Last updated: 2019-05-16
Checks: 6 0
Knit directory: apaQTL/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190411)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: .Rprofile
Untracked: ._.DS_Store
Untracked: .gitignore
Untracked: _workflowr.yml
Untracked: analysis/._PASdescriptiveplots.Rmd
Untracked: analysis/._cuttoffPercUsage.Rmd
Untracked: analysis/cuttoffPercUsage.Rmd
Untracked: apaQTL.Rproj
Untracked: code/._FC_UTR.sh
Untracked: code/._FC_newPeaks_olddata.sh
Untracked: code/._LC_samplegroups.py
Untracked: code/._SnakefilePAS
Untracked: code/._SnakefilefiltPAS
Untracked: code/._aAPAqtl_nominal39ind.sh
Untracked: code/._apaQTLCorrectPvalMakeQQ.R
Untracked: code/._apaQTL_Nominal.sh
Untracked: code/._apaQTL_permuted.sh
Untracked: code/._bed2saf.py
Untracked: code/._bothFrac_FC.sh
Untracked: code/._callPeaksYL.py
Untracked: code/._chooseAnno2SAF.py
Untracked: code/._chooseSignalSite
Untracked: code/._chooseSignalSite.py
Untracked: code/._cluster.json
Untracked: code/._clusterPAS.json
Untracked: code/._clusterfiltPAS.json
Untracked: code/._config.yaml
Untracked: code/._config2.yaml
Untracked: code/._configOLD.yaml
Untracked: code/._convertNumeric.py
Untracked: code/._dag.pdf
Untracked: code/._extractGenotypes.py
Untracked: code/._fc2leafphen.py
Untracked: code/._filter5perc.R
Untracked: code/._filter5percPheno.py
Untracked: code/._filterpeaks.py
Untracked: code/._finalPASbed2SAF.py
Untracked: code/._fix4su304corr.py
Untracked: code/._fix4su604corr.py
Untracked: code/._fix4sukalisto.py
Untracked: code/._fixFChead.py
Untracked: code/._fixFChead_bothfrac.py
Untracked: code/._fixH3k12ac.py
Untracked: code/._fixRNAhead4corr.py
Untracked: code/._fixRNAkalisto.py
Untracked: code/._fixhead_netseqfc.py
Untracked: code/._make5percPeakbed.py
Untracked: code/._makeFileID.py
Untracked: code/._makePheno.py
Untracked: code/._makeSAFbothfrac5perc.py
Untracked: code/._makegencondeTSSfile.py
Untracked: code/._mergeAllBam.sh
Untracked: code/._mergeByFracBam.sh
Untracked: code/._mergePeaks.sh
Untracked: code/._namePeaks.py
Untracked: code/._netseqFC.sh
Untracked: code/._peak2PAS.py
Untracked: code/._peakFC.sh
Untracked: code/._pheno2countonly.R
Untracked: code/._quantassign2parsedpeak.py
Untracked: code/._removeloc_pheno.py
Untracked: code/._run_leafcutterDiffIso.sh
Untracked: code/._selectNominalPvalues.py
Untracked: code/._snakemakePAS.batch
Untracked: code/._snakemakefiltPAS.batch
Untracked: code/._submit-snakemakePAS.sh
Untracked: code/._submit-snakemakefiltPAS.sh
Untracked: code/._subset_diffisopheno.py
Untracked: code/._utrdms2saf.py
Untracked: code/.snakemake/
Untracked: code/APAqtl_nominal.err
Untracked: code/APAqtl_nominal.out
Untracked: code/APAqtl_nominal_39.err
Untracked: code/APAqtl_nominal_39.out
Untracked: code/APAqtl_permuted.err
Untracked: code/APAqtl_permuted.out
Untracked: code/BothFracDTPlotGeneRegions.err
Untracked: code/BothFracDTPlotGeneRegions.out
Untracked: code/DistPAS2Sig.py
Untracked: code/FC_UTR.err
Untracked: code/FC_UTR.out
Untracked: code/FC_UTR.sh
Untracked: code/FC_newPAS_olddata.err
Untracked: code/FC_newPAS_olddata.out
Untracked: code/FC_newPeaks_olddata.sh
Untracked: code/LC_samplegroups.py
Untracked: code/README.md
Untracked: code/Rplots.pdf
Untracked: code/Upstream100Bases_general.py
Untracked: code/aAPAqtl_nominal39ind.sh
Untracked: code/apaQTLCorrectPvalMakeQQ_4pc.R
Untracked: code/apaQTL_Nominal_4pc.sh
Untracked: code/apaQTL_permuted.4pc.sh
Untracked: code/bam2bw.err
Untracked: code/bam2bw.out
Untracked: code/bothFrac_FC.err
Untracked: code/bothFrac_FC.out
Untracked: code/bothFrac_FC.sh
Untracked: code/dag.pdf
Untracked: code/dagPAS.pdf
Untracked: code/dagfiltPAS.pdf
Untracked: code/extractGenotypes.py
Untracked: code/fc2leafphen.py
Untracked: code/finalPASbed2SAF.py
Untracked: code/findbuginpeaks.R
Untracked: code/fix4su304corr.py
Untracked: code/fix4su604corr.py
Untracked: code/fix4sukalisto.py
Untracked: code/fixFChead_bothfrac.py
Untracked: code/fixFChead_summary.py
Untracked: code/fixH3k12ac.py
Untracked: code/fixRNAhead4corr.py
Untracked: code/fixRNAkalisto.py
Untracked: code/fixhead_netseqfc.py
Untracked: code/get100upPAS.py
Untracked: code/getSeq100up.sh
Untracked: code/getseq100up.err
Untracked: code/getseq100up.out
Untracked: code/log/
Untracked: code/makeSAFbothfrac5perc.py
Untracked: code/makegencondeTSSfile.py
Untracked: code/netseqFC.err
Untracked: code/netseqFC.out
Untracked: code/netseqFC.sh
Untracked: code/removeloc_pheno.py
Untracked: code/run_DistPAS2Sig.err
Untracked: code/run_DistPAS2Sig.out
Untracked: code/run_distPAS2Sig.sh
Untracked: code/run_leafcutterDiffIso.sh
Untracked: code/run_leafcutter_ds.err
Untracked: code/run_leafcutter_ds.out
Untracked: code/selectNominalPvalues.py
Untracked: code/snakePASlog.out
Untracked: code/snakefiltPASlog.out
Untracked: code/subset_diffisopheno.py
Untracked: code/utrdms2saf.py
Untracked: data/CompareOldandNew/
Untracked: data/DTmatrix/
Untracked: data/DiffIso/
Untracked: data/PAS/
Untracked: data/QTLGenotypes/
Untracked: data/README.md
Untracked: data/RNAseq/
Untracked: data/Reads2UTR/
Untracked: data/SignalSiteFiles/
Untracked: data/ThirtyNineIndQtl_nominal/
Untracked: data/apaQTLNominal/
Untracked: data/apaQTLNominal_4pc/
Untracked: data/apaQTLPermuted/
Untracked: data/apaQTLPermuted_4pc/
Untracked: data/apaQTLs/
Untracked: data/assignedPeaks/
Untracked: data/bam/
Untracked: data/bam_clean/
Untracked: data/bam_waspfilt/
Untracked: data/bed_10up/
Untracked: data/bed_clean/
Untracked: data/bed_clean_sort/
Untracked: data/bed_waspfilter/
Untracked: data/bedsort_waspfilter/
Untracked: data/bothFrac_FC/
Untracked: data/exampleQTLs/
Untracked: data/fastq/
Untracked: data/filterPeaks/
Untracked: data/fourSU/
Untracked: data/h3k27ac/
Untracked: data/inclusivePeaks/
Untracked: data/inclusivePeaks_FC/
Untracked: data/mergedBG/
Untracked: data/mergedBW_byfrac/
Untracked: data/mergedBam/
Untracked: data/mergedbyFracBam/
Untracked: data/netseq/
Untracked: data/nuc_10up/
Untracked: data/nuc_10upclean/
Untracked: data/peakCoverage/
Untracked: data/peaks_5perc/
Untracked: data/phenotype/
Untracked: data/phenotype_5perc/
Untracked: data/sort/
Untracked: data/sort_clean/
Untracked: data/sort_waspfilter/
Untracked: nohup.out
Untracked: output/._.DS_Store
Untracked: output/._meanCorrelationPhenotypes.svg
Untracked: output/dtPlots/
Untracked: output/fastqc/
Untracked: output/meanCorrelationPhenotypes.svg
Unstaged changes:
Modified: analysis/PASusageQC.Rmd
Modified: analysis/choosePCs.Rmd
Modified: analysis/corrbetweenind.Rmd
Modified: analysis/nascenttranscription.Rmd
Modified: analysis/nucintronicanalysis.Rmd
Deleted: code/Upstream10Bases_general.py
Modified: code/apaQTLCorrectPvalMakeQQ.R
Modified: code/apaQTL_permuted.sh
Modified: code/bed2saf.py
Modified: code/config.yaml
Deleted: code/test.txt
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | ae6ed8b | brimittleman | 2019-05-16 | scatter plot pas |
html | 5557709 | brimittleman | 2019-05-16 | Build site. |
Rmd | e32bef6 | brimittleman | 2019-05-16 | add mean corr |
html | cb158b3 | brimittleman | 2019-05-15 | Build site. |
Rmd | 700e9da | brimittleman | 2019-05-15 | switch rna data |
html | 35b1f6e | brimittleman | 2019-05-15 | Build site. |
Rmd | 90e0c4d | brimittleman | 2019-05-15 | add reg heatmap |
In this analysis I want to look at the correlation between the net seq daata, rna seq, 4su, and h3k27ac to understand the relationship between nascent transcription and steady state RNA. This will be similar to the analysis in Li et al 2016 figure 1c.
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1 ✔ purrr 0.3.2
✔ tibble 2.1.1 ✔ dplyr 0.8.0.1
✔ tidyr 0.8.3 ✔ stringr 1.3.1
✔ readr 1.3.1 ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(gplots)
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
library(gdata)
gdata: read.xls support for 'XLS' (Excel 97-2004) files ENABLED.
gdata: Unable to load perl libaries needed by read.xls()
gdata: to support 'XLSX' (Excel 2007+) files.
gdata: Run the function 'installXLSXsupport()'
gdata: to automatically download and install the perl
gdata: libaries needed to support Excel XLS and XLSX formats.
Attaching package: 'gdata'
The following objects are masked from 'package:dplyr':
combine, first, last
The following object is masked from 'package:purrr':
keep
The following object is masked from 'package:stats':
nobs
The following object is masked from 'package:utils':
object.size
The following object is masked from 'package:base':
startsWith
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
library(workflowr)
This is workflowr version 1.3.0
Run ?workflowr for help getting started
h3k27ac=read.table("../data/h3k27ac/H3K27acShyam_TSS_fixed.txt", header = T,stringsAsFactors = F)%>% dplyr::select(-Chr, -Start, -End,-Strand, -Length) %>% dplyr::rename("ID"= Geneid)
RNA=read.table("../data/fourSU/tr_decay_table_norm.txt", header=T, stringsAsFactors = F)%>% dplyr::select(gene_id,contains("RNAseq_14000")) %>% dplyr::rename("ID"=gene_id)
I also have the kalisto TPM that I can try:
RNA_TPM=read.table('../data/RNAseq/kallisto_RNAseq.txt', stringsAsFactors = F,header = T) %>% dplyr::rename("ID"=gene)
fourSU=read.table("../data/fourSU/tr_decay_table_norm.txt", header=T, stringsAsFactors = F)%>% dplyr::select(gene_id,contains("4su_30")) %>% dplyr::rename("ID"=gene_id)
tpm 4su
foursu_tpm=read.table("../data/fourSU/kallisto_4sU.txt", header = T, stringsAsFactors = F) %>% dplyr::rename("ID"=gene)
I want to quantify reads 1kb on either side of the TSS. I will use the gencode v19 annotations to match the files above. I need to convert the gtf file into an saf file with the TSS.
python makegencondeTSSfile.py
Run feature counts with the 16 net seq libraries and this TSS file.
sbatch netseqFC.sh
Fix header
python fixFChead_bothfrac.py ../data/netseq/netseq_TSS.fc ../data/netseq/netseq_TSS.fixed.fc
netseq=read.table("../data/netseq/netseq_TSS.fixed.fc", stringsAsFactors = F, header = T) %>% dplyr::select(-Chr, -Strand, -Start, -Length, -End) %>% dplyr::rename("ID"=Geneid)
I will have to change the gene names for the 3’ info:
geneNames=read.table("../../genome_anotation_data/ensemble_to_genename.txt", sep="\t", col.names = c('geneid', 'GeneName', 'source' ),stringsAsFactors = F) %>% dplyr::select(-source)
peaknumlist=read.table("../data/peaks_5perc/APApeak_Peaks_GeneLocAnno.5perc.bed", stringsAsFactors = F, header=F, col.names = c("chr", "start","end", "id", "score", "strand")) %>% separate(id, into=c("peaknum", "geneid"), sep=":") %>% mutate(peakid=paste("peak", peaknum,sep=""))
TotAPA=read.table("../data/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.Total.Quant.Fixed.fc", stringsAsFactors = F, header = T) %>% dplyr::select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peakid","chrom", "start", "end", "strand", "geneID"),sep=":") %>% dplyr::semi_join(peaknumlist, by="peakid") %>% separate(geneID, into=c("GeneName", "loc"), sep="_") %>% dplyr::select(-chrom , -start, -end, -strand, -loc)
TotApaMelt=melt(TotAPA, id.vars =c( "peakid", "GeneName"), value.name="count", variable.name="Ind") %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_")%>% dplyr::select(peakid, GeneName, Individual, count) %>% inner_join(geneNames,by="GeneName") %>% group_by(Individual,geneid) %>% summarize(TotApa=sum(count)) %>% ungroup() %>% dplyr::rename("ID"=geneid) %>% mutate(Individual=paste("TotAPA_", Individual, sep=""))
##spread
totApaSpread= spread(TotApaMelt, Individual,TotApa)
NucAPA=read.table("../data/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.Nuclear.Quant.Fixed.fc", stringsAsFactors = F, header = T) %>% dplyr::select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peakid","chrom", "start", "end", "strand", "geneID"),sep=":") %>% dplyr::semi_join(peaknumlist, by="peakid") %>% separate(geneID, into=c("GeneName", "loc"), sep="_") %>% dplyr::select(-chrom , -start, -end, -strand, -loc)
NucApaMelt=melt(NucAPA, id.vars =c( "peakid", "GeneName"), value.name="count", variable.name="Ind") %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_")%>% dplyr::select(peakid, GeneName, Individual, count) %>% inner_join(geneNames,by="GeneName") %>% group_by(Individual,geneid) %>% summarize(NucApa=sum(count)) %>% ungroup() %>% dplyr::rename("ID"=geneid) %>% mutate(Individual=paste("NucAPA_", Individual, sep=""))
##spread
nucApaSpread= spread(NucApaMelt, Individual,NucApa)
I will join all of these based on the genes we have data for in all.
#4su, h3k27, RNA, netseq, nuc, total
allpheno=foursu_tpm %>% dplyr::inner_join(h3k27ac, by="ID") %>% dplyr::inner_join(RNA, by="ID") %>% dplyr::inner_join(netseq, by="ID") %>% dplyr::inner_join(nucApaSpread, by="ID") %>% dplyr::inner_join(totApaSpread, by="ID")
allpheno_matrix= as.matrix(allpheno %>% dplyr::select(-ID))
my_palette <- colorRampPalette(c("white", "yellow", "orange", "red", "black"))(n = 100)
allphenocorr= abs(round(cor(allpheno_matrix,method="spearman"),2))
##4su-red, h3k27-green, RNA-blue, netseq-purple, nuc-orange, total-yellow
colBar=c(rep("Red",20), rep("Green", 59), rep("Blue",69), rep("Purple", 16),rep("Orange", 54),rep("Yellow", 54))
heatmap.2(as.matrix(allphenocorr),trace="none", dendrogram='col',ColSideColors=colBar, col=my_palette)
First I will take the mean for all individuals for each phenotype:
h3k27ac_mean=melt(h3k27ac,id.vars = "ID") %>% group_by(variable) %>% mutate(sumInd=sum(value)) %>% ungroup() %>% mutate(normVal=value/sumInd) %>% group_by(ID) %>% summarize(H3K27AC=mean(normVal))%>% filter(H3K27AC!=0)
RNA_mean=melt(RNA,id.vars = "ID") %>% group_by(ID) %>% summarize(Rna=mean(value)) %>% filter(Rna!=0)
foursu_tpm_mean= melt(foursu_tpm,id.vars = "ID") %>% group_by(ID) %>% summarize(FourSU=mean(value))%>% filter(FourSU!=0)
netseq_mean= melt(netseq,id.vars = "ID") %>% group_by(variable) %>% mutate(sumInd=sum(value)) %>% ungroup() %>% mutate(normVal=value/sumInd) %>% group_by(ID) %>% summarize(NetSeq=mean(normVal))%>% filter(NetSeq!=0)
totapa_mean= melt(totApaSpread,id.vars = "ID") %>% group_by(variable) %>% mutate(sumInd=sum(value)) %>% ungroup() %>% mutate(normVal=value/sumInd) %>% group_by(ID) %>% summarize(TotApa=mean(normVal))%>% filter(TotApa!=0)
nucapa_mean= melt(nucApaSpread,id.vars = "ID") %>% group_by(variable) %>% mutate(sumInd=sum(value)) %>% ungroup() %>% mutate(normVal=value/sumInd) %>% group_by(ID) %>% summarize(NucApa=mean(normVal))%>% filter(NucApa!=0)
Join all of these:
Allpheno_mean= h3k27ac_mean %>% inner_join(RNA_mean,by="ID") %>% inner_join(foursu_tpm_mean, by="ID") %>% inner_join(netseq_mean, by="ID") %>% inner_join(totapa_mean, by="ID") %>%inner_join(nucapa_mean, by="ID")
ggplotRegression <- function (fit) {
require(ggplot2)
ggplot(fit$model, aes_string(x = names(fit$model)[2], y = names(fit$model)[1])) +
geom_point() +
stat_smooth(method = "lm", col = "red") +
labs(title = paste("Adj R2 = ",signif(summary(fit)$adj.r.squared, 5),
"Intercept =",signif(fit$coef[[1]],5 ),
" Slope =",signif(fit$coef[[2]], 5),
" P =",signif(summary(fit)$coef[2,4], 5)))
}
Plots:
ggplotRegression(lm(log10(Allpheno_mean$NetSeq)~ log10(Allpheno_mean$Rna)))
ggplotRegression(lm(log10(Allpheno_mean$FourSU)~ log10(Allpheno_mean$Rna)))
ggplotRegression(lm(log10(Allpheno_mean$H3K27AC)~ log10(Allpheno_mean$Rna)))
ggplotRegression(lm(log10(Allpheno_mean$H3K27AC)~ log10(Allpheno_mean$NetSeq)))
ggplotRegression(lm(log10(Allpheno_mean$H3K27AC)~ log10(Allpheno_mean$FourSU)))
ggplotRegression(lm(log10(Allpheno_mean$FourSU)~ log10(Allpheno_mean$NetSeq)))
ggplotRegression(lm(log10(Allpheno_mean$Rna)~ log10(Allpheno_mean$NetSeq)))
ggplotRegression(lm(log10(Allpheno_mean$H3K27AC)~ log10(Allpheno_mean$NetSeq)))
ggplotRegression(lm(log10(Allpheno_mean$H3K27AC)~ log10(Allpheno_mean$TotApa)))
ggplotRegression(lm(log10(Allpheno_mean$H3K27AC)~ log10(Allpheno_mean$NucApa)))
heatmap correlation for these:
Allpheno_mean_mat= as.matrix(Allpheno_mean %>% dplyr::select(-ID))
Allpheno_mean_matcorr= abs(round(cor(Allpheno_mean_mat,method="spearman"),2))
heatmap.2(as.matrix(Allpheno_mean_matcorr),trace="none", dendrogram='col', col=my_palette)
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] workflowr_1.3.0 reshape2_1.4.3 gdata_2.18.0 gplots_3.0.1
[5] forcats_0.3.0 stringr_1.3.1 dplyr_0.8.0.1 purrr_0.3.2
[9] readr_1.3.1 tidyr_0.8.3 tibble_2.1.1 ggplot2_3.1.1
[13] tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] gtools_3.8.1 tidyselect_0.2.5 haven_1.1.2
[4] lattice_0.20-38 colorspace_1.3-2 generics_0.0.2
[7] htmltools_0.3.6 yaml_2.2.0 rlang_0.3.1
[10] pillar_1.3.1 glue_1.3.0 withr_2.1.2
[13] modelr_0.1.2 readxl_1.1.0 plyr_1.8.4
[16] munsell_0.5.0 gtable_0.2.0 cellranger_1.1.0
[19] rvest_0.3.2 caTools_1.17.1.1 evaluate_0.12
[22] labeling_0.3 knitr_1.20 broom_0.5.1
[25] Rcpp_1.0.0 KernSmooth_2.23-15 scales_1.0.0
[28] backports_1.1.2 jsonlite_1.6 fs_1.2.6
[31] hms_0.4.2 digest_0.6.18 stringi_1.2.4
[34] grid_3.5.1 rprojroot_1.3-2 cli_1.0.1
[37] tools_3.5.1 bitops_1.0-6 magrittr_1.5
[40] lazyeval_0.2.1 crayon_1.3.4 whisker_0.3-2
[43] pkgconfig_2.0.2 xml2_1.2.0 lubridate_1.7.4
[46] assertthat_0.2.0 rmarkdown_1.10 httr_1.3.1
[49] rstudioapi_0.10 R6_2.3.0 nlme_3.1-137
[52] git2r_0.23.0 compiler_3.5.1