Last updated: 2019-08-28
Checks: 6 1
Knit directory: apaQTL/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish
or wflow_build
to ensure that the code is always run in an empty environment.
The following objects were defined in the global environment when these results were created:
Name | Class | Size |
---|---|---|
data | environment | 56 bytes |
env | environment | 56 bytes |
The command set.seed(20190411)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: .Rprofile
Untracked: ._.DS_Store
Untracked: .gitignore
Untracked: @
Untracked: _workflowr.yml
Untracked: analysis/._PASdescriptiveplots.Rmd
Untracked: analysis/._cuttoffPercUsage.Rmd
Untracked: analysis/QTLexampleplots.Rmd
Untracked: analysis/cuttoffPercUsage.Rmd
Untracked: analysis/eQTLoverlap.Rmd
Untracked: analysis/interpret verify bam.Rmd
Untracked: analysis/interpret_verifybam.Rmd
Untracked: analysis/mergeRNA.Rmd
Untracked: analysis/oldstuffNotNeeded.Rmd
Untracked: apaQTL.Rproj
Untracked: code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
Untracked: code/._ApaQTL_nominalNonnorm.sh
Untracked: code/._BothFracDTPlotGeneRegions.sh
Untracked: code/._BothFracDTPlotGeneRegions_normalized.sh
Untracked: code/._EandPqtl_perm.sh
Untracked: code/._EandPqtls.sh
Untracked: code/._FC_NucintornUpandDown.sh
Untracked: code/._FC_UTR.sh
Untracked: code/._FC_intornUpandDownsteamPAS.sh
Untracked: code/._FC_nascentseq.sh
Untracked: code/._FC_newPeaks_olddata.sh
Untracked: code/._HMMpermuteTotal.py
Untracked: code/._HmmPermute.py
Untracked: code/._IntronicPASDT.sh
Untracked: code/._LC_samplegroups.py
Untracked: code/._LD_qtl.sh
Untracked: code/._LD_snpsproxy.sh
Untracked: code/._NascentRNAdtPlot.sh
Untracked: code/._NascentRNAdtPlot3UTRPAS.sh
Untracked: code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
Untracked: code/._NascentRNAdtPlotNucPAS.sh
Untracked: code/._NascentRNAdtPlotTotPAS.sh
Untracked: code/._NascentRNAdtPlotintronicPAS.sh
Untracked: code/._NascnetRNAdtPlotPAS.sh
Untracked: code/._NetSeq_fourthintronDT.sh
Untracked: code/._NomResfromPASSNP.py
Untracked: code/._NuclearPAS_5per.bed.py
Untracked: code/._PTTfacetboxplots.R
Untracked: code/._PrematureQTLNominal.sh
Untracked: code/._PrematureQTLPermuted.sh
Untracked: code/._QTL2bed.py
Untracked: code/._QTL2bed_withstrand.py
Untracked: code/._RNAbam2bw.sh
Untracked: code/._RNAseqDTplot.sh
Untracked: code/._SAF215upbed.py
Untracked: code/._SnakefilePAS
Untracked: code/._SnakefilefiltPAS
Untracked: code/._TESplots100bp.sh
Untracked: code/._TESplots150bp.sh
Untracked: code/._TESplots200bp.sh
Untracked: code/._TotalPAS_5perc.bed.py
Untracked: code/._Untitled
Untracked: code/._ZipandTabPheno.sh
Untracked: code/._aAPAqtl_nominal39ind.sh
Untracked: code/._annotatePacBioPASregion.sh
Untracked: code/._annotatedPAS2bed.py
Untracked: code/._apaQTLCorrectPvalMakeQQ.R
Untracked: code/._apaQTLCorrectpval_6or7a.R
Untracked: code/._apaQTL_Nominal.sh
Untracked: code/._apaQTL_nominalv67.sh
Untracked: code/._apaQTL_permuted.sh
Untracked: code/._apaQTL_permuted_test6A7A.sh
Untracked: code/._assignNucIntonpeak2intronlocs.sh
Untracked: code/._assignTotIntronpeak2intronlocs.sh
Untracked: code/._bam2BW_5primemost.sh
Untracked: code/._bed2saf.py
Untracked: code/._bothFracDTplot1stintron.sh
Untracked: code/._bothFracDTplot4thintron.sh
Untracked: code/._bothFrac_FC.sh
Untracked: code/._callPeaksYL.py
Untracked: code/._changenomQTLres2geneName.py
Untracked: code/._chooseAnno2PAS_pacbio.py
Untracked: code/._chooseAnno2SAF.py
Untracked: code/._chooseSignalSite
Untracked: code/._chooseSignalSite.py
Untracked: code/._closestannotated.sh
Untracked: code/._closestannotated_byfrac.sh
Untracked: code/._cluster.json
Untracked: code/._clusterPAS.json
Untracked: code/._clusterfiltPAS.json
Untracked: code/._codingdms2bed.py
Untracked: code/._config.yaml
Untracked: code/._config2.yaml
Untracked: code/._configOLD.yaml
Untracked: code/._convertNominal2SNPLOC.py
Untracked: code/._convertNominal2SNPloc2Versions.py
Untracked: code/._convertNumeric.py
Untracked: code/._correctNomeqtl.R
Untracked: code/._createPlinkSampfile.py
Untracked: code/._dag.pdf
Untracked: code/._eQTL_switch2snploc.py
Untracked: code/._eQTLgenestestedapa.py
Untracked: code/._encodeRNADTplots.sh
Untracked: code/._extractGenotypes.py
Untracked: code/._extractseqfromqtlfastq.py
Untracked: code/._fc2leafphen.py
Untracked: code/._fc_filteredPAS6and7As.sh
Untracked: code/._fifteenBPupstreamPAS.py
Untracked: code/._fiftyBPupstreamPAS.py
Untracked: code/._filter5perc.R
Untracked: code/._filter5percPheno.py
Untracked: code/._filterLDsnps.py
Untracked: code/._filterMPPAS.py
Untracked: code/._filterMPPAS_15.py
Untracked: code/._filterMPPAS_15_7As.py
Untracked: code/._filterMPPAS_50.py
Untracked: code/._filterSAFforMP.py
Untracked: code/._filterpeaks.py
Untracked: code/._finalPASbed2SAF.py
Untracked: code/._fix4su304corr.py
Untracked: code/._fix4su604corr.py
Untracked: code/._fix4sukalisto.py
Untracked: code/._fixExandUnexeQTL
Untracked: code/._fixExandUnexeQTL.py
Untracked: code/._fixFChead.py
Untracked: code/._fixFChead_bothfrac.py
Untracked: code/._fixFChead_short.py
Untracked: code/._fixH3k12ac.py
Untracked: code/._fixPASregionSNPs.py
Untracked: code/._fixRNAhead4corr.py
Untracked: code/._fixRNAkalisto.py
Untracked: code/._fixgroupedtranscript.py
Untracked: code/._fixhead_netseqfc.py
Untracked: code/._getAPAfromanyeQTL.py
Untracked: code/._getApapval4eqtl.py
Untracked: code/._getApapval4eqtl_unexp.py
Untracked: code/._getApapval4eqtl_version67.py
Untracked: code/._getDownstreamIntronNuclear.py
Untracked: code/._getIntronDownstreamPAS.py
Untracked: code/._getIntronUpstreamPAS.py
Untracked: code/._getQTLalleles.py
Untracked: code/._getQTLfastq.sh
Untracked: code/._getUpstreamIntronNuclear.py
Untracked: code/._grouptranscripts.py
Untracked: code/._intersectVCFandupPAS.sh
Untracked: code/._keep5perMAF.py
Untracked: code/._keepSNP_vcf.sh
Untracked: code/._make5percPeakbed.py
Untracked: code/._makeFileID.py
Untracked: code/._makePheno.py
Untracked: code/._makeSAFbothfrac5perc.py
Untracked: code/._makeSNP2rsidfile.py
Untracked: code/._makeeQTLempirical_unexp.py
Untracked: code/._makeeQTLempiricaldist.py
Untracked: code/._makegencondeTSSfile.py
Untracked: code/._mapSSsnps2PAS.sh
Untracked: code/._mergRNABam.sh
Untracked: code/._mergeAllBam.sh
Untracked: code/._mergeBW_norm.sh
Untracked: code/._mergeBamNascent.sh
Untracked: code/._mergeByFracBam.sh
Untracked: code/._mergePeaks.sh
Untracked: code/._mnase1stintron.sh
Untracked: code/._mnaseDT_fourthintron.sh
Untracked: code/._namePeaks.py
Untracked: code/._netseqDTplot1stIntron.sh
Untracked: code/._netseqFC.sh
Untracked: code/._nucQTLGWAS.py
Untracked: code/._nucSpeceffectsize.py
Untracked: code/._pacbioDT.sh
Untracked: code/._pacbioIntronicDT.sh
Untracked: code/._parseBestbamid.py
Untracked: code/._peak2PAS.py
Untracked: code/._peakFC.sh
Untracked: code/._pheno2countonly.R
Untracked: code/._phenoQTLfromlist.py
Untracked: code/._processYRIgen.py
Untracked: code/._pttQTLsinapaQTL.py
Untracked: code/._qtlRegionseq.sh
Untracked: code/._qtlsPvalOppFrac.py
Untracked: code/._quantassign2parsedpeak.py
Untracked: code/._removeXfromHmm.py
Untracked: code/._removeloc_pheno.py
Untracked: code/._runCorrectNomEqtl.sh
Untracked: code/._runHMMpermuteAPAqtls.sh
Untracked: code/._runHMMpermuteeQTLS.sh
Untracked: code/._runMakeEmpiricaleQTL_unexp.sh
Untracked: code/._runMakeeQTLempirical.sh
Untracked: code/._run_bam2bw_all3prime.sh
Untracked: code/._run_bam2bw_extra3.sh
Untracked: code/._run_bestbamid.sj
Untracked: code/._run_filtersnpLD.sh
Untracked: code/._run_getAPAfromeQTL_version6.7.sh
Untracked: code/._run_getApaPval4eqtl.sh
Untracked: code/._run_getapafromeQTL.py
Untracked: code/._run_getapafromeQTL.sh
Untracked: code/._run_getapapval4eqtl_unexp.sh
Untracked: code/._run_leafcutterDiffIso.sh
Untracked: code/._run_prxySNP.sh
Untracked: code/._run_pttfacetboxplot.sh
Untracked: code/._run_sepUsagephen.sh
Untracked: code/._run_sepgenobychrom.sh
Untracked: code/._run_verifybam.sh
Untracked: code/._selectNominalPvalues.py
Untracked: code/._sepUsagePhen.py
Untracked: code/._sepgenobychrom.py
Untracked: code/._snakemakePAS.batch
Untracked: code/._snakemakefiltPAS.batch
Untracked: code/._sortindexRNAbam.sh
Untracked: code/._submit-snakemakePAS.sh
Untracked: code/._submit-snakemakefiltPAS.sh
Untracked: code/._subsetAPAnotEorPgene.py
Untracked: code/._subsetAPAnotEorPgene_2versions.py
Untracked: code/._subsetApanoteGene.py
Untracked: code/._subsetApanoteGene_2versions.py
Untracked: code/._subsetUnexplainedeQTLs.py
Untracked: code/._subsetVCF_SS.sh
Untracked: code/._subsetVCF_noSSregions.sh
Untracked: code/._subsetVCF_upstreamPAS.sh
Untracked: code/._subset_diffisopheno.py
Untracked: code/._subsetpermAPAwithGenelist.py
Untracked: code/._subsetpermAPAwithGenelist_2versions.py
Untracked: code/._subsetvcf_otherreg.sh
Untracked: code/._subsetvcf_permSS.sh
Untracked: code/._subtrachfiveprimeUTR.sh
Untracked: code/._subtractExons.sh
Untracked: code/._subtractfiveprimeUTR.sh
Untracked: code/._tabixSNPS.sh
Untracked: code/._tenBPupstreamPAS.py
Untracked: code/._testVerifyBam.sh
Untracked: code/._totSeceffectsize.py
Untracked: code/._twentyBPupstreamPAS.py
Untracked: code/._utrdms2saf.py
Untracked: code/._vcf2bed.py
Untracked: code/._verifyBam18517N.sh
Untracked: code/._verifyBam18517T.sh
Untracked: code/._verifyBam19128N.sh
Untracked: code/._verifyBam19128T.sh
Untracked: code/._wrap_verifybam.sh
Untracked: code/._writePTTexamplecode.py
Untracked: code/._writePTTexamplecode.sh
Untracked: code/.pversion
Untracked: code/.snakemake/
Untracked: code/1
Untracked: code/APAqtl_nominal.err
Untracked: code/APAqtl_nominal.out
Untracked: code/APAqtl_nominal_39.err
Untracked: code/APAqtl_nominal_39.out
Untracked: code/APAqtl_nominal_nonNorm.err
Untracked: code/APAqtl_nominal_nonNorm.out
Untracked: code/APAqtl_nominal_versions67.err
Untracked: code/APAqtl_nominal_versions67.out
Untracked: code/APAqtl_permuted.err
Untracked: code/APAqtl_permuted.out
Untracked: code/APAqtl_permuted_versions67.err
Untracked: code/APAqtl_permuted_versions67.out
Untracked: code/ApaQTL_nominalNonnorm.sh
Untracked: code/BothFracDTPlot1stintron.err
Untracked: code/BothFracDTPlot1stintron.out
Untracked: code/BothFracDTPlot4stintron.err
Untracked: code/BothFracDTPlot4stintron.out
Untracked: code/BothFracDTPlotGeneRegions.err
Untracked: code/BothFracDTPlotGeneRegions.out
Untracked: code/BothFracDTPlotGeneRegions_norm.err
Untracked: code/BothFracDTPlotGeneRegions_norm.out
Untracked: code/BothFracDTPlotGeneRegions_normalized.sh
Untracked: code/DistPAS2Sig.py
Untracked: code/EandPqtl.err
Untracked: code/EandPqtl.out
Untracked: code/EandPqtl_perm.sh
Untracked: code/EandPqtls.sh
Untracked: code/EncodeRNADTPlotGeneRegions.err
Untracked: code/EncodeRNADTPlotGeneRegions.out
Untracked: code/FC_NucintornUpandDown.sh
Untracked: code/FC_NucintronPASupandDown.err
Untracked: code/FC_NucintronPASupandDown.out
Untracked: code/FC_UTR.err
Untracked: code/FC_UTR.out
Untracked: code/FC_UTR.sh
Untracked: code/FC_intornUpandDownsteamPAS.sh
Untracked: code/FC_intronPASupandDown.err
Untracked: code/FC_intronPASupandDown.out
Untracked: code/FC_nascent.err
Untracked: code/FC_nascentout
Untracked: code/FC_nascentseq.sh
Untracked: code/FC_newPAS_olddata.err
Untracked: code/FC_newPAS_olddata.out
Untracked: code/FC_newPeaks_olddata.sh
Untracked: code/HMMpermuteTotal.py
Untracked: code/HmmPermute.p
Untracked: code/HmmPermute.py
Untracked: code/IntronicPASDT.err
Untracked: code/IntronicPASDT.out
Untracked: code/IntronicPASDT.sh
Untracked: code/LC_samplegroups.py
Untracked: code/LD_qtl.sh
Untracked: code/LD_snpsproxy.sh
Untracked: code/LD_vcftools.hap.out
Untracked: code/NascentDTPlotGeneRegions.err
Untracked: code/NascentDTPlotGeneRegions.out
Untracked: code/NascentDTPlotPAS.err
Untracked: code/NascentDTPlotPAS.out
Untracked: code/NascentDTPlotPAS_3utr.err
Untracked: code/NascentDTPlotPAS_3utr.out
Untracked: code/NascentDTPlotPAS_firstintron.err
Untracked: code/NascentDTPlotPAS_firstintron.out
Untracked: code/NascentDTPlotPAS_intron.err
Untracked: code/NascentDTPlotPAS_intron.out
Untracked: code/NascentDTPlotPAS_nuc.err
Untracked: code/NascentDTPlotPAS_nuc.out
Untracked: code/NascentDTPlotPAS_tot.err
Untracked: code/NascentDTPlotPAS_tot.out
Untracked: code/NascentRNAdtPlot.sh
Untracked: code/NascentRNAdtPlot3UTRPAS.sh
Untracked: code/NascentRNAdtPlotExcludeFirstintronicPAS.sh
Untracked: code/NascentRNAdtPlotFirstintronicPAS.sh
Untracked: code/NascentRNAdtPlotNucPAS.sh
Untracked: code/NascentRNAdtPlotTotPAS.sh
Untracked: code/NascentRNAdtPlotintronicPAS.sh
Untracked: code/NascnetRNAdtPlotPAS.sh
Untracked: code/NetSeq_fourthintronDT.sh
Untracked: code/NomResfromPASSNP.py
Untracked: code/NuclearPAS_5per.bed.py
Untracked: code/Nuclear_example.err
Untracked: code/Nuclear_example.out
Untracked: code/PACbioDT.err
Untracked: code/PACbioDT.out
Untracked: code/PACbioDTitronic.err
Untracked: code/PACbioDTitronic.out
Untracked: code/PTTfacetboxplots.R
Untracked: code/PrematureQTLNominal.sh
Untracked: code/PrematureQTLPermuted.sh
Untracked: code/Prematureqtl_nominal.err
Untracked: code/Prematureqtl_nominal.out
Untracked: code/Prematureqtl_permuted.err
Untracked: code/Prematureqtl_permuted.out
Untracked: code/QTL2bed.py
Untracked: code/QTL2bed_withstrand.py
Untracked: code/README.md
Untracked: code/RNABam2BW.err
Untracked: code/RNABam2BW.out
Untracked: code/RNAbam2bw.sh
Untracked: code/RNAseqDTPlotGeneRegions.err
Untracked: code/RNAseqDTPlotGeneRegions.out
Untracked: code/RNAseqDTplot.sh
Untracked: code/Rplots.pdf
Untracked: code/SAF215upbed.py
Untracked: code/Script4NuclearPTTqtlexamples.sh
Untracked: code/Script4NuclearQTLexamples.sh
Untracked: code/Script4TotalPTTqtlexamples.sh
Untracked: code/Script4TotalQTLexamples.sh
Untracked: code/TESplots100bp.err
Untracked: code/TESplots100bp.out
Untracked: code/TESplots100bp.sh
Untracked: code/TESplots150bp.err
Untracked: code/TESplots150bp.out
Untracked: code/TESplots150bp.sh
Untracked: code/TESplots200bp.err
Untracked: code/TESplots200bp.out
Untracked: code/TESplots200bp.sh
Untracked: code/TotalPAS_5perc.bed.py
Untracked: code/Total_example.err
Untracked: code/Total_example.out
Untracked: code/Untitled
Untracked: code/Upstream100Bases_general.py
Untracked: code/YRI_LCL.vcf
Untracked: code/ZipandTabPheno.sh
Untracked: code/aAPAqtl_nominal39ind.sh
Untracked: code/annotatePacBioPASregion.sh
Untracked: code/annotatedPAS2bed.py
Untracked: code/annotatedPASregion.err
Untracked: code/annotatedPASregion.out
Untracked: code/apaQTLCorrectPvalMakeQQ_4pc.R
Untracked: code/apaQTLCorrectpval_6or7a.R
Untracked: code/apaQTL_Nominal_4pc.sh
Untracked: code/apaQTL_nominalv67.sh
Untracked: code/apaQTL_permuted.4pc.sh
Untracked: code/apaQTL_permuted_test6A7A.sh
Untracked: code/apafacetboxplots.R
Untracked: code/apaqtlfacetboxplots.R
Untracked: code/assignNucIntonpeak2intronlocs.sh
Untracked: code/assignPeak2Intronicregion.err
Untracked: code/assignPeak2Intronicregion.out
Untracked: code/assignTotIntronpeak2intronlocs.sh
Untracked: code/assigntotPeak2Intronicregion.err
Untracked: code/assigntotPeak2Intronicregion.out
Untracked: code/bam2BW_5primemost.sh
Untracked: code/bam2bw.err
Untracked: code/bam2bw.out
Untracked: code/bam2bw_5primemost.err
Untracked: code/bam2bw_5primemost.out
Untracked: code/binary_fileset.log
Untracked: code/bothFracDTplot1stintron.sh
Untracked: code/bothFracDTplot4thintron.sh
Untracked: code/bothFrac_FC.err
Untracked: code/bothFrac_FC.out
Untracked: code/bothFrac_FC.sh
Untracked: code/callSHscripts.txt
Untracked: code/changePermQTLres2geneName.py
Untracked: code/changenomQTLres2geneName.py
Untracked: code/chooseAnno2PAS_pacbio.py
Untracked: code/closestannotated.err
Untracked: code/closestannotated.out
Untracked: code/closestannotated.sh
Untracked: code/closestannotated_byfrac.sh
Untracked: code/closestannotatedbyfrac.err
Untracked: code/closestannotatedbyfrac.out
Untracked: code/codingdms2bed.py
Untracked: code/convertNominal2SNPLOC.py
Untracked: code/convertNominal2SNPloc2Versions.py
Untracked: code/correctNomeqtl.R
Untracked: code/createPlinkSampfile.py
Untracked: code/dag.pdf
Untracked: code/dagPAS.pdf
Untracked: code/dagfiltPAS.pdf
Untracked: code/eQTL_switch2snploc.py
Untracked: code/eQTLgenestestedapa.py
Untracked: code/encodeRNADTplots.sh
Untracked: code/environmentLeaf.yaml
Untracked: code/extractGenotypes.py
Untracked: code/extractseqfromqtlfastq.py
Untracked: code/fc2leafphen.py
Untracked: code/fc_filteredPAS6and7As.sh
Untracked: code/fifteenBPupstreamPAS.py
Untracked: code/fiftyBPupstreamPAS.py
Untracked: code/filterLDsnps.py
Untracked: code/filterMPPAS.py
Untracked: code/filterMPPAS_15.py
Untracked: code/filterMPPAS_15_7As.py
Untracked: code/filterMPPAS_50.py
Untracked: code/filterSAFforMP.py
Untracked: code/finalPASbed2SAF.py
Untracked: code/findbuginpeaks.R
Untracked: code/fix4su304corr.py
Untracked: code/fix4su604corr.py
Untracked: code/fix4sukalisto.py
Untracked: code/fixExandUnexeQTL
Untracked: code/fixExandUnexeQTL.py
Untracked: code/fixFChead_bothfrac.py
Untracked: code/fixFChead_short.py
Untracked: code/fixFChead_summary.py
Untracked: code/fixH3k12ac.py
Untracked: code/fixPASregionSNPs.py
Untracked: code/fixRNAhead4corr.py
Untracked: code/fixRNAkalisto.py
Untracked: code/fixgroupedtranscript.py
Untracked: code/fixhead_netseqfc.py
Untracked: code/genotypesYRI.gen.proc.keep.vcf.log
Untracked: code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
Untracked: code/get100upPAS.py
Untracked: code/getAPAfromanyeQTL.py
Untracked: code/getApapval4eqtl.py
Untracked: code/getApapval4eqtl_unexp.py
Untracked: code/getApapval4eqtl_version67.py
Untracked: code/getDownstreamIntronNuclear.py
Untracked: code/getIntronDownstreamPAS.py
Untracked: code/getIntronUpstreamPAS.py
Untracked: code/getQTLalleles.py
Untracked: code/getQTLfastq.sh
Untracked: code/getSeq100up.sh
Untracked: code/getUpstreamIntronNuclear.py
Untracked: code/getseq100up.err
Untracked: code/getseq100up.out
Untracked: code/grouptranscripts.err
Untracked: code/grouptranscripts.out
Untracked: code/grouptranscripts.py
Untracked: code/intersectPAS_ssSNPS.err
Untracked: code/intersectPAS_ssSNPS.out
Untracked: code/intersectVCFPAS.err
Untracked: code/intersectVCFPAS.out
Untracked: code/intersectVCFandupPAS.sh
Untracked: code/keep5perMAF.py
Untracked: code/keepSNP_vcf.sh
Untracked: code/log/
Untracked: code/makeSAFbothfrac5perc.py
Untracked: code/makeSNP2rsidfile.py
Untracked: code/makeeQTLempirical_unexp.py
Untracked: code/makeeQTLempiricaldist.py
Untracked: code/makegencondeTSSfile.py
Untracked: code/mapSSsnps2PAS.sh
Untracked: code/mergRNABam.sh
Untracked: code/mergeBW_norm.sh
Untracked: code/mergeBWnorm.err
Untracked: code/mergeBWnorm.out
Untracked: code/mergeBamNacent.err
Untracked: code/mergeBamNacent.out
Untracked: code/mergeBamNascent.sh
Untracked: code/mergeRNAbam.err
Untracked: code/mergeRNAbam.out
Untracked: code/mnase1stintron.sh
Untracked: code/mnaseDTPlot1stintron.err
Untracked: code/mnaseDTPlot1stintron.out
Untracked: code/mnaseDTPlot4thintron.err
Untracked: code/mnaseDTPlot4thintron.out
Untracked: code/mnaseDT_fourthintron.sh
Untracked: code/netDTPlot4thintron.out
Untracked: code/netseqDTplot1stIntron.sh
Untracked: code/netseqFC.err
Untracked: code/netseqFC.out
Untracked: code/netseqFC.sh
Untracked: code/neyDTPlot4thintron.err
Untracked: code/nucQTLGWAS.py
Untracked: code/nucQTLGWAS_withLD.py
Untracked: code/nucSpeceffectsize.py
Untracked: code/pacbioDT.sh
Untracked: code/pacbioIntronicDT.sh
Untracked: code/parseBestbamid.py
Untracked: code/phenoQTLfromlist.py
Untracked: code/plink.log
Untracked: code/processYRIgen.py
Untracked: code/prxySNP.err
Untracked: code/prxySNP.out
Untracked: code/pttFacetBoxplots.err
Untracked: code/pttFacetBoxplots.out
Untracked: code/pttQTLsinapaQTL.py
Untracked: code/pullTwoMechData.py
Untracked: code/qtlFacetBoxplots.err
Untracked: code/qtlFacetBoxplots.out
Untracked: code/qtlRegionseq.sh
Untracked: code/qtlsPvalOppFrac.py
Untracked: code/rLD_vcftools.hap.err
Untracked: code/removeXfromHmm.py
Untracked: code/removeloc_pheno.py
Untracked: code/runBestBamID.err
Untracked: code/runCorrectNomEqtl.sh
Untracked: code/runCorrectNomeqtl.err
Untracked: code/runCorrectNomeqtl.out
Untracked: code/runFilterLD.err
Untracked: code/runFilterLD.out
Untracked: code/runHMMpermute.err
Untracked: code/runHMMpermute.out
Untracked: code/runHMMpermuteAPAqtls.sh
Untracked: code/runHMMpermuteeQTLS.sh
Untracked: code/runHMMpermuteeQTLs.err
Untracked: code/runHMMpermuteeQTLs.out
Untracked: code/runMakeEmpiricaleQTL_unexp.sh
Untracked: code/runMakeEmpiricaleQTLs.err
Untracked: code/runMakeEmpiricaleQTLs.out
Untracked: code/runMakeEmpiricaleQTLsunex.err
Untracked: code/runMakeEmpiricaleQTLsunex.out
Untracked: code/runMakeeQTLempirical.sh
Untracked: code/run_DistPAS2Sig.err
Untracked: code/run_DistPAS2Sig.out
Untracked: code/run_bam2bw.err
Untracked: code/run_bam2bw.out
Untracked: code/run_bam2bw_all3prime.sh
Untracked: code/run_bam2bw_extra3.sh
Untracked: code/run_bam2bwexta.err
Untracked: code/run_bam2bwexta.out
Untracked: code/run_bestbamid.sh
Untracked: code/run_distPAS2Sig.sh
Untracked: code/run_filtersnpLD.sh
Untracked: code/run_getAPAfromanyeQTL.err
Untracked: code/run_getAPAfromanyeQTL.out
Untracked: code/run_getAPAfromeQTL_version6.7.sh
Untracked: code/run_getApaPval4eQTLs.err
Untracked: code/run_getApaPval4eQTLs.out
Untracked: code/run_getApaPval4eQTLsunexplained.err
Untracked: code/run_getApaPval4eQTLsunexplained.out
Untracked: code/run_getApaPval4eqtl.sh
Untracked: code/run_getapafromeQTL.sh
Untracked: code/run_getapapval4eqtl_unexp.sh
Untracked: code/run_leafcutterDiffIso.sh
Untracked: code/run_leafcutter_ds.err
Untracked: code/run_leafcutter_ds.out
Untracked: code/run_prxySNP.sh
Untracked: code/run_pttfacetboxplot.sh
Untracked: code/run_qtlFacetBoxplots.sh
Untracked: code/run_sepUsagephen.sh
Untracked: code/run_sepgenobychrom.err
Untracked: code/run_sepgenobychrom.out
Untracked: code/run_sepgenobychrom.sh
Untracked: code/run_sepusage.err
Untracked: code/run_sepusage.out
Untracked: code/run_verifybam.err
Untracked: code/run_verifybam.out
Untracked: code/run_verifybam.sh
Untracked: code/run_verifybam128N.err
Untracked: code/run_verifybam128N.out
Untracked: code/run_verifybam128T.err
Untracked: code/run_verifybam128T.out
Untracked: code/run_verifybam517N.err
Untracked: code/run_verifybam517N.out
Untracked: code/run_verifybam517T.err
Untracked: code/run_verifybam517T.out
Untracked: code/run_verifybam_fullVCF.sh
Untracked: code/runprxySNP.err
Untracked: code/runprxySNP.out
Untracked: code/selectNominalPvalues.py
Untracked: code/sepUsagePhen.py
Untracked: code/sepgenobychrom.py
Untracked: code/seqQTLfastq.err
Untracked: code/seqQTLfastq.out
Untracked: code/seqQTLregion.err
Untracked: code/seqQTLregion.out
Untracked: code/snakePASlog.out
Untracked: code/snakefiltPASlog.out
Untracked: code/sortindexRNABam.err
Untracked: code/sortindexRNABam.out
Untracked: code/sortindexRNAbam.sh
Untracked: code/subsetAPAnotEorPgene.py
Untracked: code/subsetAPAnotEorPgene_2versions.py
Untracked: code/subsetApanoteGene.py
Untracked: code/subsetApanoteGene_2versions.py
Untracked: code/subsetUnexplainedeQTLs.py
Untracked: code/subsetVCF_SS.sh
Untracked: code/subsetVCF_noSSregions.sh
Untracked: code/subsetVCF_upstreamPAS.sh
Untracked: code/subset_diffisopheno.py
Untracked: code/subsetpermAPAwithGenelist.py
Untracked: code/subsetpermAPAwithGenelist_2versions.py
Untracked: code/subsetvcf_SS.err
Untracked: code/subsetvcf_SS.out
Untracked: code/subsetvcf_noSS.err
Untracked: code/subsetvcf_noSS.out
Untracked: code/subsetvcf_otherreg.sh
Untracked: code/subsetvcf_pas.err
Untracked: code/subsetvcf_pas.out
Untracked: code/subsetvcf_perm.err
Untracked: code/subsetvcf_perm.out
Untracked: code/subsetvcf_permSS.sh
Untracked: code/subsetvcf_rand.err
Untracked: code/subsetvcf_rand.out
Untracked: code/subtract5UTR.err
Untracked: code/subtract5UTR.out
Untracked: code/subtractExons.err
Untracked: code/subtractExons.out
Untracked: code/subtractExons.sh
Untracked: code/subtractfiveprimeUTR.sh
Untracked: code/tabixSNPS.sh
Untracked: code/tabixSNPs.err
Untracked: code/tabixSNPs.out
Untracked: code/tenBPupstreamPAS.py
Untracked: code/testVerifyBam.sh
Untracked: code/test_verifybam.err
Untracked: code/test_verifybam.out
Untracked: code/totSeceffectsize.py
Untracked: code/transcriptdm2bed.py
Untracked: code/twentyBPupstreamPAS.py
Untracked: code/utrdms2saf.py
Untracked: code/vcf2bed.py
Untracked: code/vcf_keepsnps.err
Untracked: code/vcf_keepsnps.out
Untracked: code/verifyBam18517N.sh
Untracked: code/verifyBam18517T.sh
Untracked: code/verifyBam19128N.sh
Untracked: code/verifyBam19128T.sh
Untracked: code/wrap_verifybam.err
Untracked: code/wrap_verifybam.out
Untracked: code/wrap_verifybam.sh
Untracked: code/wrap_verifybam_full.sh
Untracked: code/writeExampleQTLcode.py
Untracked: code/writePTTexamplecode.py
Untracked: code/zipandtabPhen.err
Untracked: code/zipandtabPhen.out
Untracked: data/._.DS_Store
Untracked: data/._MetaDataSequencing.txt
Untracked: data/AnnotatedPAS/
Untracked: data/ApaByEgene/
Untracked: data/ApaByPgene/
Untracked: data/Battle_pQTL/
Untracked: data/CompareOldandNew/
Untracked: data/DTmatrix/
Untracked: data/DiffIso/
Untracked: data/EncodeRNA/
Untracked: data/ExampleQTLPlots/
Untracked: data/FlaggedPAS/
Untracked: data/GWAS_overlap/
Untracked: data/GeuvadisRNA/
Untracked: data/HMMqtls/
Untracked: data/Li_eQTLs/
Untracked: data/NascentRNA/
Untracked: data/NucSpeceQTLeffect/
Untracked: data/PAS/
Untracked: data/PAS_postFlag/
Untracked: data/PolyA_DB/
Untracked: data/PreTerm_pheno/
Untracked: data/PrematureQTLNominal/
Untracked: data/PrematureQTLPermuted/
Untracked: data/QTLGenotypes/
Untracked: data/QTLoverlap/
Untracked: data/QTLoverlap_nonNorm/
Untracked: data/README.md
Untracked: data/RNAseq/
Untracked: data/Reads2UTR/
Untracked: data/SNPinSS/
Untracked: data/SignalSiteFiles/
Untracked: data/TF_motifdisruption/
Untracked: data/ThirtyNineIndQtl_nominal/
Untracked: data/Version15bp6As/
Untracked: data/Version15bp7As/
Untracked: data/apaQTLNominal/
Untracked: data/apaQTLNominal_4pc/
Untracked: data/apaQTLPermuted/
Untracked: data/apaQTLPermuted_4pc/
Untracked: data/apaQTLs/
Untracked: data/assignedPeaks/
Untracked: data/bam/
Untracked: data/bam_clean/
Untracked: data/bam_waspfilt/
Untracked: data/bed_10up/
Untracked: data/bed_clean/
Untracked: data/bed_clean_sort/
Untracked: data/bed_waspfilter/
Untracked: data/bedsort_waspfilter/
Untracked: data/bothFrac_FC/
Untracked: data/bw/
Untracked: data/bw_norm/
Untracked: data/eQTLs/
Untracked: data/exampleQTLs/
Untracked: data/fastq/
Untracked: data/filterPeaks/
Untracked: data/fourSU/
Untracked: data/h3k27ac/
Untracked: data/highdiffsiggenes.txt
Untracked: data/inclusivePeaks/
Untracked: data/inclusivePeaks_FC/
Untracked: data/intronRNAratio/
Untracked: data/intron_analysis/
Untracked: data/locusZoom/
Untracked: data/mergedBG/
Untracked: data/mergedBW_byfrac/
Untracked: data/mergedBW_norm/
Untracked: data/mergedBam/
Untracked: data/mergedbyFracBam/
Untracked: data/molPhenos/
Untracked: data/molQTLs/
Untracked: data/motifdistrupt/
Untracked: data/netseq/
Untracked: data/nonNorm_pheno/
Untracked: data/nuc_10up/
Untracked: data/nuc_10upclean/
Untracked: data/overlapeQTL_try2/
Untracked: data/overlapeQTLs/
Untracked: data/pacbio/
Untracked: data/peakCoverage/
Untracked: data/peaks_5perc/
Untracked: data/phenotype/
Untracked: data/phenotype_5perc/
Untracked: data/pttQTL/
Untracked: data/pttQTLplots/
Untracked: data/sigDiffGenes.txt
Untracked: data/sort/
Untracked: data/sort_clean/
Untracked: data/sort_waspfilter/
Untracked: data/twoMech/
Untracked: data/verifyBAM/
Untracked: data/verifyBAM_full/
Untracked: docs/._.DS_Store
Untracked: docs/figure/._.DS_Store
Untracked: docs/figure/nonNormQTL.Rmd/._figure2D-1.pdf
Untracked: nohup.out
Untracked: output/._.DS_Store
Untracked: output/._meanCorrelationPhenotypes.svg
Untracked: output/dtPlots/
Untracked: output/fastqc/
Untracked: output/meanCorrelationPhenotypes.svg
Untracked: run_verifybam517N.err
Untracked: run_verifybam517N.out
Unstaged changes:
Modified: analysis/NuclearSpecAPAqtl.Rmd
Modified: analysis/PAS_graphs.Rmd
Modified: analysis/PrematureTermQTL.Rmd
Modified: analysis/compareAnnotatedpas.Rmd
Modified: analysis/nucSpecinEQTLs.Rmd
Modified: analysis/overlapapaqtlsandeqtls.Rmd
Modified: analysis/pQTLexampleplot.Rmd
Modified: code/BothFracDTPlotGeneRegions.sh
Modified: code/Snakefile
Modified: code/apaQTLCorrectPvalMakeQQ.R
Modified: code/apaQTL_Nominal.sh
Modified: code/apaQTL_permuted.sh
Modified: code/apaQTLsnake.err
Modified: code/bam2bw.sh
Modified: code/bed2saf.py
Modified: code/cluster.json
Modified: code/clusterfiltPAS.json
Modified: code/config.yaml
Modified: code/environment.yaml
Modified: code/makePheno.py
Modified: code/mergeAllBam.sh
Modified: code/mergeByFracBam.sh
Modified: code/mergePeaks.sh
Modified: code/peakFC.sh
Modified: code/snakemake.batch
Modified: code/snakemakePAS.batch
Modified: code/snakemakefiltPAS.batch
Modified: code/submit-snakemake.sh
Modified: code/submit-snakemakePAS.sh
Modified: code/submit-snakemakefiltPAS.sh
Deleted: code/test.txt
Deleted: reads_graphs.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 22e9f6a | brimittleman | 2019-08-28 | add explained |
html | aacf73d | brimittleman | 2019-08-28 | Build site. |
Rmd | 1c31e02 | brimittleman | 2019-08-28 | add proportion expained |
html | a850a6e | brimittleman | 2019-08-28 | Build site. |
Rmd | 2f37837 | brimittleman | 2019-08-28 | add unexaplined and pqtl res |
library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1 ✔ purrr 0.3.2
✔ tibble 2.1.1 ✔ dplyr 0.8.0.1
✔ tidyr 0.8.3 ✔ stringr 1.3.1
✔ readr 1.3.1 ✔ forcats 0.3.0
── Conflicts ───────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
mkdir ../data/Version15bp6As
mkdir ../data/Version15bp7As
I am going to test 2 filtering versions. I will run these in parallel here. I will put each step of the analysis in the directories above. I will start in the SnakefileFiltPAS with the named SAF file. I will need to convert this to a bed file to use bedtools nuc. I will then filter the final SAF and run the quantification.
These are still on the opposite strand. I will look at the 15 bases upstream of each PAS for T’s.
For + strand: startnew=start-15 endnew=start
for - strand: startnew=end endnew=end +15
mkdir ../data/Version15bp6As/filter15upfiles
mkdir ../data/Version15bp7As/filter15upfiles
python SAF215upbed.py ../data/Version15bp6As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15up.bed
python SAF215upbed.py ../data/Version15bp7As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15up.bed
Run bedtools nuc on these:
bedtools nuc -s -seq -fi /project2/gilad/briana/genome_anotation_data/genome/Homo_sapiens.GRCh37.75.dna_sm.all.fa -bed ../data/Version15bp6As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15up.bed > ../data/Version15bp6As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC.txt
bedtools nuc -s -seq -fi /project2/gilad/briana/genome_anotation_data/genome/Homo_sapiens.GRCh37.75.dna_sm.all.fa -bed ../data/Version15bp7As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15up.bed > ../data/Version15bp7As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC.txt
Filter out 6 or 7 A. I will do this by making a dictionary with the Ok and outputting only the SAF file PAS in this dictionary.
I will make a script that takes the input, output, the number of A’s to filter
python filterSAFforMP.py ../data/Version15bp6As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC.txt ../data/Version15bp6As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC6A.SAF 6
python filterSAFforMP.py ../data/Version15bp7As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC.txt ../data/Version15bp7As/filter15upfiles/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC7A.SAF 7
Now i can run feature counts for these files:
mkdir ../data/Version15bp6As/peakCoverage/
mkdir ../data/Version15bp7As/peakCoverage/
sbatch fc_filteredPAS6and7As.sh
python fixFChead_short.py ../data/Version15bp6As/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC6A.Nuclear.Quant.fc ../data/Version15bp6As/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC6A.Nuclear.Quant.fixed.fc
python fixFChead_short.py ../data/Version15bp7As/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC7A.Nuclear.Quant.fc ../data/Version15bp7As/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC7A.Nuclear.Quant.fixed.fc
mkdir ../data/Version15bp6As/phenotype/
mkdir ../data/Version15bp7As/phenotype/
python makePheno.py ../data/Version15bp6As/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC6A.Nuclear.Quant.fixed.fc ../data/peakCoverage/file_id_mapping_Nuclear_Transcript.txt ../data/Version15bp6As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.fc
python makePheno.py ../data/Version15bp7As/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.15upNUC7A.Nuclear.Quant.fixed.fc ../data/peakCoverage/file_id_mapping_Nuclear_Transcript.txt ../data/Version15bp7As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.fc
Rscript pheno2countonly.R -I ../data/Version15bp6As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.fc -O ../data/Version15bp6As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.CountsOnly
Rscript pheno2countonly.R -I ../data/Version15bp7As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.fc -O ../data/Version15bp7As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.CountsOnly
python convertNumeric.py ../data/Version15bp6As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.CountsOnly ../data/Version15bp6As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.CountsOnlyNumeric
python convertNumeric.py ../data/Version15bp7As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.CountsOnly ../data/Version15bp7As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.CountsOnlyNumeric
mkdir ../data/Version15bp7As/peaks_5perc/
mkdir ../data/Version15bp6As/peaks_5perc/
Rscript filter5perc.R -P ../data/Version15bp6As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.fc -N ../data/Version15bp6As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.CountsOnlyNumeric -O ../data/Version15bp6As/peaks_5perc/APApeak_Peaks_GeneLocAnno.Nuclear.5_15bp6Aperc.fc
Rscript filter5perc.R -P ../data/Version15bp7As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.fc -N ../data/Version15bp7As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.CountsOnlyNumeric -O ../data/Version15bp7As/peaks_5perc/APApeak_Peaks_GeneLocAnno.Nuclear.5_15bp7Aperc.fc
mkdir ../data/Version15bp7As/phenotype_5perc/
mkdir ../data/Version15bp6As/phenotype_5perc/
python filter5percPheno.py ../data/Version15bp6As/peaks_5perc/APApeak_Peaks_GeneLocAnno.Nuclear.5_15bp6Aperc.fc ../data/Version15bp6As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.fc ../data/Version15bp6As/phenotype_5perc/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.5perc.fc
python filter5percPheno.py ../data/Version15bp7As/peaks_5perc/APApeak_Peaks_GeneLocAnno.Nuclear.5_15bp7Aperc.fc ../data/Version15bp7As/phenotype/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.fc ../data/Version15bp7As/phenotype_5perc/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.5perc.fc
#cut -f1-3,7,8,6 -d " " APApeak_Peaks_GeneLocAnno.Nuclear.5_15bp6Aperc.fc > APApeak_Peaks_GeneLocAnno.Nuclear.5_15bp6Aperc.bed
# cut -f1-3,7,8,6 -d " " APApeak_Peaks_GeneLocAnno.Nuclear.5_15bp7Aperc.fc > APApeak_Peaks_GeneLocAnno.Nuclear.5_15bp7Aperc.bed
module load python
gzip ../data/Version15bp6As/phenotype_5perc/APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.5perc.fc
gzip ../data/Version15bp7As/phenotype_5perc/APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.5perc.fc
#do in dir
python ../../../code/prepare_phenotype_table.py APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.5perc.fc.gz
python ../../../code/prepare_phenotype_table.py APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.5perc.fc.gz
sh APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.5perc.fc.gz_prepare.sh
head -n 5 APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.5perc.fc.gz.PCs > APApeak_Phenotype_GeneLocAnno_15bp6A.Nuclear.5perc.fc.gz.4PCs
sh APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.5perc.fc.gz_prepare.sh
head -n 5 APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.5perc.fc.gz.PCs > APApeak_Phenotype_GeneLocAnno_15bp7A.Nuclear.5perc.fc.gz.4PCs
mkdir ../data/Version15bp6As/apaQTLPermuted
mkdir ../data/Version15bp6As/apaQTLNominal
mkdir ../data/Version15bp7As/apaQTLPermuted
mkdir ../data/Version15bp7As/apaQTLNominal
sbatch apaQTL_permuted_test6A7A.sh
sbatch apaQTL_nominalv67.sh
cat ../data/Version15bp6As/apaQTLPermuted/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp6A.5perc.fc.gz.qqnorm_chr* > ../data/Version15bp6As/apaQTLPermuted/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp6A.5perc_permRes.txt
cat ../data/Version15bp7As/apaQTLPermuted/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp7A.5perc.fc.gz.qqnorm_chr* > ../data/Version15bp7As/apaQTLPermuted/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp7A.5perc_permRes.txt
cat ../data/Version15bp6As/apaQTLNominal/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp6A.5perc.fc.gz.qqnorm_chr* >../data/Version15bp6As/apaQTLNominal/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp6A.5perc_nomRes.txt
cat ../data/Version15bp7As/apaQTLNominal/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp7A.5perc.fc.gz.qqnorm_chr* >../data/Version15bp7As/apaQTLNominal/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp7A.5perc_nomRes.txt
Rscript apaQTLCorrectedpval_6or7a.R
QTL6A=read.table("../data/Version15bp6As/apaQTLPermuted/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp6A.5perc_permResBH.txt", stringsAsFactors = F, header = T) %>% separate(pid, into=c("Chr", "Start", "End", "PeakID"), sep=":") %>% separate(PeakID, into=c("Gene", "Loc", "Strand","Peak"), sep="_")
QTL6ASog= QTL6A %>% filter(-log10(bh)>=1)
nrow(QTL6ASog)
[1] 576
QTL7A=read.table("../data/Version15bp7As/apaQTLPermuted/APApeak_Phenotype_GeneLocAnno.Nuclear_15bp7A.5perc_permResBH.txt", stringsAsFactors = F, header = T) %>% separate(pid, into=c("Chr", "Start", "End", "PeakID"), sep=":") %>% separate(PeakID, into=c("Gene", "Loc", "Strand","Peak"), sep="_")
QTL7Sog= QTL7A %>% filter(-log10(bh)>=1)
nrow(QTL7Sog)
[1] 586
mkdir ../data/Version15bp6As/ApaByEgene
mkdir ../data/Version15bp7As/ApaByEgene
python subsetpermAPAwithGenelist_2versions.py ../data/Li_eQTLs/explainedEgenes.txt 6 ../data/Version15bp6As/ApaByEgene/ApaexplainedeGenes.txt
python subsetpermAPAwithGenelist_2versions.py ../data/Li_eQTLs/explainedEgenes.txt 7 ../data/Version15bp7As/ApaByEgene/ApaexplainedeGenes.txt
python subsetpermAPAwithGenelist_2versions.py ../data/Li_eQTLs/UnexplainedEgenes.txt 6 ../data/Version15bp6As/ApaByEgene/ApaUnaexplainedeGenes.txt
python subsetpermAPAwithGenelist_2versions.py ../data/Li_eQTLs/UnexplainedEgenes.txt 7 ../data/Version15bp7As/ApaByEgene/ApaUnexplainedeGenes.txt
python subsetApanoteGene_2versions.py 6 ../data/Version15bp6As/ApaByEgene/ApaNOTeGene.txt
python subsetApanoteGene_2versions.py 7 ../data/Version15bp7As/ApaByEgene/ApaNOTeGene.txt
6As
six.notE=read.table("../data/Version15bp6As/ApaByEgene/ApaNOTeGene.txt",stringsAsFactors = F,col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
six.ex=read.table("../data/Version15bp6As/ApaByEgene/ApaexplainedeGenes.txt",stringsAsFactors = F,col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
six.un=read.table("../data/Version15bp6As/ApaByEgene/ApaUnaexplainedeGenes.txt",stringsAsFactors = F, col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval") )
six.un=na.omit(six.un)
qqplot(-log10(runif(nrow(six.notE))), -log10(six.notE$bpval), xlab="-log10(Uniform)", ylab="-log10(beta pval)", main="Nuclear 6A Apa")
points(sort(-log10(runif(nrow(six.ex)))), sort(-log10(six.ex$bpval)),col= alpha("Red"))
points(sort(-log10(runif(nrow(six.un)))), sort(-log10(six.un$bpval)),col= alpha("Blue"))
abline(0,1)
legend("topleft", legend=c("Not eGenes", "Explained eGenes", "Unexplained eGenes"),col=c("black", "red", "blue"), pch=16,bty = 'n')
Version | Author | Date |
---|---|---|
a850a6e | brimittleman | 2019-08-28 |
7As
seven.notE=read.table("../data/Version15bp7As/ApaByEgene/ApaNOTeGene.txt",stringsAsFactors = F,col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
seven.ex=read.table("../data/Version15bp7As/ApaByEgene/ApaexplainedeGenes.txt",stringsAsFactors = F,col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
seven.un=read.table("../data/Version15bp7As/ApaByEgene/ApaUnexplainedeGenes.txt",stringsAsFactors = F, col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval") )
seven.un=na.omit(seven.un)
qqplot(-log10(runif(nrow(seven.notE))), -log10(seven.notE$bpval), xlab="-log10(Uniform)", ylab="-log10(beta pval)", main="Nuclear 7A Apa")
points(sort(-log10(runif(nrow(seven.ex)))), sort(-log10(seven.ex$bpval)),col= alpha("Red"))
points(sort(-log10(runif(nrow(seven.un)))), sort(-log10(seven.un$bpval)),col= alpha("Blue"))
abline(0,1)
legend("topleft", legend=c("Not eGenes", "Explained eGenes", "Unexplained eGenes"),col=c("black", "red", "blue"), pch=16,bty = 'n')
Version | Author | Date |
---|---|---|
a850a6e | brimittleman | 2019-08-28 |
python convertNominal2SNPloc2Versions.py 6
python convertNominal2SNPloc2Versions.py 7
mkdir ../data/Version15bp6As/overlapeQTL
mkdir ../data/Version15bp7As/overlapeQTL
sbatch run_getAPAfromeQTL_version6.7.sh
nomnames=c("peakID", 'snp','dist', 'pval', 'slope')
SixapaUnexplained=read.table("../data/Version15bp6As/overlapeQTL/apa_unexplainedQTLs.txt", stringsAsFactors = F, col.names = nomnames) %>% separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_") %>% group_by(gene, snp) %>% mutate(nPeaks=n(), adjPval=pval* nPeaks) %>% dplyr::slice(which.min(adjPval))
SixapaUnexplained_sig= SixapaUnexplained %>% filter(adjPval<.05)
nrow(SixapaUnexplained_sig)/nrow(SixapaUnexplained)
[1] 0.1518771
SixapaExplained=read.table("../data/Version15bp6As/overlapeQTL/apa_explainedQTLs.txt", stringsAsFactors = F, col.names = nomnames) %>% separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_") %>% group_by(gene, snp) %>% mutate(nPeaks=n(), adjPval=pval* nPeaks) %>% dplyr::slice(which.min(adjPval))
SixapaExplained_sig= SixapaExplained %>% filter(adjPval<.05)
nrow(SixapaExplained_sig)/nrow(SixapaExplained)
[1] 0.126071
SevenapaUnexplained=read.table("../data/Version15bp7As/overlapeQTL/apa_unexplainedQTLs.txt", stringsAsFactors = F, col.names = nomnames) %>% separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_") %>% group_by(gene, snp) %>% mutate(nPeaks=n(), adjPval=pval* nPeaks) %>% dplyr::slice(which.min(adjPval))
SevenapaUnexplained_sig= SevenapaUnexplained %>% filter(adjPval<.05)
nrow(SevenapaUnexplained_sig)/nrow(SevenapaUnexplained)
[1] 0.1482112
SevenapaExplained=read.table("../data/Version15bp7As/overlapeQTL/apa_explainedQTLs.txt", stringsAsFactors = F, col.names = nomnames) %>% separate(peakID, into=c("chr","start","end","geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc", "strand", "PASnum"), sep="_") %>% group_by(gene, snp) %>% mutate(nPeaks=n(), adjPval=pval* nPeaks) %>% dplyr::slice(which.min(adjPval))
SevenapaExplained_sig= SevenapaExplained %>% filter(adjPval<.05)
nrow(SevenapaExplained_sig)/nrow(SevenapaExplained)
[1] 0.1221001
mkdir ../data/Version15bp6As/ApaByPgene
mkdir ../data/Version15bp7As/ApaByPgene
python subsetpermAPAwithGenelist_2versions.py ../data/Battle_pQTL/psQTLGeneNames.txt 6 ../data/Version15bp6As/ApaByPgene/ApaPSGenes.txt
python subsetpermAPAwithGenelist_2versions.py ../data/Battle_pQTL/esQTLGenes.txt 6 ../data/Version15bp6As/ApaByPgene/ApaESGenes.txt
python subsetpermAPAwithGenelist_2versions.py ../data/Battle_pQTL/psQTLGeneNames.txt 7 ../data/Version15bp7As/ApaByPgene/ApaPSGenes.txt
python subsetpermAPAwithGenelist_2versions.py ../data/Battle_pQTL/esQTLGenes.txt 7 ../data/Version15bp7As/ApaByPgene/ApaESGenes.txt
python subsetAPAnotEorPgene_2versions.py 6 ../data/Version15bp6As/ApaByPgene/ApaNOTPorEGenes.txt
python subsetAPAnotEorPgene_2versions.py 7 ../data/Version15bp7As/ApaByPgene/ApaNOTPorEGenes.txt
6As
six.notEorP=read.table("../data/Version15bp6As/ApaByPgene/ApaNOTPorEGenes.txt",stringsAsFactors = F,col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
six.PS=read.table("../data/Version15bp6As/ApaByPgene/ApaPSGenes.txt",stringsAsFactors = F,col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
six.ES=read.table("../data/Version15bp6As/ApaByPgene/ApaESGenes.txt",stringsAsFactors = F, col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval") )
six_allE=as.data.frame(rbind(six.ex,six.un))
six.PS=na.omit(six.PS)
six.notEorP=na.omit(six.notEorP)
six.ES=na.omit(six.ES)
six.un=na.omit(six.un)
qqplot(-log10(runif(nrow(six.notEorP))), -log10(six.notEorP$bpval), xlab="-log10(Uniform)", ylab="-log10(beta pval)", main="6A Nuclear Apa")
points(sort(-log10(runif(nrow(six.PS)))), sort(-log10(six.PS$bpval)),col= alpha("Red"))
points(sort(-log10(runif(nrow(six_allE)))), sort(-log10(six_allE$bpval)),col= alpha("blue"))
abline(0,1)
legend("topleft", legend=c("Neither eGenes nor pGenes", "pGenes", "eGenes"),col=c("black", "red","blue"), pch=16,bty = 'n')
Version | Author | Date |
---|---|---|
aacf73d | brimittleman | 2019-08-28 |
7As
seven.notEorP=read.table("../data/Version15bp7As/ApaByPgene/ApaNOTPorEGenes.txt",stringsAsFactors = F,col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
seven.PS=read.table("../data/Version15bp7As/ApaByPgene/ApaPSGenes.txt",stringsAsFactors = F,col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
seven.ES=read.table("../data/Version15bp7As/ApaByPgene/ApaESGenes.txt",stringsAsFactors = F, col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval") )
seven_allE=as.data.frame(rbind(seven.ex,seven.un))
seven.PS=na.omit(seven.PS)
seven.notEorP=na.omit(seven.notEorP)
seven.ES=na.omit(seven.ES)
seven.un=na.omit(seven.un)
qqplot(-log10(runif(nrow(seven.notEorP))), -log10(seven.notEorP$bpval), xlab="-log10(Uniform)", ylab="-log10(beta pval)", main="7A Nuclear Apa")
points(sort(-log10(runif(nrow(seven.PS)))), sort(-log10(seven.PS$bpval)),col= alpha("Red"))
points(sort(-log10(runif(nrow(seven_allE)))), sort(-log10(seven_allE$bpval)),col= alpha("blue"))
abline(0,1)
legend("topleft", legend=c("Neither eGenes nor pGenes", "pGenes", "eGenes"),col=c("black", "red","blue"), pch=16,bty = 'n')
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] forcats_0.3.0 stringr_1.3.1 dplyr_0.8.0.1 purrr_0.3.2
[5] readr_1.3.1 tidyr_0.8.3 tibble_2.1.1 ggplot2_3.1.1
[9] tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 cellranger_1.1.0 plyr_1.8.4 compiler_3.5.1
[5] pillar_1.3.1 git2r_0.25.2 highr_0.7 workflowr_1.4.0
[9] tools_3.5.1 digest_0.6.18 lubridate_1.7.4 jsonlite_1.6
[13] evaluate_0.12 nlme_3.1-137 gtable_0.2.0 lattice_0.20-38
[17] pkgconfig_2.0.2 rlang_0.4.0 cli_1.1.0 rstudioapi_0.10
[21] yaml_2.2.0 haven_1.1.2 withr_2.1.2 xml2_1.2.0
[25] httr_1.3.1 knitr_1.20 hms_0.4.2 generics_0.0.2
[29] fs_1.3.1 rprojroot_1.3-2 grid_3.5.1 tidyselect_0.2.5
[33] glue_1.3.0 R6_2.3.0 readxl_1.1.0 rmarkdown_1.10
[37] modelr_0.1.2 magrittr_1.5 whisker_0.3-2 backports_1.1.2
[41] scales_1.0.0 htmltools_0.3.6 rvest_0.3.2 assertthat_0.2.0
[45] colorspace_1.3-2 stringi_1.2.4 lazyeval_0.2.1 munsell_0.5.0
[49] broom_0.5.1 crayon_1.3.4