Untracked:  code/zipandtabPhen.out
    Untracked:  data/._.DS_Store
    Untracked:  data/._MetaDataSequencing.txt
    Untracked:  data/AnnotatedPAS/
    Untracked:  data/ApaByEgene/
    Untracked:  data/ApaByPgene/
    Untracked:  data/BadLines/
    Untracked:  data/Battle_pQTL/
    Untracked:  data/CheckSums/
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/EncodeRNA/
    Untracked:  data/ExampleQTLPlots/
    Untracked:  data/ExpressionIndependentapaQTLs.txt
    Untracked:  data/FiveMergedBW/
    Untracked:  data/FiveMergedBam/
    Untracked:  data/FlaggedPAS/
    Untracked:  data/GWAS_overlap/
    Untracked:  data/GeuvadisRNA/
    Untracked:  data/HMMqtls/
    Untracked:  data/LDSR_annotations/
    Untracked:  data/Li_eQTLs/
    Untracked:  data/NMD/
    Untracked:  data/NascentRNA/
    Untracked:  data/NucSpeceQTLeffect/
    Untracked:  data/PAS/
    Untracked:  data/PAS_postFlag/
    Untracked:  data/PolyA_DB/
    Untracked:  data/PreTerm_pheno/
    Untracked:  data/PrematureQTLNominal/
    Untracked:  data/PrematureQTLPermuted/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/QTLoverlap_inclusive/
    Untracked:  data/QTLoverlap_nonNorm/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SNPinSS/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/TF_motifdisruption/
    Untracked:  data/TSS/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/Version15bp6As/
    Untracked:  data/Version15bp7As/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLNominal_inclusive/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/assignedPeaks_15Up/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/bw/
    Untracked:  data/bw_norm/
    Untracked:  data/eCLip/
    Untracked:  data/eQTLs/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intronRNAratio/
    Untracked:  data/intron_analysis/
    Untracked:  data/locusZoom/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBW_norm/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/molPhenos/
    Untracked:  data/molQTLs/
    Untracked:  data/motifdistrupt/
    Untracked:  data/nPAS/
    Untracked:  data/netseq/
    Untracked:  data/nonNorm_pheno/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/oldPASfiles/
    Untracked:  data/overlapeQTL_try2/
    Untracked:  data/overlapeQTLs/
    Untracked:  data/pQTLoverlap/
    Untracked:  data/pacbio/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/phenotype_inclusivePAS/
    Untracked:  data/phylop/
    Untracked:  data/pttQTL/
    Untracked:  data/pttQTLplots/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  data/twoMech/
    Untracked:  data/vareQTLvarAPAqtl/
    Untracked:  data/verifyBAM/
    Untracked:  data/verifyBAM_full/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._AverageDiffHeatmap.Nuclear.png
    Untracked:  output/._AverageDiffHeatmap.Total.png
    Untracked:  output/._GeneswithAPApotential.png
    Untracked:  output/._GeneswithAPApotentialAllPAS.png
    Untracked:  output/._PASlocation.png
    Untracked:  output/._SignalSitePlot.png
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/._qqplot_Nuclear_APAperm.png
    Untracked:  output/._qqplot_Nuclear_APAperm_4pc.png
    Untracked:  output/._qqplot_Total_APAperm.png
    Untracked:  output/._qqplot_Total_APAperm_4pc.png
    Untracked:  output/AverageDiffHeatmap.Nuclear.png
    Untracked:  output/AverageDiffHeatmap.Total.png
    Untracked:  output/GeneswithAPApotential.png
    Untracked:  output/GeneswithAPApotentialAllPAS.png
    Untracked:  output/PASlocation.png
    Untracked:  output/SignalSitePlot.png
    Untracked:  output/SignalSitePlotbyLoc.png
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg
    Untracked:  output/newnuc.png
    Untracked:  output/newtot.png
    Untracked:  output/oldnuc.png
    Untracked:  output/oldtot.png
    Untracked:  output/qqplot_Nuclear_APAperm.png
    Untracked:  output/qqplot_Nuclear_APAperm_4pc.png
    Untracked:  output/qqplot_Total_APAperm.png
    Untracked:  output/qqplot_Total_APAperm_4pc.png
    Untracked:  run_verifybam517N.err
    Untracked:  run_verifybam517N.out

Unstaged changes:
    Modified:   analysis/LDregress.Rmd
    Modified:   analysis/NuclearSpecIncludeNotTested.Rmd
    Modified:   analysis/PASdescriptiveplots.Rmd
    Modified:   analysis/Readdistagainstfeatures.Rmd
    Modified:   analysis/nucSpecinEQTLs.Rmd
    Modified:   analysis/overlapapaqtlsandeqtls.Rmd
    Modified:   analysis/pQTLexampleplot.Rmd
    Modified:   analysis/propeQTLs_explained.Rmd
    Modified:   analysis/version15bpfilter.Rmd
    Modified:   code/DistPAS2Sig.py
    Modified:   code/apaQTLsnake.err
    Deleted:    code/test.txt
    Deleted:    reads_graphs.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 63c435a brimittleman 2020-02-03 add mult TSS results
html 723946b brimittleman 2020-02-03 Build site.
Rmd d0f4f33 brimittleman 2020-02-03 add TSS analysis

library(tidyverse)
── Attaching packages ─────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(workflowr)
This is workflowr version 1.5.0
Run ?workflowr for help getting started
library(ggpubr)
Loading required package: magrittr

Attaching package: 'magrittr'
The following object is masked from 'package:purrr':

    set_names
The following object is masked from 'package:tidyr':

    extract

I will download encode cage data for TSS evidence in LCLs (GM12878). This cell line is a hapmap female of european ancestry. I will download the bed TSS file for HG19 for the nuclear fraction. I will also download the cytosolic fraction. This way I can ask if some of the isoforms in the nuclear specific overlap.

mkdir ../data/TSS

Nuclear file ENCFF358CEV.bed.gz There are 12344 peaks reported. Cytosolic file ENCFF140PCA.bed.gz There are 10991 peaks reported I will unzip and remove the chr.

gunzip ../data/TSS/ENCFF358CEV.bed.gz
sed 's/^chr//' ../data/TSS/ENCFF358CEV.bed >  ../data/TSS/ENCFF358CEV_Nuclear_noChr.bed
sort -k1,1  -k2,2n ../data/TSS/ENCFF358CEV_Nuclear_noChr.bed  > ../data/TSS/ENCFF358CEV_Nuclear_noChr.sort.bed


gunzip ../data/TSS/ENCFF140PCA.bed.gz
sed 's/^chr//' ../data/TSS/ENCFF140PCA.bed >  ../data/TSS/ENCFF140PCA_Cyto_noChr.bed
sort -k1,1 -k2,2n ../data/TSS/ENCFF140PCA_Cyto_noChr.bed > ../data/TSS/ENCFF140PCA_Cyto_noChr.sort.bed

I will look for nuclear specific TSS using bedtools.

-v in a not in b

bedtools intersect -v -a ../data/TSS/ENCFF358CEV_Nuclear_noChr.sort.bed -b  ../data/TSS/ENCFF140PCA_Cyto_noChr.sort.bed -s -sorted > ../data/TSS/CageSeq_NuclearSpecific.bed

There are 8049 TSS peaks in this set.

cut -f 1-6 ../data/TSS/ENCFF358CEV_Nuclear_noChr.sort.bed  > ../data/TSS/ENCFF358CEV_Nuclear_noChr.sort.small.bed


cut -f 1-6 ../data/TSS/CageSeq_NuclearSpecific.bed > ../data/TSS/CageSeq_NuclearSpecific.small.bed


cut -f 1-6 ../data/TSS/ENCFF140PCA_Cyto_noChr.sort.bed  > ../data/TSS/ENCFF140PCA_Cyto_noChr.sort.small.bed

I need to map these to genes. I will take the longest then extend the start 1000bp to account for changes

genes=read.table("../../genome_anotation_data/RefSeq_annotations/Hg19_refseq_genes.txt",header = T,stringsAsFactors = F) %>%
  mutate(Genelength=txEnd-txStart) %>% 
  group_by(name2) %>% 
  arrange(desc(Genelength)) %>% 
  dplyr::slice(1) %>% 
  mutate(newStart=ifelse(strand=="+", txStart-1000, txStart), newEnd=ifelse(strand=="+",txEnd, txEnd+1000 )) %>% 
  select(chrom,newStart, newEnd, name2,Genelength, strand)

write.table(genes,"../data/TSS/longest_transcript_refseqGene_exd1000.bed", sep="\t", col.names=F, row.names=F, quote=F)

Use bedtools closest to map all of the TSS to genes:

sed 's/^chr//' ../data/TSS/longest_transcript_refseqGene_exd1000.bed | sort -k1,1 -k2,2n > ../data/TSS/longest_transcript_refseqGene_exd1000.noChr.bed

bedtools closest -a ../data/TSS/ENCFF358CEV_Nuclear_noChr.sort.small.bed -b ../data/TSS/longest_transcript_refseqGene_exd1000.noChr.bed -s  > ../data/TSS/ENCFF358CEV_Nuclear_noChr.sort.small_withGene.txt

bedtools closest -a ../data/TSS/CageSeq_NuclearSpecific.small.bed -b ../data/TSS/longest_transcript_refseqGene_exd1000.noChr.bed -s  > ../data/TSS/CageSeq_NuclearSpecific.small_withGene.txt

bedtools closest -a ../data/TSS/ENCFF140PCA_Cyto_noChr.sort.small.bed -b ../data/TSS/longest_transcript_refseqGene_exd1000.noChr.bed  -s  > ../data/TSS/ENCFF140PCA_Cyto_noChr.sort.small_withGene.txt

Nuclear TSS

Colapse to get the number of TSS

TSS=read.table("../data/TSS/ENCFF358CEV_Nuclear_noChr.sort.small_withGene.txt", col.names = c('tsschr','tssstart','tssend','tssName','tssscore','tssstrand', 'genechr','genestart','geneend','gene','length','strand'), stringsAsFactors = F) %>% 
  group_by(gene) %>% 
  summarise(nTSS=n())
PAS=read.table("../data/PAS/APApeak_Peaks_GeneLocAnno.Nuclear.5perc.sort.bed",col.names = c("chr","start","end","name","score","strand")) %>% separate(name,into=c("pas", 'gene','loc'), sep=":") %>% group_by(gene) %>% summarise(nPAS=n())

Join, look only at genes with at least one TSS and PAS in the gene.

TSSandPAS=TSS %>% inner_join(PAS, by="gene")

Looknig at 9896 genes.

ggplot(TSSandPAS,aes(x=nTSS,y=nPAS)) + geom_point()

Correlation:

cor.test(TSSandPAS$nTSS, TSSandPAS$nPAS)

    Pearson's product-moment correlation

data:  TSSandPAS$nTSS and TSSandPAS$nPAS
t = 5.9971, df = 9894, p-value = 2.079e-09
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.04052755 0.07979047
sample estimates:
       cor 
0.06018229 

Low but significant correlation.

TSSandPAS_qual=TSSandPAS %>% 
  mutate(multTSS=ifelse(nTSS>1, "Yes","No"), multPAS=ifelse(nPAS >1, "Yes","No")) 

are genes with mure than 1 PAS enriched for genes with more than 1 TSS.

x=nrow(TSSandPAS_qual %>% filter(multTSS=="Yes", multPAS=="Yes"))
m= nrow(TSSandPAS_qual %>% filter(multTSS=="Yes"))
n= nrow(TSSandPAS_qual %>% filter(multTSS!="Yes"))
k=nrow(TSSandPAS_qual %>% filter(multPAS=="Yes"))


#expected
which(grepl(max(dhyper(1:x, m, n, k)), dhyper(1:x, m, n, k)))
[1] 2695
#actual:
x
[1] 2788
#pval
phyper(x,m,n,k,lower.tail=F)
[1] 7.974885e-06

Significant enrichment here.

Look at if the gene has a QTL, is this associated with TSS number.

QTL_genes=read.table("../data/apaQTLs/NuclearapaQTLGenes.txt",col.names = "gene",stringsAsFactors = F)
QTLTested_genes=read.table("../data/apaQTLs/TestedNuclearapaQTLGenes.txt",col.names = "gene",stringsAsFactors = F) %>% mutate(QTL=ifelse(gene %in% QTL_genes$gene, "Yes","No"))
TSSandQTL=QTLTested_genes %>% inner_join(TSS,by="gene") 

8468 genes
Plot:

ggplot(TSSandQTL,aes(x=QTL, y=nTSS))+ geom_boxplot() + stat_compare_means()

TSSandQTL_filt= TSSandQTL %>% filter(nTSS<=5)

ggplot(TSSandQTL_filt,aes(x=QTL, y=nTSS))+ geom_boxplot() + stat_compare_means()

Small difference but not a strong relationship.

Cytoplasm TSS

Do these analysis with the cytoplasm TSS.

TSS_cyt=read.table("../data/TSS/ENCFF140PCA_Cyto_noChr.sort.small_withGene.txt", col.names = c('tsschr','tssstart','tssend','tssName','tssscore','tssstrand', 'genechr','genestart','geneend','gene','length','strand'), stringsAsFactors = F) %>% 
  group_by(gene) %>% 
  summarise(nTSS=n())

Join, look only at genes with at least one TSS and PAS in the gene.

TSScytandPAS=TSS_cyt %>% inner_join(PAS, by="gene")

Looknig at 8241 genes.

ggplot(TSScytandPAS,aes(x=nTSS,y=nPAS)) + geom_point()

Correlation:

cor.test(TSScytandPAS$nTSS, TSScytandPAS$nPAS)

    Pearson's product-moment correlation

data:  TSScytandPAS$nTSS and TSScytandPAS$nPAS
t = 2.0793, df = 8239, p-value = 0.03762
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.001311819 0.044470876
sample estimates:
       cor 
0.02290202 

Low but significant correlation.

TSScytandPAS_qual=TSScytandPAS %>% 
  mutate(multTSS=ifelse(nTSS>1, "Yes","No"), multPAS=ifelse(nPAS >1, "Yes","No")) 

are genes with mure than 1 PAS enriched for genes with more than 1 TSS.

x=nrow(TSScytandPAS_qual %>% filter(multTSS=="Yes", multPAS=="Yes"))
m= nrow(TSScytandPAS_qual %>% filter(multTSS=="Yes"))
n= nrow(TSScytandPAS_qual %>% filter(multTSS!="Yes"))
k=nrow(TSScytandPAS_qual %>% filter(multPAS=="Yes"))


#expected
which(grepl(max(dhyper(1:x, m, n, k)), dhyper(1:x, m, n, k)))
[1] 2097
#actual:
x
[1] 2161
#pval
phyper(x,m,n,k,lower.tail=F)
[1] 0.0005400501

Enrichment is a bit lower but still significant.

Nuclear specific TSS

TSS_nucSpec=read.table("../data/TSS/CageSeq_NuclearSpecific.small_withGene.txt", col.names = c('tsschr','tssstart','tssend','tssName','tssscore','tssstrand', 'genechr','genestart','geneend','gene','length','strand'), stringsAsFactors = F) %>% 
  group_by(gene) %>% 
  summarise(nTSS=n())

Join, look only at genes with at least one TSS and PAS in the gene. Full join here starting with the PAS

TSS_nucSpecandPAS=PAS %>% full_join(TSS_nucSpec, by="gene") %>% replace_na(list(nTSS=0, nPAS=0)) %>% mutate(SpecTSS=ifelse(nTSS>0, "Yes","No"))

Are genes with a nuclear specific tss more likely to have more than one PAS

ggplot(TSS_nucSpecandPAS,aes(x=SpecTSS,y=nPAS)) + geom_boxplot() + stat_compare_means()

No significant difference.


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggpubr_0.2      magrittr_1.5    workflowr_1.5.0 forcats_0.3.0  
 [5] stringr_1.3.1   dplyr_0.8.0.1   purrr_0.3.2     readr_1.3.1    
 [9] tidyr_0.8.3     tibble_2.1.1    ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5 haven_1.1.2      lattice_0.20-38  colorspace_1.3-2
 [5] generics_0.0.2   htmltools_0.3.6  yaml_2.2.0       rlang_0.4.0     
 [9] later_0.7.5      pillar_1.3.1     glue_1.3.0       withr_2.1.2     
[13] modelr_0.1.2     readxl_1.1.0     plyr_1.8.4       munsell_0.5.0   
[17] gtable_0.2.0     cellranger_1.1.0 rvest_0.3.2      evaluate_0.12   
[21] labeling_0.3     knitr_1.20       httpuv_1.4.5     broom_0.5.1     
[25] Rcpp_1.0.2       promises_1.0.1   scales_1.0.0     backports_1.1.2 
[29] jsonlite_1.6     fs_1.3.1         hms_0.4.2        digest_0.6.18   
[33] stringi_1.2.4    grid_3.5.1       rprojroot_1.3-2  cli_1.1.0       
[37] tools_3.5.1      lazyeval_0.2.1   crayon_1.3.4     whisker_0.3-2   
[41] pkgconfig_2.0.2  xml2_1.2.0       lubridate_1.7.4  assertthat_0.2.0
[45] rmarkdown_1.10   httr_1.3.1       rstudioapi_0.10  R6_2.3.0        
[49] nlme_3.1-137     git2r_0.26.1     compiler_3.5.1