Last updated: 2019-09-07

Checks: 6 1

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish or wflow_build to ensure that the code is always run in an empty environment.

The following objects were defined in the global environment when these results were created:

Name Class Size
data environment 56 bytes
env environment 56 bytes

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    docs/.DS_Store
    Ignored:    docs/figure/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  @
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/QTLexampleplots.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  analysis/eQTLoverlap.Rmd
    Untracked:  analysis/interpret verify bam.Rmd
    Untracked:  analysis/interpret_verifybam.Rmd
    Untracked:  analysis/mergeRNA.Rmd
    Untracked:  analysis/oldstuffNotNeeded.Rmd
    Untracked:  analysis/remove_badlines.Rmd
    Untracked:  analysis/totalspec.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
    Untracked:  code/._ApaQTL_nominalNonnorm.sh
    Untracked:  code/._BothFracDTPlotGeneRegions.sh
    Untracked:  code/._BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/._EandPqtl_perm.sh
    Untracked:  code/._EandPqtls.sh
    Untracked:  code/._FC_NucintornUpandDown.sh
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_intornUpandDownsteamPAS.sh
    Untracked:  code/._FC_nascentseq.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._HMMpermuteTotal.py
    Untracked:  code/._HmmPermute.py
    Untracked:  code/._IntronicPASDT.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._LD_qtl.sh
    Untracked:  code/._LD_snpsproxy.sh
    Untracked:  code/._NascentRNAdtPlot.sh
    Untracked:  code/._NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/._NascentRNAdtPlotNucPAS.sh
    Untracked:  code/._NascentRNAdtPlotTotPAS.sh
    Untracked:  code/._NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/._NascnetRNAdtPlotPAS.sh
    Untracked:  code/._NetSeq_fourthintronDT.sh
    Untracked:  code/._NomResfromPASSNP.py
    Untracked:  code/._NuclearPAS_5per.bed.py
    Untracked:  code/._PTTfacetboxplots.R
    Untracked:  code/._PrematureQTLNominal.sh
    Untracked:  code/._PrematureQTLPermuted.sh
    Untracked:  code/._QTL2bed.py
    Untracked:  code/._QTL2bed_withstrand.py
    Untracked:  code/._RNAbam2bw.sh
    Untracked:  code/._RNAseqDTplot.sh
    Untracked:  code/._RunRes2PAS.sh
    Untracked:  code/._SAF215upbed.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._TESplots100bp.sh
    Untracked:  code/._TESplots150bp.sh
    Untracked:  code/._TESplots200bp.sh
    Untracked:  code/._TotalPAS_5perc.bed.py
    Untracked:  code/._Untitled
    Untracked:  code/._ZipandTabPheno.sh
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._annotatePacBioPASregion.sh
    Untracked:  code/._annotatedPAS2bed.py
    Untracked:  code/._apaInPandE.py
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTLCorrectpval_6or7a.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_nominalv67.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._apaQTL_permuted_test6A7A.sh
    Untracked:  code/._apainRibo.py
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._assignTotIntronpeak2intronlocs.sh
    Untracked:  code/._bam2BW_5primemost.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFracDTplot1stintron.sh
    Untracked:  code/._bothFracDTplot4thintron.sh
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._changeRibonomQTLres2genename.py
    Untracked:  code/._changenomQTLres2geneName.py
    Untracked:  code/._chooseAnno2PAS_pacbio.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._closestannotated.sh
    Untracked:  code/._closestannotated_byfrac.sh
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNominal2SNPLOC.py
    Untracked:  code/._convertNominal2SNPloc2Versions.py
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._correctNomeqtl.R
    Untracked:  code/._createPlinkSampfile.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._eQTL_switch2snploc.py
    Untracked:  code/._eQTLgenestestedapa.py
    Untracked:  code/._encodeRNADTplots.sh
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._extractseqfromqtlfastq.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._fc_filteredPAS6and7As.sh
    Untracked:  code/._fifteenBPupstreamPAS.py
    Untracked:  code/._fiftyBPupstreamPAS.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterLDsnps.py
    Untracked:  code/._filterMPPAS.py
    Untracked:  code/._filterMPPAS_15.py
    Untracked:  code/._filterMPPAS_15_7As.py
    Untracked:  code/._filterMPPAS_50.py
    Untracked:  code/._filterSAFforMP.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixExandUnexeQTL
    Untracked:  code/._fixExandUnexeQTL.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixFChead_short.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixPASregionSNPs.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._getAPAfromanyeQTL.py
    Untracked:  code/._getApapval4eqtl.py
    Untracked:  code/._getApapval4eqtl_unexp.py
    Untracked:  code/._getApapval4eqtl_version67.py
    Untracked:  code/._getDownstreamIntronNuclear.py
    Untracked:  code/._getIntronDownstreamPAS.py
    Untracked:  code/._getIntronUpstreamPAS.py
    Untracked:  code/._getQTLalleles.py
    Untracked:  code/._getQTLfastq.sh
    Untracked:  code/._getUpstreamIntronNuclear.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._intersectVCFandupPAS.sh
    Untracked:  code/._keep5perMAF.py
    Untracked:  code/._keepSNP_vcf.sh
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makeSNP2rsidfile.py
    Untracked:  code/._makeeQTLempirical_unexp.py
    Untracked:  code/._makeeQTLempiricaldist.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mapSSsnps2PAS.sh
    Untracked:  code/._mergRNABam.sh
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeAnnotations.sh
    Untracked:  code/._mergeBW_norm.sh
    Untracked:  code/._mergeBamNascent.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._mnase1stintron.sh
    Untracked:  code/._mnaseDT_fourthintron.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqDTplot1stIntron.sh
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._nucQTLGWAS.py
    Untracked:  code/._nucSpecQTLineData.py
    Untracked:  code/._nucSpeceffectsize.py
    Untracked:  code/._pQTLsotherdata.py
    Untracked:  code/._pacbioDT.sh
    Untracked:  code/._pacbioIntronicDT.sh
    Untracked:  code/._parseBestbamid.py
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._phenoQTLfromlist.py
    Untracked:  code/._processYRIgen.py
    Untracked:  code/._pttQTLsinapaQTL.py
    Untracked:  code/._qtlRegionseq.sh
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeXfromHmm.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._riboQTL.sh
    Untracked:  code/._runCorrectNomEqtl.sh
    Untracked:  code/._runHMMpermuteAPAqtls.sh
    Untracked:  code/._runHMMpermuteeQTLS.sh
    Untracked:  code/._runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/._runMakeeQTLempirical.sh
    Untracked:  code/._run_bam2bw_all3prime.sh
    Untracked:  code/._run_bam2bw_extra3.sh
    Untracked:  code/._run_bestbamid.sj
    Untracked:  code/._run_filtersnpLD.sh
    Untracked:  code/._run_getAPAfromeQTL_version6.7.sh
    Untracked:  code/._run_getApaPval4eqtl.sh
    Untracked:  code/._run_getapafromeQTL.py
    Untracked:  code/._run_getapafromeQTL.sh
    Untracked:  code/._run_getapapval4eqtl_unexp.sh
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._run_prxySNP.sh
    Untracked:  code/._run_pttfacetboxplot.sh
    Untracked:  code/._run_sepUsagephen.sh
    Untracked:  code/._run_sepgenobychrom.sh
    Untracked:  code/._run_verifybam.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._sepUsagePhen.py
    Untracked:  code/._sepgenobychrom.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._sortindexRNAbam.sh
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subsetAPAnotEorPgene.py
    Untracked:  code/._subsetAPAnotEorPgene_2versions.py
    Untracked:  code/._subsetApanoteGene.py
    Untracked:  code/._subsetApanoteGene_2versions.py
    Untracked:  code/._subsetUnexplainedeQTLs.py
    Untracked:  code/._subsetVCF_SS.sh
    Untracked:  code/._subsetVCF_noSSregions.sh
    Untracked:  code/._subsetVCF_upstreamPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subsetpermAPAwithGenelist.py
    Untracked:  code/._subsetpermAPAwithGenelist_2versions.py
    Untracked:  code/._subsetvcf_otherreg.sh
    Untracked:  code/._subsetvcf_permSS.sh
    Untracked:  code/._subtrachfiveprimeUTR.sh
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._subtractfiveprimeUTR.sh
    Untracked:  code/._tabixSNPS.sh
    Untracked:  code/._tenBPupstreamPAS.py
    Untracked:  code/._testVerifyBam.sh
    Untracked:  code/._totSeceffectsize.py
    Untracked:  code/._twentyBPupstreamPAS.py
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/._vcf2bed.py
    Untracked:  code/._verifyBam18517N.sh
    Untracked:  code/._verifyBam18517T.sh
    Untracked:  code/._verifyBam19128N.sh
    Untracked:  code/._verifyBam19128T.sh
    Untracked:  code/._wrap_verifybam.sh
    Untracked:  code/._writePTTexamplecode.py
    Untracked:  code/._writePTTexamplecode.sh
    Untracked:  code/.pversion
    Untracked:  code/.snakemake/
    Untracked:  code/1
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_nominal_nonNorm.err
    Untracked:  code/APAqtl_nominal_nonNorm.out
    Untracked:  code/APAqtl_nominal_versions67.err
    Untracked:  code/APAqtl_nominal_versions67.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/APAqtl_permuted_versions67.err
    Untracked:  code/APAqtl_permuted_versions67.out
    Untracked:  code/ApaQTL_nominalNonnorm.sh
    Untracked:  code/BothFracDTPlot1stintron.err
    Untracked:  code/BothFracDTPlot1stintron.out
    Untracked:  code/BothFracDTPlot4stintron.err
    Untracked:  code/BothFracDTPlot4stintron.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/BothFracDTPlotGeneRegions_norm.err
    Untracked:  code/BothFracDTPlotGeneRegions_norm.out
    Untracked:  code/BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/EandPqtl.err
    Untracked:  code/EandPqtl.out
    Untracked:  code/EandPqtl_perm.sh
    Untracked:  code/EandPqtls.sh
    Untracked:  code/EncodeRNADTPlotGeneRegions.err
    Untracked:  code/EncodeRNADTPlotGeneRegions.out
    Untracked:  code/FC_NucintornUpandDown.sh
    Untracked:  code/FC_NucintronPASupandDown.err
    Untracked:  code/FC_NucintronPASupandDown.out
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_UTR.sh
    Untracked:  code/FC_intornUpandDownsteamPAS.sh
    Untracked:  code/FC_intronPASupandDown.err
    Untracked:  code/FC_intronPASupandDown.out
    Untracked:  code/FC_nascent.err
    Untracked:  code/FC_nascentout
    Untracked:  code/FC_nascentseq.sh
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/FC_newPeaks_olddata.sh
    Untracked:  code/HMMpermuteTotal.py
    Untracked:  code/HmmPermute.p
    Untracked:  code/HmmPermute.py
    Untracked:  code/IntronicPASDT.err
    Untracked:  code/IntronicPASDT.out
    Untracked:  code/IntronicPASDT.sh
    Untracked:  code/LC_samplegroups.py
    Untracked:  code/LD_qtl.sh
    Untracked:  code/LD_snpsproxy.sh
    Untracked:  code/LD_vcftools.hap.out
    Untracked:  code/NascentDTPlotGeneRegions.err
    Untracked:  code/NascentDTPlotGeneRegions.out
    Untracked:  code/NascentDTPlotPAS.err
    Untracked:  code/NascentDTPlotPAS.out
    Untracked:  code/NascentDTPlotPAS_3utr.err
    Untracked:  code/NascentDTPlotPAS_3utr.out
    Untracked:  code/NascentDTPlotPAS_firstintron.err
    Untracked:  code/NascentDTPlotPAS_firstintron.out
    Untracked:  code/NascentDTPlotPAS_intron.err
    Untracked:  code/NascentDTPlotPAS_intron.out
    Untracked:  code/NascentDTPlotPAS_nuc.err
    Untracked:  code/NascentDTPlotPAS_nuc.out
    Untracked:  code/NascentDTPlotPAS_tot.err
    Untracked:  code/NascentDTPlotPAS_tot.out
    Untracked:  code/NascentRNAdtPlot.sh
    Untracked:  code/NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/NascentRNAdtPlotFirstintronicPAS.sh
    Untracked:  code/NascentRNAdtPlotNucPAS.sh
    Untracked:  code/NascentRNAdtPlotTotPAS.sh
    Untracked:  code/NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/NascnetRNAdtPlotPAS.sh
    Untracked:  code/NetSeq_fourthintronDT.sh
    Untracked:  code/NomResfromPASSNP.py
    Untracked:  code/NuclearPAS_5per.bed.py
    Untracked:  code/Nuclear_example.err
    Untracked:  code/Nuclear_example.out
    Untracked:  code/PACbioDT.err
    Untracked:  code/PACbioDT.out
    Untracked:  code/PACbioDTitronic.err
    Untracked:  code/PACbioDTitronic.out
    Untracked:  code/PTTfacetboxplots.R
    Untracked:  code/PrematureQTLNominal.sh
    Untracked:  code/PrematureQTLPermuted.sh
    Untracked:  code/Prematureqtl_nominal.err
    Untracked:  code/Prematureqtl_nominal.out
    Untracked:  code/Prematureqtl_permuted.err
    Untracked:  code/Prematureqtl_permuted.out
    Untracked:  code/QTL2bed.py
    Untracked:  code/QTL2bed_withstrand.py
    Untracked:  code/README.md
    Untracked:  code/RNABam2BW.err
    Untracked:  code/RNABam2BW.out
    Untracked:  code/RNAbam2bw.sh
    Untracked:  code/RNAseqDTPlotGeneRegions.err
    Untracked:  code/RNAseqDTPlotGeneRegions.out
    Untracked:  code/RNAseqDTplot.sh
    Untracked:  code/Rplots.pdf
    Untracked:  code/RunRes2PAS.sh
    Untracked:  code/SAF215upbed.py
    Untracked:  code/SAF215upbed_gen.py
    Untracked:  code/Script4NuclearPTTqtlexamples.sh
    Untracked:  code/Script4NuclearQTLexamples.sh
    Untracked:  code/Script4TotalPTTqtlexamples.sh
    Untracked:  code/Script4TotalQTLexamples.sh
    Untracked:  code/TESplots100bp.err
    Untracked:  code/TESplots100bp.out
    Untracked:  code/TESplots100bp.sh
    Untracked:  code/TESplots150bp.err
    Untracked:  code/TESplots150bp.out
    Untracked:  code/TESplots150bp.sh
    Untracked:  code/TESplots200bp.err
    Untracked:  code/TESplots200bp.out
    Untracked:  code/TESplots200bp.sh
    Untracked:  code/TotalPAS_5perc.bed.py
    Untracked:  code/Total_example.err
    Untracked:  code/Total_example.out
    Untracked:  code/Untitled
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/YRI_LCL.vcf.gz
    Untracked:  code/YRI_LCL_chr1.vcf.gz.log
    Untracked:  code/YRI_LCL_chr1.vcf.gz.recode.vcf
    Untracked:  code/ZipandTabPheno.sh
    Untracked:  code/aAPAqtl_nominal39ind.sh
    Untracked:  code/annotatePacBioPASregion.sh
    Untracked:  code/annotatedPAS2bed.py
    Untracked:  code/annotatedPASregion.err
    Untracked:  code/annotatedPASregion.out
    Untracked:  code/apaInPandE.py
    Untracked:  code/apaQTLCorrectPvalMakeQQ_4pc.R
    Untracked:  code/apaQTLCorrectpval_6or7a.R
    Untracked:  code/apaQTL_Nominal_4pc.sh
    Untracked:  code/apaQTL_nominalv67.sh
    Untracked:  code/apaQTL_permuted.4pc.sh
    Untracked:  code/apaQTL_permuted_test6A7A.sh
    Untracked:  code/apafacetboxplots.R
    Untracked:  code/apainRibo.py
    Untracked:  code/apaqtlfacetboxplots.R
    Untracked:  code/assignNucIntonpeak2intronlocs.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assignTotIntronpeak2intronlocs.sh
    Untracked:  code/assigntotPeak2Intronicregion.err
    Untracked:  code/assigntotPeak2Intronicregion.out
    Untracked:  code/bam2BW_5primemost.sh
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bam2bw_5primemost.err
    Untracked:  code/bam2bw_5primemost.out
    Untracked:  code/binary_fileset.log
    Untracked:  code/bothFracDTplot1stintron.sh
    Untracked:  code/bothFracDTplot4thintron.sh
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/bothFrac_FC.sh
    Untracked:  code/callSHscripts.txt
    Untracked:  code/changePermQTLres2geneName.py
    Untracked:  code/changeRibonomQTLres2genename.py
    Untracked:  code/changenomQTLres2geneName.py
    Untracked:  code/chooseAnno2PAS_pacbio.py
    Untracked:  code/closestannotated.err
    Untracked:  code/closestannotated.out
    Untracked:  code/closestannotated.sh
    Untracked:  code/closestannotated_byfrac.sh
    Untracked:  code/closestannotatedbyfrac.err
    Untracked:  code/closestannotatedbyfrac.out
    Untracked:  code/codingdms2bed.py
    Untracked:  code/convertNominal2SNPLOC.py
    Untracked:  code/convertNominal2SNPloc2Versions.py
    Untracked:  code/correctNomeqtl.R
    Untracked:  code/createPlinkSampfile.py
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/eQTL_switch2snploc.py
    Untracked:  code/eQTLgenestestedapa.py
    Untracked:  code/encodeRNADTplots.sh
    Untracked:  code/environmentLeaf.yaml
    Untracked:  code/extractGenotypes.py
    Untracked:  code/extractseqfromqtlfastq.py
    Untracked:  code/fc2leafphen.py
    Untracked:  code/fc_filteredPAS6and7As.sh
    Untracked:  code/fifteenBPupstreamPAS.py
    Untracked:  code/fiftyBPupstreamPAS.py
    Untracked:  code/filterLDsnps.py
    Untracked:  code/filterMPPAS.py
    Untracked:  code/filterMPPAS_15.py
    Untracked:  code/filterMPPAS_15_7As.py
    Untracked:  code/filterMPPAS_50.py
    Untracked:  code/filterSAFforMP.py
    Untracked:  code/filterSAFforMP_gen.py
    Untracked:  code/finalPASbed2SAF.py
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/fix4su304corr.py
    Untracked:  code/fix4su604corr.py
    Untracked:  code/fix4sukalisto.py
    Untracked:  code/fixExandUnexeQTL
    Untracked:  code/fixExandUnexeQTL.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFChead_short.py
    Untracked:  code/fixFChead_summary.py
    Untracked:  code/fixH3k12ac.py
    Untracked:  code/fixPASregionSNPs.py
    Untracked:  code/fixRNAhead4corr.py
    Untracked:  code/fixRNAkalisto.py
    Untracked:  code/fixgroupedtranscript.py
    Untracked:  code/fixhead_netseqfc.py
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.log
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
    Untracked:  code/get100upPAS.py
    Untracked:  code/getAPAfromanyeQTL.py
    Untracked:  code/getApapval4eqtl.py
    Untracked:  code/getApapval4eqtl_unexp.py
    Untracked:  code/getApapval4eqtl_version67.py
    Untracked:  code/getDownstreamIntronNuclear.py
    Untracked:  code/getIntronDownstreamPAS.py
    Untracked:  code/getIntronUpstreamPAS.py
    Untracked:  code/getQTLalleles.py
    Untracked:  code/getQTLfastq.sh
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getUpstreamIntronNuclear.py
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/grouptranscripts.py
    Untracked:  code/intersectPAS_ssSNPS.err
    Untracked:  code/intersectPAS_ssSNPS.out
    Untracked:  code/intersectVCFPAS.err
    Untracked:  code/intersectVCFPAS.out
    Untracked:  code/intersectVCFandupPAS.sh
    Untracked:  code/keep5perMAF.py
    Untracked:  code/keepSNP_vcf.sh
    Untracked:  code/log/
    Untracked:  code/makeSAFbothfrac5perc.py
    Untracked:  code/makeSNP2rsidfile.py
    Untracked:  code/makeeQTLempirical_unexp.py
    Untracked:  code/makeeQTLempiricaldist.py
    Untracked:  code/makegencondeTSSfile.py
    Untracked:  code/mapSSsnps2PAS.sh
    Untracked:  code/mergRNABam.sh
    Untracked:  code/mergeAnno.err
    Untracked:  code/mergeAnno.out
    Untracked:  code/mergeAnnotations.sh
    Untracked:  code/mergeBW_norm.sh
    Untracked:  code/mergeBWnorm.err
    Untracked:  code/mergeBWnorm.out
    Untracked:  code/mergeBamNacent.err
    Untracked:  code/mergeBamNacent.out
    Untracked:  code/mergeBamNascent.sh
    Untracked:  code/mergeRNAbam.err
    Untracked:  code/mergeRNAbam.out
    Untracked:  code/mnase1stintron.sh
    Untracked:  code/mnaseDTPlot1stintron.err
    Untracked:  code/mnaseDTPlot1stintron.out
    Untracked:  code/mnaseDTPlot4thintron.err
    Untracked:  code/mnaseDTPlot4thintron.out
    Untracked:  code/mnaseDT_fourthintron.sh
    Untracked:  code/netDTPlot4thintron.out
    Untracked:  code/netseqDTplot1stIntron.sh
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/netseqFC.sh
    Untracked:  code/neyDTPlot4thintron.err
    Untracked:  code/nucQTLGWAS.py
    Untracked:  code/nucQTLGWAS_withLD.py
    Untracked:  code/nucSpecQTLineData.py
    Untracked:  code/nucSpeceffectsize.py
    Untracked:  code/pQTLsotherdata.py
    Untracked:  code/pacbioDT.sh
    Untracked:  code/pacbioIntronicDT.sh
    Untracked:  code/parseBestbamid.py
    Untracked:  code/phenoQTLfromlist.py
    Untracked:  code/plink.log
    Untracked:  code/processYRIgen.py
    Untracked:  code/prxySNP.err
    Untracked:  code/prxySNP.out
    Untracked:  code/pttFacetBoxplots.err
    Untracked:  code/pttFacetBoxplots.out
    Untracked:  code/pttQTLsinapaQTL.py
    Untracked:  code/pullTwoMechData.py
    Untracked:  code/qtlFacetBoxplots.err
    Untracked:  code/qtlFacetBoxplots.out
    Untracked:  code/qtlRegionseq.sh
    Untracked:  code/qtlsPvalOppFrac.py
    Untracked:  code/rLD_vcftools.hap.err
    Untracked:  code/removeXfromHmm.py
    Untracked:  code/removeloc_pheno.py
    Untracked:  code/riboQTL.sh
    Untracked:  code/riboqtl.err
    Untracked:  code/riboqtl.out
    Untracked:  code/runBestBamID.err
    Untracked:  code/runCorrectNomEqtl.sh
    Untracked:  code/runCorrectNomeqtl.err
    Untracked:  code/runCorrectNomeqtl.out
    Untracked:  code/runFilterLD.err
    Untracked:  code/runFilterLD.out
    Untracked:  code/runHMMpermute.err
    Untracked:  code/runHMMpermute.out
    Untracked:  code/runHMMpermuteAPAqtls.sh
    Untracked:  code/runHMMpermuteeQTLS.sh
    Untracked:  code/runHMMpermuteeQTLs.err
    Untracked:  code/runHMMpermuteeQTLs.out
    Untracked:  code/runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/runMakeEmpiricaleQTLs.err
    Untracked:  code/runMakeEmpiricaleQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLsunex.err
    Untracked:  code/runMakeEmpiricaleQTLsunex.out
    Untracked:  code/runMakeeQTLempirical.sh
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_bam2bw.err
    Untracked:  code/run_bam2bw.out
    Untracked:  code/run_bam2bw_all3prime.sh
    Untracked:  code/run_bam2bw_extra3.sh
    Untracked:  code/run_bam2bwexta.err
    Untracked:  code/run_bam2bwexta.out
    Untracked:  code/run_bestbamid.sh
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/run_filtersnpLD.sh
    Untracked:  code/run_getAPAfromanyeQTL.err
    Untracked:  code/run_getAPAfromanyeQTL.out
    Untracked:  code/run_getAPAfromeQTL_version6.7.sh
    Untracked:  code/run_getApaPval4eQTLs.err
    Untracked:  code/run_getApaPval4eQTLs.out
    Untracked:  code/run_getApaPval4eQTLsunexplained.err
    Untracked:  code/run_getApaPval4eQTLsunexplained.out
    Untracked:  code/run_getApaPval4eqtl.sh
    Untracked:  code/run_getapafromeQTL.sh
    Untracked:  code/run_getapapval4eqtl_unexp.sh
    Untracked:  code/run_leafcutterDiffIso.sh
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/run_prxySNP.sh
    Untracked:  code/run_pttfacetboxplot.sh
    Untracked:  code/run_qtlFacetBoxplots.sh
    Untracked:  code/run_sepUsagephen.sh
    Untracked:  code/run_sepgenobychrom.err
    Untracked:  code/run_sepgenobychrom.out
    Untracked:  code/run_sepgenobychrom.sh
    Untracked:  code/run_sepusage.err
    Untracked:  code/run_sepusage.out
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/run_verifybam.sh
    Untracked:  code/run_verifybam128N.err
    Untracked:  code/run_verifybam128N.out
    Untracked:  code/run_verifybam128T.err
    Untracked:  code/run_verifybam128T.out
    Untracked:  code/run_verifybam517N.err
    Untracked:  code/run_verifybam517N.out
    Untracked:  code/run_verifybam517T.err
    Untracked:  code/run_verifybam517T.out
    Untracked:  code/run_verifybam_fullVCF.sh
    Untracked:  code/runprxySNP.err
    Untracked:  code/runprxySNP.out
    Untracked:  code/runres2pas.err
    Untracked:  code/runres2pas.out
    Untracked:  code/selectNominalPvalues.py
    Untracked:  code/sepUsagePhen.py
    Untracked:  code/sepgenobychrom.py
    Untracked:  code/seqQTLfastq.err
    Untracked:  code/seqQTLfastq.out
    Untracked:  code/seqQTLregion.err
    Untracked:  code/seqQTLregion.out
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/sortindexRNABam.err
    Untracked:  code/sortindexRNABam.out
    Untracked:  code/sortindexRNAbam.sh
    Untracked:  code/subsetAPAnotEorPgene.py
    Untracked:  code/subsetAPAnotEorPgene_2versions.py
    Untracked:  code/subsetApanoteGene.py
    Untracked:  code/subsetApanoteGene_2versions.py
    Untracked:  code/subsetUnexplainedeQTLs.py
    Untracked:  code/subsetVCF_SS.sh
    Untracked:  code/subsetVCF_noSSregions.sh
    Untracked:  code/subsetVCF_upstreamPAS.sh
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subsetpermAPAwithGenelist.py
    Untracked:  code/subsetpermAPAwithGenelist_2versions.py
    Untracked:  code/subsetvcf_SS.err
    Untracked:  code/subsetvcf_SS.out
    Untracked:  code/subsetvcf_noSS.err
    Untracked:  code/subsetvcf_noSS.out
    Untracked:  code/subsetvcf_otherreg.sh
    Untracked:  code/subsetvcf_pas.err
    Untracked:  code/subsetvcf_pas.out
    Untracked:  code/subsetvcf_perm.err
    Untracked:  code/subsetvcf_perm.out
    Untracked:  code/subsetvcf_permSS.sh
    Untracked:  code/subsetvcf_rand.err
    Untracked:  code/subsetvcf_rand.out
    Untracked:  code/subtract5UTR.err
    Untracked:  code/subtract5UTR.out
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/subtractExons.sh
    Untracked:  code/subtractfiveprimeUTR.sh
    Untracked:  code/tabixSNPS.sh
    Untracked:  code/tabixSNPs.err
    Untracked:  code/tabixSNPs.out
    Untracked:  code/tenBPupstreamPAS.py
    Untracked:  code/testVerifyBam.sh
    Untracked:  code/test_verifybam.err
    Untracked:  code/test_verifybam.out
    Untracked:  code/totSeceffectsize.py
    Untracked:  code/transcriptdm2bed.py
    Untracked:  code/twentyBPupstreamPAS.py
    Untracked:  code/utrdms2saf.py
    Untracked:  code/vcf2bed.py
    Untracked:  code/vcf_keepsnps.err
    Untracked:  code/vcf_keepsnps.out
    Untracked:  code/verifyBam18517N.sh
    Untracked:  code/verifyBam18517T.sh
    Untracked:  code/verifyBam19128N.sh
    Untracked:  code/verifyBam19128T.sh
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/wrap_verifybam.sh
    Untracked:  code/wrap_verifybam_full.sh
    Untracked:  code/writeExampleQTLcode.py
    Untracked:  code/writePTTexamplecode.py
    Untracked:  code/zipandtabPhen.err
    Untracked:  code/zipandtabPhen.out
    Untracked:  data/._.DS_Store
    Untracked:  data/._MetaDataSequencing.txt
    Untracked:  data/AnnotatedPAS/
    Untracked:  data/ApaByEgene/
    Untracked:  data/ApaByPgene/
    Untracked:  data/BadLines/
    Untracked:  data/Battle_pQTL/
    Untracked:  data/CheckSums/
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/EncodeRNA/
    Untracked:  data/ExampleQTLPlots/
    Untracked:  data/FlaggedPAS/
    Untracked:  data/GWAS_overlap/
    Untracked:  data/GeuvadisRNA/
    Untracked:  data/HMMqtls/
    Untracked:  data/Li_eQTLs/
    Untracked:  data/NascentRNA/
    Untracked:  data/NucSpeceQTLeffect/
    Untracked:  data/PAS/
    Untracked:  data/PAS_postFlag/
    Untracked:  data/PolyA_DB/
    Untracked:  data/PreTerm_pheno/
    Untracked:  data/PrematureQTLNominal/
    Untracked:  data/PrematureQTLPermuted/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/QTLoverlap_nonNorm/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SNPinSS/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/TF_motifdisruption/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/Version15bp6As/
    Untracked:  data/Version15bp7As/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/assignedPeaks_15Up/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/bw/
    Untracked:  data/bw_norm/
    Untracked:  data/eQTLs/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intronRNAratio/
    Untracked:  data/intron_analysis/
    Untracked:  data/locusZoom/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBW_norm/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/molPhenos/
    Untracked:  data/molQTLs/
    Untracked:  data/motifdistrupt/
    Untracked:  data/netseq/
    Untracked:  data/nonNorm_pheno/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/oldPASfiles/
    Untracked:  data/overlapeQTL_try2/
    Untracked:  data/overlapeQTLs/
    Untracked:  data/pQTLoverlap/
    Untracked:  data/pacbio/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/pttQTL/
    Untracked:  data/pttQTLplots/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  data/twoMech/
    Untracked:  data/verifyBAM/
    Untracked:  data/verifyBAM_full/
    Untracked:  docs/._.DS_Store
    Untracked:  docs/figure/._.DS_Store
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg
    Untracked:  run_verifybam517N.err
    Untracked:  run_verifybam517N.out

Unstaged changes:
    Modified:   analysis/NuclearSpecIncludeNotTested.Rmd
    Modified:   analysis/Readdistagainstfeatures.Rmd
    Modified:   analysis/compareAnnotatedpas.Rmd
    Modified:   analysis/overlapapaqtlsandeqtls.Rmd
    Modified:   analysis/signalsiteanalysis.Rmd
    Modified:   analysis/version15bpfilter.Rmd
    Modified:   code/BothFracDTPlotGeneRegions.sh
    Modified:   code/Snakefile
    Modified:   code/SnakefilefiltPAS
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_Nominal.sh
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/apaQTLsnake.err
    Modified:   code/bam2bw.sh
    Modified:   code/bed2saf.py
    Modified:   code/cluster.json
    Modified:   code/clusterfiltPAS.json
    Modified:   code/config.yaml
    Modified:   code/environment.yaml
    Modified:   code/makePheno.py
    Modified:   code/mergeAllBam.sh
    Modified:   code/mergeByFracBam.sh
    Modified:   code/mergePeaks.sh
    Modified:   code/peakFC.sh
    Modified:   code/snakemake.batch
    Modified:   code/snakemakePAS.batch
    Modified:   code/snakemakefiltPAS.batch
    Modified:   code/submit-snakemake.sh
    Modified:   code/submit-snakemakePAS.sh
    Modified:   code/submit-snakemakefiltPAS.sh
    Deleted:    code/test.txt
    Modified:   data/MetaDataSequencing.txt
    Deleted:    docs/figure/nonNormQTL.Rmd/figure2D-1.pdf
    Deleted:    reads_graphs.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 3088c20 brimittleman 2019-09-07 add tot spec PAS
html 7711ef9 brimittleman 2019-09-04 Build site.
Rmd 73f5833 brimittleman 2019-09-04 wflow_publish(c(“analysis/QTLlocation.Rmd”, “analysis/apaQTLoverlap.Rmd”, “analysis/nonNormQTL.Rmd”,
html 3875f36 brimittleman 2019-08-01 Build site.
Rmd 3d49e9f brimittleman 2019-08-01 figure2D
html 4dd2bde brimittleman 2019-08-01 Build site.
Rmd 4fd345d brimittleman 2019-08-01 figure2D
html 6757ce6 brimittleman 2019-07-17 Build site.
Rmd bf42ee6 brimittleman 2019-07-17 remove density
html 4297ae4 brimittleman 2019-07-03 Build site.
Rmd 2cafaf1 brimittleman 2019-07-03 include spec qtl
html 0c7c682 brimittleman 2019-06-13 Build site.
Rmd 968cb4b brimittleman 2019-06-13 wflow_publish(“analysis/nonNormQTL.Rmd”)
html 230bc6a brimittleman 2019-06-11 Build site.
Rmd cd24c16 brimittleman 2019-06-11 new genos
html 5a31f4d brimittleman 2019-05-28 Build site.
Rmd 6ece235 brimittleman 2019-05-28 add example code
html de2aa7e brimittleman 2019-05-28 Build site.
Rmd c04929f brimittleman 2019-05-28 add example code
html f4a2106 brimittleman 2019-05-28 Build site.
Rmd f10e64d brimittleman 2019-05-28 add plot grid
html 64a7d5d brimittleman 2019-05-28 Build site.
Rmd f5260bd brimittleman 2019-05-28 add results
html 28c8ca3 brimittleman 2019-05-24 Build site.
Rmd 3f63045 brimittleman 2019-05-24 add code to prepare non norm qtl

In order to compare effect sizes for the QTLs I have previously identified in an interpretable manner, I need to run the linear model with the non normalized usage. To do this I will separate the the usage (with annotation) files by chromosome and run fastqtl on these files.

library(workflowr)
This is workflowr version 1.4.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave

Prepare files

countsnum= APApeak_Phenotype_GeneLocAnno.Total.5perc.CountsNumeric, APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.CountsNumeric

id file= APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz, APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz

totAnno= read.table("../data/phenotype_5perc/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz", stringsAsFactors = F, header = T) %>% separate(chrom, into=c("Chrchrom", "Start", "End", "ID"),sep=":") %>% mutate(Chr=str_sub(Chrchrom, 4, str_length(Chrchrom)))
                                                                                                                                                                                                                
colnamesTot= colnames(totAnno)[5:56]
totUsage=read.table("../data/phenotype_5perc/APApeak_Phenotype_GeneLocAnno.Total.5perc.CountsNumeric", stringsAsFactors = F, header = F, col.names = colnamesTot) 

totUsageAnno=as.data.frame(cbind(Chr=totAnno$Chr, start=totAnno$Start, end=totAnno$End, ID=totAnno$ID, totUsage ))

write.table(totUsageAnno,file="../data/nonNorm_pheno/TotalUsageAllChrom.txt", col.names = T, row.names = F, quote = F, sep="\t" )
nucAnno= read.table("../data/phenotype_5perc/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz", stringsAsFactors = F, header = T)%>% separate(chrom, into=c("Chrchrom", "Start", "End", "ID"),sep=":") %>% mutate(Chr=str_sub(Chrchrom, 4, str_length(Chrchrom)))
colnamesNuc= colnames(nucAnno)[5:56]
nucUsage=read.table("../data/phenotype_5perc/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.CountsNumeric", stringsAsFactors = F, header = F, col.names = colnamesNuc) 


nucUsageAnno=as.data.frame(cbind(Chr=nucAnno$Chr, start=nucAnno$Start, end=nucAnno$End, ID=nucAnno$ID, nucUsage ))

write.table(nucUsageAnno,file="../data/nonNorm_pheno/NuclearUsageAllChrom.txt", col.names = T, row.names = F, quote = F, sep="\t" )

Run QTL scripts

I will create a python script to seperate the file into each chromosome for running fastQTL.

sbatch run_sepUsagephen.sh
sbatch ZipandTabPheno.sh
sbatch ApaQTL_nominalNonnorm.sh

Concatinate files:

cat  ../data/nonNorm_pheno/TotalUsageChrom*.nominal.out > ../data/nonNorm_pheno/TotalUsageChrom_Nominal_AllChrom.txt
cat ../data/nonNorm_pheno/NuclearUsageChrom*.nominal.out > ../data/nonNorm_pheno/NuclearUsageChrom_Nominal_AllChrom.txt

Pull out real total and nuc QLTs

python qtlsPvalOppFrac.py   ../data/apaQTLs/Nuclear_apaQTLs4pc_5fdr.txt ../data/nonNorm_pheno/TotalUsageChrom_Nominal_AllChrom.txt ../data/QTLoverlap_nonNorm/NuclearQTLinTotalNominal_nonNorm.txt  

python qtlsPvalOppFrac.py ../data/apaQTLs/Nuclear_apaQTLs4pc_5fdr.txt ../data/nonNorm_pheno/NuclearUsageChrom_Nominal_AllChrom.txt ../data/QTLoverlap_nonNorm/NuclearQTLinNuclearNominal_nonNorm.txt  


python qtlsPvalOppFrac.py ../data/apaQTLs/Total_apaQTLs4pc_5fdr.txt ../data/nonNorm_pheno/TotalUsageChrom_Nominal_AllChrom.txt ../data/QTLoverlap_nonNorm/TotalQTLinTotalNominal_nonNorm.txt  

python qtlsPvalOppFrac.py ../data/apaQTLs/Total_apaQTLs4pc_5fdr.txt ../data/nonNorm_pheno/NuclearUsageChrom_Nominal_AllChrom.txt ../data/QTLoverlap_nonNorm/TotalQTLinNuclearNominal_nonNorm.txt  
totAPAinNuc=read.table("../data/QTLoverlap_nonNorm/TotalQTLinNuclearNominal_nonNorm.txt", header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "slope"))


nucAPAinTot=read.table("../data/QTLoverlap_nonNorm/NuclearQTLinTotalNominal_nonNorm.txt", header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "slope"))

totAPAinTot=read.table("../data/QTLoverlap_nonNorm/TotalQTLinTotalNominal_nonNorm.txt", header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "slope")) %>% dplyr::select(peakID, snp, slope) %>% dplyr::rename("Originalslope"=slope)

nucAPAinNuc=read.table("../data/QTLoverlap_nonNorm/NuclearQTLinNuclearNominal_nonNorm.txt", header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "slope")) %>% dplyr::select(peakID, snp, slope)%>% dplyr::rename("Originalslope"=slope)

Total

TotBoth= totAPAinNuc %>% inner_join(totAPAinTot,by=c("peakID", "snp"))

summary(lm(TotBoth$slope ~ TotBoth$Originalslope))

Call:
lm(formula = TotBoth$slope ~ TotBoth$Originalslope)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.66101 -0.03117  0.00361  0.03873  0.37205 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)    
(Intercept)           -0.004458   0.004247   -1.05    0.295    
TotBoth$Originalslope  0.638860   0.022554   28.33   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0852 on 401 degrees of freedom
Multiple R-squared:  0.6668,    Adjusted R-squared:  0.6659 
F-statistic: 802.4 on 1 and 401 DF,  p-value: < 2.2e-16
totbothplot=ggplot(TotBoth, aes(x=Originalslope, y=slope))+geom_point() + geom_smooth(method="lm") + labs(title="Total apaQTL effect sizes", x="Effect size in Total",y="Effect size in Nucler") + geom_density_2d(col="red") + annotate("text", y=1, x=0, label="R2=.67, slope=0.64")

Nuclear

NucBoth= nucAPAinTot %>% inner_join(nucAPAinNuc,by=c("peakID", "snp"))
summary(lm(NucBoth$slope ~ NucBoth$Originalslope))

Call:
lm(formula = NucBoth$slope ~ NucBoth$Originalslope)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.23354 -0.03332  0.00028  0.03182  0.40042 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)           0.001628   0.002910   0.559    0.576    
NucBoth$Originalslope 0.775971   0.017539  44.243   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06408 on 483 degrees of freedom
Multiple R-squared:  0.8021,    Adjusted R-squared:  0.8017 
F-statistic:  1957 on 1 and 483 DF,  p-value: < 2.2e-16
Nucbothplot=ggplot(NucBoth, aes(x=Originalslope, y=slope))+geom_point() + geom_smooth(method="lm") + labs(title="Nuclear apaQTL effect sizes", x="Effect size in Nuclear",y="Effect size in Total") + geom_density_2d(col="red") +  annotate("text", y=1, x=0, label="R2=.8, slope=0.78")
plot_grid(totbothplot,Nucbothplot)

Version Author Date
7711ef9 brimittleman 2019-09-04
0c7c682 brimittleman 2019-06-13
230bc6a brimittleman 2019-06-11
de2aa7e brimittleman 2019-05-28
f4a2106 brimittleman 2019-05-28

For the nuclear plot I want to include the PAS we cannot test in the total fraction. To do this I will write code that only writes out the lines for the PAS not in the total fraction. I need the nominal effect sizes for the nuclear qtls in PAS we could not test in total. First I will get all of the PAS tested in total and figure out the nuclear QTLs not in this set. I will then pull those associations out of the nominal nuclear set.

python nucSpeceffectsize.py
nucSpec=read.table("../data/QTLoverlap_nonNorm/NuclearSpecQTLinNuclearNominal_nonNorm.txt",header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "Originalslope")) %>% mutate(slope=0,set="Specific") %>% select(peakID, snp, dist, pval, Originalslope, slope,set)
NucBoth_set= NucBoth %>% mutate(set="Both")
NucBothwSpec=bind_rows(NucBoth_set, nucSpec)
summary(lm(NucBothwSpec$slope ~ NucBothwSpec$Originalslope))

Call:
lm(formula = NucBothwSpec$slope ~ NucBothwSpec$Originalslope)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.29479 -0.03377  0.00364  0.03780  0.34739 

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)    
(Intercept)                -0.009236   0.002974  -3.106  0.00199 ** 
NucBothwSpec$Originalslope  0.664058   0.018388  36.114  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07255 on 600 degrees of freedom
Multiple R-squared:  0.6849,    Adjusted R-squared:  0.6844 
F-statistic:  1304 on 1 and 600 DF,  p-value: < 2.2e-16
cor.test(y=NucBothwSpec$slope, x=NucBothwSpec$Originalslope)$p.value
[1] 1.336923e-152
nucspecplot=ggplot(NucBothwSpec, aes(x=Originalslope, y=slope))+geom_point(aes( col=set)) + geom_smooth(method="lm") + labs(title="Nuclear apaQTL effect sizes", x="Effect size in Nuclear",y="Effect size in Total") +  annotate("text", y=1, x=0, label="R2=.68, slope=0.66",size=6) + scale_color_brewer(palette = "Dark2")+ theme(text = element_text(size=16), legend.position = "bottom")

Do this in the other fraction to see what is looks like.

python totSeceffectsize.py
totSpec=read.table("../data/QTLoverlap_nonNorm/TotalSpecQTLinTotalNominal_nonNorm.txt",header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "Originalslope")) %>% mutate(slope=0,set="Specific") %>% select(peakID, snp, dist, pval, Originalslope, slope,set)
TotBoth_set= TotBoth %>% mutate(set="Both")
TotBothwSpec=bind_rows(TotBoth_set, totSpec)
summary(lm(TotBothwSpec$slope ~ TotBothwSpec$Originalslope))

Call:
lm(formula = TotBothwSpec$slope ~ TotBothwSpec$Originalslope)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.64645 -0.03081  0.00337  0.03800  0.37917 

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)    
(Intercept)                -0.006902   0.003969  -1.739   0.0827 .  
TotBothwSpec$Originalslope  0.621773   0.021776  28.553   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08339 on 441 degrees of freedom
Multiple R-squared:  0.649, Adjusted R-squared:  0.6482 
F-statistic: 815.2 on 1 and 441 DF,  p-value: < 2.2e-16
totspecplot=ggplot(TotBothwSpec, aes(x=Originalslope, y=slope))+geom_point(aes( col=set)) + geom_smooth(method="lm") + labs(title="Total apaQTL effect sizes", x="Effect size in Total",y="Effect size in Nuclear") +  annotate("text", y=1, x=0, label="R2=.65, slope=0.62", size=6) + scale_color_brewer(palette = "Dark2") + theme(text = element_text(size=16), legend.position = "bottom")

totspecplot

Version Author Date
7711ef9 brimittleman 2019-09-04
6757ce6 brimittleman 2019-07-17
grideffectplot=plot_grid(nucspecplot,totspecplot)
grideffectplot

Version Author Date
7711ef9 brimittleman 2019-09-04
6757ce6 brimittleman 2019-07-17
4297ae4 brimittleman 2019-07-03
TotBothwSpec %>% filter(set=="Specific") %>% nrow()
[1] 40
NucBothwSpec %>% filter(set=="Specific") %>% nrow()
[1] 117
prop.test(x=c(117,40), n=c(565,378), alternative ="greater")

    2-sample test for equality of proportions with continuity
    correction

data:  c(117, 40) out of c(565, 378)
X-squared = 16.012, df = 1, p-value = 3.147e-05
alternative hypothesis: greater
95 percent confidence interval:
 0.06079568 1.00000000
sample estimates:
   prop 1    prop 2 
0.2070796 0.1058201 

specific PAS:

totalPAS=read.table("../data/PAS/APApeak_Peaks_GeneLocAnno.Total.5perc.sort.bed",stringsAsFactors = F,col.names = c("chr", "start","end","name", "score", "strand"))
nuclearPAS=read.table("../data/PAS/APApeak_Peaks_GeneLocAnno.Nuclear.5perc.sort.bed",stringsAsFactors = F,col.names = c("chr", "start","end","name", "score", "strand"))

totalSpec=totalPAS %>% anti_join(nuclearPAS,by="name")
40/nrow(totalSpec)
[1] 0.01509434

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_0.9.4   forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.1   tidyverse_1.2.1 workflowr_1.4.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0         RColorBrewer_1.1-2 cellranger_1.1.0  
 [4] plyr_1.8.4         compiler_3.5.1     pillar_1.3.1      
 [7] git2r_0.25.2       highr_0.7          tools_3.5.1       
[10] digest_0.6.18      lubridate_1.7.4    jsonlite_1.6      
[13] evaluate_0.12      nlme_3.1-137       gtable_0.2.0      
[16] lattice_0.20-38    pkgconfig_2.0.2    rlang_0.4.0       
[19] cli_1.1.0          rstudioapi_0.10    yaml_2.2.0        
[22] haven_1.1.2        withr_2.1.2        xml2_1.2.0        
[25] httr_1.3.1         knitr_1.20         hms_0.4.2         
[28] generics_0.0.2     fs_1.3.1           rprojroot_1.3-2   
[31] grid_3.5.1         tidyselect_0.2.5   glue_1.3.0        
[34] R6_2.3.0           readxl_1.1.0       rmarkdown_1.10    
[37] modelr_0.1.2       magrittr_1.5       whisker_0.3-2     
[40] MASS_7.3-51.1      backports_1.1.2    scales_1.0.0      
[43] htmltools_0.3.6    rvest_0.3.2        assertthat_0.2.0  
[46] colorspace_1.3-2   labeling_0.3       stringi_1.2.4     
[49] lazyeval_0.2.1     munsell_0.5.0      broom_0.5.1       
[52] crayon_1.3.4