• Read count
  • Mapped reads
  • Map prop
  • Library concentration
  • before mp
  • alive perc
  • Mapped v concentration
  • RNA quality

Last updated: 2019-04-26

Checks: 6 0

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/README.md
    Untracked:  code/Rplots.pdf
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/get100upPAS.py
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/log/
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  data/DTmatrix/
    Untracked:  data/PAS/
    Untracked:  data/README.md
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/

Unstaged changes:
    Modified:   analysis/PASusageQC.Rmd
    Modified:   analysis/corrbetweenind.Rmd
    Deleted:    code/Upstream10Bases_general.py
    Modified:   code/bed2saf.py
    Deleted:    code/test.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 111979f brimittleman 2019-04-26 add seq correlations
html 3557545 brimittleman 2019-04-25 Build site.
html 0f7ad72 brimittleman 2019-04-25 Build site.
Rmd 48b2ec1 brimittleman 2019-04-25 add map befroe mp filter
html be227e7 brimittleman 2019-04-25 Build site.
Rmd 6cb0a99 brimittleman 2019-04-25 add seq meta pltos

In this analysis I want to compare the sequencing depth between batches.

library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ─────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()

Load metadata:

metadata=read.table("../data/MetaDataSequencing.txt",header = T)
meta_T=metadata %>% filter(grepl("T", Sample_ID)) %>% mutate(samp=paste("X", Sample_ID, sep=""))
meta_N=metadata %>% filter(grepl("N", Sample_ID)) %>%  mutate(samp=paste("X", Sample_ID, sep=""))

Read count

metadata$batch=as.factor(metadata$batch)
ggplot(metadata, aes(x=batch, group=batch, y=reads, fill=batch)) + geom_boxplot() + geom_jitter() + facet_grid(~fraction) + labs(title="Read count by batch")

Version Author Date
be227e7 brimittleman 2019-04-25

Mapped reads

ggplot(metadata, aes(x=batch, group=batch, y=Mapped_noMP, fill=batch)) + geom_boxplot() + geom_jitter() + facet_grid(~fraction) + labs(title="Mapped reads by batch")

Version Author Date
3557545 brimittleman 2019-04-25
be227e7 brimittleman 2019-04-25

Map prop

ggplot(metadata, aes(x=batch, group=batch, y=prop_MappedwithoutMP, fill=batch)) + geom_boxplot() + geom_jitter() + facet_grid(~fraction) + labs(title="Proportion Mapped reads by batch")

Version Author Date
be227e7 brimittleman 2019-04-25

Library concentration

ggplot(metadata, aes(x=batch, group=batch, y=library_conc, fill=batch)) + geom_boxplot() + geom_jitter() + facet_grid(~fraction) + labs(title="Library concentrations by batch")

Version Author Date
be227e7 brimittleman 2019-04-25

before mp

ggplot(metadata, aes(x=batch, group=batch, y=mapped, fill=batch)) + geom_boxplot() + geom_jitter() + facet_grid(~fraction) + labs(title="Mapped reads before MP filter by batch")

Version Author Date
0f7ad72 brimittleman 2019-04-25

alive perc

ggplot(metadata, aes(y=Mapped_noMP, col=batch, x=alive_avg)) + geom_point()

#Cq

ggplot(metadata, aes(y=Mapped_noMP, col=batch, x=library_conc)) + geom_point() 

Mapped v concentration

ggplot(metadata, aes(y=Mapped_noMP, col=batch, x=Conentration)) + geom_point() + facet_grid(~fraction)

metadata_T=metadata %>% filter(fraction=="total")
summary(lm(data=metadata_T, Mapped_noMP ~ Conentration))

Call:
lm(formula = Mapped_noMP ~ Conentration, data = metadata_T)

Residuals:
     Min       1Q   Median       3Q      Max 
-6858140 -1918197   151332  1688547  6691716 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  6525031.1  1219768.8   5.349 2.01e-06 ***
Conentration    4149.8      722.4   5.745 4.86e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2805000 on 52 degrees of freedom
Multiple R-squared:  0.3882,    Adjusted R-squared:  0.3765 
F-statistic:    33 on 1 and 52 DF,  p-value: 4.86e-07
metadata_N=metadata %>% filter(fraction=="nuclear")
summary(lm(data=metadata_N, Mapped_noMP~ Conentration))

Call:
lm(formula = Mapped_noMP ~ Conentration, data = metadata_N)

Residuals:
     Min       1Q   Median       3Q      Max 
-4831820  -875807  -215509   558782  8499292 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)   6972552     446484  15.617   <2e-16 ***
Conentration     1577       1389   1.136    0.261    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1895000 on 52 degrees of freedom
Multiple R-squared:  0.02422,   Adjusted R-squared:  0.005452 
F-statistic: 1.291 on 1 and 52 DF,  p-value: 0.2612

RNA quality

ggplot(metadata, aes(y=Mapped_noMP, col=batch, x=ratio260_280)) + geom_point() + facet_grid(~fraction)


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1   purrr_0.3.2    
[5] readr_1.3.1     tidyr_0.8.3     tibble_2.1.1    ggplot2_3.1.0  
[9] tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0       cellranger_1.1.0 pillar_1.3.1     compiler_3.5.1  
 [5] git2r_0.23.0     plyr_1.8.4       workflowr_1.3.0  tools_3.5.1     
 [9] digest_0.6.18    lubridate_1.7.4  jsonlite_1.6     evaluate_0.12   
[13] nlme_3.1-137     gtable_0.2.0     lattice_0.20-38  pkgconfig_2.0.2 
[17] rlang_0.3.1      cli_1.0.1        rstudioapi_0.10  yaml_2.2.0      
[21] haven_1.1.2      withr_2.1.2      xml2_1.2.0       httr_1.3.1      
[25] knitr_1.20       hms_0.4.2        generics_0.0.2   fs_1.2.6        
[29] rprojroot_1.3-2  grid_3.5.1       tidyselect_0.2.5 glue_1.3.0      
[33] R6_2.3.0         readxl_1.1.0     rmarkdown_1.10   reshape2_1.4.3  
[37] modelr_0.1.2     magrittr_1.5     whisker_0.3-2    backports_1.1.2 
[41] scales_1.0.0     htmltools_0.3.6  rvest_0.3.2      assertthat_0.2.0
[45] colorspace_1.3-2 labeling_0.3     stringi_1.2.4    lazyeval_0.2.1  
[49] munsell_0.5.0    broom_0.5.1      crayon_1.3.4