Last updated: 2019-05-01

Checks: 6 0

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/README.md
    Untracked:  code/Rplots.pdf
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/aAPAqtl_nominal39ind.sh
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/extractGenotypes.py
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/get100upPAS.py
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/log/
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/selectNominalPvalues.py
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  data/DTmatrix/
    Untracked:  data/PAS/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/README.md
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/

Unstaged changes:
    Modified:   analysis/PASusageQC.Rmd
    Modified:   analysis/corrbetweenind.Rmd
    Deleted:    code/Upstream10Bases_general.py
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/bed2saf.py
    Deleted:    code/test.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd f587970 brimittleman 2019-05-01 fix join
html 9fba469 brimittleman 2019-05-01 Build site.
Rmd df3b22e brimittleman 2019-05-01 add heatmap all qtls
html c2abb09 brimittleman 2019-04-30 Build site.
Rmd a1e3a43 brimittleman 2019-04-30 add example boxplots
html 26aa2e6 brimittleman 2019-04-30 Build site.
Rmd cf09985 brimittleman 2019-04-30 add beta corr plots
html e3bdc3a brimittleman 2019-04-29 Build site.
Rmd 39a6572 brimittleman 2019-04-29 add correlation genotype heatmap

library(reshape2)
library(gdata)
gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
gdata: Unable to load perl libaries needed by read.xls()
gdata: to support 'XLSX' (Excel 2007+) files.
gdata: Run the function 'installXLSXsupport()'
gdata: to automatically download and install the perl
gdata: libaries needed to support Excel XLS and XLSX formats.

Attaching package: 'gdata'
The following object is masked from 'package:stats':

    nobs
The following object is masked from 'package:utils':

    object.size
The following object is masked from 'package:base':

    startsWith
library(workflowr)
This is workflowr version 1.3.0
Run ?workflowr for help getting started
library(gplots)

Attaching package: 'gplots'
The following object is masked from 'package:stats':

    lowess
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ─────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::combine() masks gdata::combine()
✖ dplyr::filter()  masks stats::filter()
✖ dplyr::first()   masks gdata::first()
✖ purrr::keep()    masks gdata::keep()
✖ dplyr::lag()     masks stats::lag()
✖ dplyr::last()    masks gdata::last()
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave

Compare QTLs to those found with previous batch data

I have about double the QTLs hear compared to before resequencing batch 4. I will look at the new QTL to see if there is evidence for them being false positives. I am going to see if there is structure in the genotypes for these QTLs.

The old QTLs are from the threeprimeseq repository.

Total

Import old QTLs

oldtot=read.table("../../threeprimeseq/data/perm_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno.NoMP_sm_quant.Total.fixed.pheno_5perc_permResBH.txt", header=T,stringsAsFactors = F) %>% separate(pid, into=c("Chr", "Start", "End", "PeakID"), sep=":") %>% separate(PeakID, into=c("Gene", "Strand","Peak"), sep="_")
Warning: Expected 3 pieces. Additional pieces discarded in 3 rows [886,
887, 888].
OldTotQTLs= oldtot %>% filter(-log10(bh)>=1)
nrow(OldTotQTLs)
[1] 291

Import new QTLs:

newTotQTLs=read.table("../data/apaQTLs/Total_apaQTLs_5fdr.txt", stringsAsFactors = F, header = T)
nrow(newTotQTLs)
[1] 502

Filter out those matching from the old:

UniqueNewTot=newTotQTLs %>% anti_join(OldTotQTLs, by=c("sid","Gene"))

Write these out to fetch the genotypes:

write.table(UniqueNewTot, file="../data/apaQTLs/Total_apaQTLs_5fdr_NewUnique.txt", quote = F, col.names = F, row.names = F)

Nuclear

oldnuc=read.table("../../threeprimeseq/data/perm_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno.NoMP_sm_quant.Nuclear.fixed.pheno_5perc_permResBH.txt", header=T,stringsAsFactors = F) %>% separate(pid, into=c("Chr", "Start", "End", "PeakID"), sep=":") %>% separate(PeakID, into=c("Gene", "Strand","Peak"), sep="_")
Warning: Expected 3 pieces. Additional pieces discarded in 3 rows [1056,
1057, 1058].
OldNucQTLs= oldnuc %>% filter(-log10(bh)>=1)
nrow(OldNucQTLs)
[1] 615

Import new QTLs:

newNucQTLs=read.table("../data/apaQTLs/Nuclear_apaQTLs_5fdr.txt", stringsAsFactors = F, header = T)
nrow(newNucQTLs)
[1] 1070
UniqueNewNuc=newNucQTLs %>% anti_join(OldNucQTLs, by=c("sid","Gene"))
write.table(UniqueNewNuc, file="../data/apaQTLs/Nuclear_apaQTLs_5fdr_NewUnique.txt", quote = F, col.names = F, row.names = F)

Extract genotypes:

I wrote a script to pull the doses from the vcf file. Run it with:

 python extractGenotypes.py ../data/apaQTLs/Nuclear_apaQTLs_5fdr_NewUnique.txt ../data/QTLGenotypes/Genotypes_NuclearapaQTLS_newunique.txt
 
  python extractGenotypes.py ../data/apaQTLs/Total_apaQTLs_5fdr_NewUnique.txt ../data/QTLGenotypes/Genotypes_TotalapaQTLS_newunique.txt
  

I also need the header from the VCF to have the individuals:

head -n14 /project2/gilad/briana/YRI_geno_hg19/allChrom.dose.filt.vcf | tail -n1  > ../data/QTLGenotypes/vcfheader.txt

#manually remove # and unneaded columns, keep snp and ind. 
vcfhead=read.table("../data/QTLGenotypes/vcfheader.txt", header = T)

input sample list:

samples=read.table("../data/phenotype/SAMPLE.txt")
samplist=as.vector(samples$V1)

Total:

totgeno=read.table("../data/QTLGenotypes/Genotypes_TotalapaQTLS_newunique.txt", col.names = colnames(vcfhead)) %>% select(samplist) %>% t()

Correlation:

totgenosm=totgeno[,1:250]
totgeneCorr=round(cor(totgenosm),2)

heatmap.2(as.matrix(totgeneCorr),trace="none", dendrogram =c("none"), main="Genotype correlation\n for new Total QTL snps")

Version Author Date
e3bdc3a brimittleman 2019-04-29

Nuclear

nucgeno=read.table("../data/QTLGenotypes/Genotypes_NuclearapaQTLS_newunique.txt", col.names = colnames(vcfhead)) %>% select(samplist) %>% t()

Correlation:

nucgenosm=nucgeno[,1:600]
nucgeneCorr=round(cor(nucgenosm),2)
heatmap.2(as.matrix(nucgeneCorr),trace="none", dendrogram =c("none"),main="Genotype correlation \n for new Nuclear QTL snps")

Version Author Date
e3bdc3a brimittleman 2019-04-29

Structure in all QTLs

This was for the new QTLs. I want to see if there is structure more generally.

 python extractGenotypes.py ../data/apaQTLs/Nuclear_apaQTLs_5fdr.txt ../data/QTLGenotypes/Genotypes_NuclearapaQTLS_ALLQTLs.txt

 python extractGenotypes.py ../data/apaQTLs/Total_apaQTLs_5fdr.txt ../data/QTLGenotypes/Genotypes_TotalapaQTLS_ALLQTLs.txt
totgenoall=read.table("../data/QTLGenotypes/Genotypes_TotalapaQTLS_ALLQTLs.txt", col.names = colnames(vcfhead)) %>% select(samplist) %>% t()

totgenoallsm=totgenoall[,1:300]

totgeneallCorr=round(cor(totgenoallsm),2)

heatmap.2(as.matrix(totgeneallCorr),trace="none", dendrogram =c("none"),main="Genotype correlation \n for first 300 Total QTL snps")

Version Author Date
9fba469 brimittleman 2019-05-01
nucgenoall=read.table("../data/QTLGenotypes/Genotypes_NuclearapaQTLS_ALLQTLs.txt", col.names = colnames(vcfhead)) %>% select(samplist) %>% t()
nucgenoallsm=nucgenoall[,1:400]


nucgeneallCorr=round(cor(nucgenoallsm),2)

heatmap.2(as.matrix(nucgeneallCorr),trace="none", dendrogram =c("none"),main="Genotype correlation \n for first 400 Nuclear QTL snps")

Version Author Date
9fba469 brimittleman 2019-05-01

Compare beta values in 55 vs 39

I want to make a scatter plot comaparring the new QTL associations in the 55 vs 39 individauls. If the qtls are real we expect a high correlation.

To do this I can recall the qtls with a smaller sample list excluding the 15 new individuals.

I need to make a list of the individuals not in the 4th batch.

batch1.2.3=read.table("../data/MetaDataSequencing.txt", header=T,stringsAsFactors = F)%>% filter(fraction=="total") %>%  select(line, batch) %>% filter(batch != 4)
samplelist=read.table("../data/phenotype/SAMPLE.txt", col.names = c("line"),stringsAsFactors = F)

Make a new directory for the 39ind qtls:

mkdir ../data/ThirtyNineIndQtl_nominal

Filter the sample list

samplelist_39= samplelist %>% semi_join(batch1.2.3, by="line")
write.table(samplelist_39, file="../data/ThirtyNineIndQtl_nominal/samplelist39.txt", col.names = F, row.names = F, quote = F)

Run the QTL code with this sample list

sbatch aAPAqtl_nominal39ind.sh

Concatinate results:

cat APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm_chr* > APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm_AllChr.txt

cat APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm_chr* > APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm_AllChr.txt

I want to filter the results for the new snps in the uniquenewtot. These results are in data/apaQTLs

I need to write a script that makes a dictionary with each of the new QTLs in the format above. Then I can run throguh the nominal values and keep only the values in the dictionary.

I can run this on the 55 and 39 nominal files then combine the files to create the scatterplot.

total

python selectNominalPvalues.py ../data/apaQTLs/Total_apaQTLs_5fdr_NewUnique.txt ../data/ThirtyNineIndQtl_nominal/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm_AllChr.txt ../data/ThirtyNineIndQtl_nominal/Total_apaQTLs_NewUniqNom_37ing.txt

python selectNominalPvalues.py ../data/apaQTLs/Total_apaQTLs_5fdr_NewUnique.txt ../data/apaQTLNominal/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm_AllChr.txt ../data/ThirtyNineIndQtl_nominal/Total_apaQTLs_NewUniqNom_55ind.txt

Import files:

newin37_tot=read.table("../data/ThirtyNineIndQtl_nominal/Total_apaQTLs_NewUniqNom_37ing.txt",col.names=c("peakID", "snp", "dist", "Nompval39","Beta39"), stringsAsFactors = F)

newin54_tot=read.table("../data/ThirtyNineIndQtl_nominal/Total_apaQTLs_NewUniqNom_55ind.txt",col.names=c("peakID", "snp", "dist", "Nompval54","Beta54"), stringsAsFactors = F) 

Join these:

newinboth=newin54_tot %>% inner_join(newin37_tot, by=c("peakID", "snp"))
total_qtlind=ggplot(newinboth,aes(x=Beta54, y=Beta39)) + geom_point()  + labs(title="New Total apaQTLs \nin different ind. sets", ylab="Beta 39 ind", xlab="Beta 55 ind")
total_qtlind

nuclear

python selectNominalPvalues.py ../data/apaQTLs/Nuclear_apaQTLs_5fdr_NewUnique.txt ../data/ThirtyNineIndQtl_nominal/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm_AllChr.txt ../data/ThirtyNineIndQtl_nominal/Nuclear_apaQTLs_NewUniqNom_37ing.txt

python selectNominalPvalues.py ../data/apaQTLs/Nuclear_apaQTLs_5fdr_NewUnique.txt ../data/apaQTLNominal/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm_AllChr.txt ../data/ThirtyNineIndQtl_nominal/Nuclear_apaQTLs_NewUniqNom_55ind.txt
newin37_nuc=read.table("../data/ThirtyNineIndQtl_nominal/Nuclear_apaQTLs_NewUniqNom_37ing.txt",col.names=c("peakID", "snp", "dist", "Nompval39","Beta39"), stringsAsFactors = F)

newin54_nuc=read.table("../data/ThirtyNineIndQtl_nominal/Nuclear_apaQTLs_NewUniqNom_55ind.txt",col.names=c("peakID", "snp", "dist", "Nompval54","Beta54"), stringsAsFactors = F)

Join these:

newinboth_nuc=newin54_nuc %>% inner_join(newin37_nuc, by=c("peakID", "snp"))
nuclear_qtlind=ggplot(newinboth_nuc,aes(x=Beta54, y=Beta39)) + geom_point()  + labs(title="New Nuclear apaQTLs\n in different ind. sets", ylab="Beta 39 ind", xlab="Beta 55 ind")

plot both:

plot_grid(total_qtlind, nuclear_qtlind)

Version Author Date
9fba469 brimittleman 2019-05-01
c2abb09 brimittleman 2019-04-30

Plot -log10pvalue

pvalplot_tot=ggplot(newinboth,aes(x=-log10(Nompval54), y=-log10(Nompval39))) + geom_point()  + labs(title="New Total apaQTLs \nin different ind. sets", y="-log10 pval 39 ind", x="-log10 pval 55 ind")

pvalplot_tot

pvalplot_nuc=ggplot(newinboth_nuc,aes(x=-log10(Nompval54), y=-log10(Nompval39))) + geom_point()  + labs(title="New Nuclear apaQTLs \nin different ind. sets", y="-log10 pval 39 ind", x="-log10 pval 55 ind")
plot_grid(pvalplot_tot,pvalplot_nuc)

Version Author Date
9fba469 brimittleman 2019-05-01

Confirm these QTLs are in new phenotype peaks:

newvold=read.table("../data/peaks_5perc/NewVOldPeaks.txt", header = T, stringsAsFactors = F) %>% select(peak, New)

colnames(newvold)=c("Peak", "Set")

Are the peaks in UniqueNewTot and UniqueNewNuc

UniqueNewTot_set= UniqueNewTot %>% inner_join(newvold, by="Peak")


UniqueNewTot_set$Set=as.factor(UniqueNewTot_set$Set)
summary(UniqueNewTot_set$Set)
     new original 
     209      188 
UniqueNewNuc_set= UniqueNewNuc %>% inner_join(newvold, by="Peak")


UniqueNewNuc_set$Set=as.factor(UniqueNewNuc_set$Set)
summary(UniqueNewNuc_set$Set)
     new original 
     521      349 

Example boxplots

I want to plot these qtls as boxplots. I will plot usage vs. genotype. I want to color the new 15 individuals differently.

peak15390 CREM 10:35411246


less /project2/gilad/briana/YRI_geno_hg19/chr10.dose.filt.vcf.gz  |  grep 10:35411246 > ../data/exampleQTLs/Geno_10:35411246.txt



#get pheno from pheno_5perc
less ../data/phenotype_5perc/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz | grep peak15390 > ../data/exampleQTLs/Pheno_peak15390.txt

col.names = colnames(vcfhead))


head -n14 /project2/gilad/briana/YRI_geno_hg19/allChrom.dose.filt.vcf | tail -n1  > ../data/exampleQTLs/vcfheader.txt

#get rid of # manually 

#pheno head

 less APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz | head -n1 > ../exampleQTLs/phenoHead.txt
vcfheadfull=read.table("../data/exampleQTLs/vcfheader.txt", header = T)
phenohead=read.table("../data/exampleQTLs/phenoHead.txt", header = T)

Try first

geno_peak15390=read.table("../data/exampleQTLs/Geno_10:35411246.txt", col.names = colnames(vcfheadfull), stringsAsFactors = F) %>% select(-CHROM, -POS, -REF, -ALT, -QUAL, -FILTER, -INFO, -FORMAT)
geno_peak15390M=melt(geno_peak15390, id.vars = "ID") %>% separate(value, into=c("genotype", "extra", "extra2"), sep=":") %>% mutate(dose=round(as.integer(extra), digits = 1)) %>% select(-genotype, -extra, -extra2)

geno_peak15390M$variable=as.character(geno_peak15390M$variable)

pheno_peak15390=read.table("../data/exampleQTLs/Pheno_peak15390.txt", col.names = colnames(phenohead), stringsAsFactors = F) 
pheno_peak15390M=melt(pheno_peak15390,id.vars = "chrom") %>% separate(value, into=c("num", "dom"), sep="/") %>% mutate(usage=as.integer(num)/as.integer(dom))

pheno_peak15390M$variable=as.character(pheno_peak15390M$variable)

Join these

genoPhenopeak15390=pheno_peak15390M %>% inner_join(geno_peak15390M, by="variable") %>% mutate(set=ifelse(variable %in% samplelist_39$line, "old39", "new15"))

genoPhenopeak15390$set=as.factor(genoPhenopeak15390$set)
genoPhenopeak15390$dose=as.factor(genoPhenopeak15390$dose)
ggplot(genoPhenopeak15390, aes(x=dose, y=usage)) + geom_boxplot()+ geom_jitter(aes(col=set))

Version Author Date
9fba469 brimittleman 2019-05-01

Try 1 more: PAFAH1B2 peak25812 11:117048417

#get genotype from vcf
less /project2/gilad/briana/YRI_geno_hg19/chr11.dose.filt.vcf.gz  |  grep 11:117048417 > ../data/exampleQTLs/Geno_11:117048417.txt

#get pheno from pheno_5perc
less ../data/phenotype_5perc/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz | grep peak25812 > ../data/exampleQTLs/Pheno_peak25812.txt
geno_peak25812=read.table("../data/exampleQTLs/Geno_11:117048417.txt", col.names = colnames(vcfheadfull), stringsAsFactors = F) %>% select(-CHROM, -POS, -REF, -ALT, -QUAL, -FILTER, -INFO, -FORMAT)
geno_peak25812M=melt(geno_peak25812, id.vars = "ID") %>% separate(value, into=c("genotype", "extra", "extra2"), sep=":") %>% mutate(dose=round(as.integer(extra), digits = 1)) %>% select(-genotype, -extra, -extra2)

geno_peak25812M$variable=as.character(geno_peak25812M$variable)

pheno_peak25812=read.table("../data/exampleQTLs/Pheno_peak25812.txt", col.names = colnames(phenohead), stringsAsFactors = F) 
pheno_peak25812M=melt(pheno_peak25812,id.vars = "chrom") %>% separate(value, into=c("num", "dom"), sep="/") %>% mutate(usage=as.integer(num)/as.integer(dom))

geno_peak25812M$variable=as.character(geno_peak25812M$variable)

Join these

genoPhenopeak25812=pheno_peak25812M %>% inner_join(geno_peak25812M, by="variable") %>% mutate(set=ifelse(variable %in% samplelist_39$line, "old39", "new15"))
Warning: Column `variable` joining factor and character vector, coercing
into character vector
genoPhenopeak25812$set=as.factor(genoPhenopeak25812$set)
genoPhenopeak25812$dose=as.factor(genoPhenopeak25812$dose)
ggplot(genoPhenopeak25812, aes(x=dose, y=usage)) + geom_boxplot()+ geom_jitter(aes(col=set))

Version Author Date
9fba469 brimittleman 2019-05-01

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_0.9.4   forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.0   tidyverse_1.2.1 gplots_3.0.1    workflowr_1.3.0
[13] gdata_2.18.0    reshape2_1.4.3 

loaded via a namespace (and not attached):
 [1] gtools_3.8.1       tidyselect_0.2.5   haven_1.1.2       
 [4] lattice_0.20-38    colorspace_1.3-2   generics_0.0.2    
 [7] htmltools_0.3.6    yaml_2.2.0         rlang_0.3.1       
[10] pillar_1.3.1       glue_1.3.0         withr_2.1.2       
[13] modelr_0.1.2       readxl_1.1.0       plyr_1.8.4        
[16] munsell_0.5.0      gtable_0.2.0       cellranger_1.1.0  
[19] rvest_0.3.2        caTools_1.17.1.1   evaluate_0.12     
[22] labeling_0.3       knitr_1.20         broom_0.5.1       
[25] Rcpp_1.0.0         KernSmooth_2.23-15 backports_1.1.2   
[28] scales_1.0.0       jsonlite_1.6       fs_1.2.6          
[31] hms_0.4.2          digest_0.6.18      stringi_1.2.4     
[34] grid_3.5.1         rprojroot_1.3-2    cli_1.0.1         
[37] tools_3.5.1        bitops_1.0-6       magrittr_1.5      
[40] lazyeval_0.2.1     crayon_1.3.4       whisker_0.3-2     
[43] pkgconfig_2.0.2    xml2_1.2.0         lubridate_1.7.4   
[46] assertthat_0.2.0   rmarkdown_1.10     httr_1.3.1        
[49] rstudioapi_0.10    R6_2.3.0           nlme_3.1-137      
[52] git2r_0.23.0       compiler_3.5.1