Last updated: 2019-05-16
Checks: 6 0
Knit directory: apaQTL/analysis/ 
This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated. 
 Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/.DS_Store
Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_UTR.sh
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/FC_newPeaks_olddata.sh
    Untracked:  code/LC_samplegroups.py
    Untracked:  code/README.md
    Untracked:  code/Rplots.pdf
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/aAPAqtl_nominal39ind.sh
    Untracked:  code/apaQTLCorrectPvalMakeQQ_4pc.R
    Untracked:  code/apaQTL_Nominal_4pc.sh
    Untracked:  code/apaQTL_permuted.4pc.sh
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/bothFrac_FC.sh
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/extractGenotypes.py
    Untracked:  code/fc2leafphen.py
    Untracked:  code/finalPASbed2SAF.py
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/fix4su304corr.py
    Untracked:  code/fix4su604corr.py
    Untracked:  code/fix4sukalisto.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFChead_summary.py
    Untracked:  code/fixH3k12ac.py
    Untracked:  code/fixRNAhead4corr.py
    Untracked:  code/fixRNAkalisto.py
    Untracked:  code/fixhead_netseqfc.py
    Untracked:  code/get100upPAS.py
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/log/
    Untracked:  code/makeSAFbothfrac5perc.py
    Untracked:  code/makegencondeTSSfile.py
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/netseqFC.sh
    Untracked:  code/removeloc_pheno.py
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/run_leafcutterDiffIso.sh
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/selectNominalPvalues.py
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/utrdms2saf.py
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/PAS/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/netseq/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg
Unstaged changes:
    Modified:   analysis/PASusageQC.Rmd
    Modified:   analysis/choosePCs.Rmd
    Modified:   analysis/corrbetweenind.Rmd
    Modified:   analysis/nucintronicanalysis.Rmd
    Deleted:    code/Upstream10Bases_general.py
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/bed2saf.py
    Modified:   code/config.yaml
    Deleted:    code/test.txt
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 75f4567 | brimittleman | 2019-05-16 | add total intron/all | 
| html | 460e1fb | brimittleman | 2019-05-16 | Build site. | 
| Rmd | 1df3fe1 | brimittleman | 2019-05-16 | seperate fractions by locations | 
| html | 81a3e16 | brimittleman | 2019-05-15 | Build site. | 
| Rmd | f484dcd | brimittleman | 2019-05-15 | add nascent transcription plot | 
library(reshape2)
library(workflowr)
This is workflowr version 1.3.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ──────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ─────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(viridis)
Loading required package: viridisLite
Gene name switch file:
geneNames=read.table("../../genome_anotation_data/ensemble_to_genename.txt", sep="\t", col.names = c('gene_id', 'GeneName', 'source' ),stringsAsFactors = F)
4su data
FourSU=read.table(file = "../data/fourSU//tr_decay_table_norm.txt", header=T, stringsAsFactors = F) %>%  dplyr::select(gene_id,contains("4su_30"))
FourSU_geneNames=FourSU %>% inner_join(geneNames, by="gene_id") %>% dplyr::select(GeneName, contains("4su_30"))
FourgeneNames_long=melt(FourSU_geneNames,id.vars = "GeneName", value.name = "FourSU", variable.name = "FourSU_ind") %>% separate(FourSU_ind, into=c("type","time", "1400", "MAf", "Individual"), sep="_") %>% dplyr::select(GeneName, Individual, FourSU) 
FourSU_geneMean=FourgeneNames_long %>% group_by(GeneName) %>%summarise(Mean_4su=mean(FourSU))
rna seq
RNA=read.table(file = "../data/fourSU/tr_decay_table_norm.txt", header=T, stringsAsFactors = F) %>%  dplyr::select(gene_id,contains("RNAseq_14000"))
RNA_geneNames=RNA %>% inner_join(geneNames, by="gene_id") %>% dplyr::select(GeneName, contains("RNA"))
RNAgeneNames_long=melt(RNA_geneNames,id.vars = "GeneName", value.name = "RNA", variable.name = "RNA_ind") %>%   separate(RNA_ind, into=c("type", "1400", "MAf", "Individual"), sep="_") %>% dplyr::select(GeneName, Individual, RNA) 
RNA_geneMean=RNAgeneNames_long %>% group_by(GeneName) %>%summarise(Mean_RNA=mean(RNA))
Make transcription phenotype
Transcription=FourSU_geneMean %>% inner_join(RNA_geneMean, by="GeneName") %>% mutate(Transcription=Mean_4su/(Mean_4su + Mean_RNA)) %>% dplyr::select(GeneName, Transcription) %>% dplyr::rename("gene"=GeneName)
Transcription2=FourSU_geneMean %>% inner_join(RNA_geneMean, by="GeneName") %>% mutate(Transcription=Mean_4su/Mean_RNA) %>% dplyr::select(GeneName, Transcription) %>% dplyr::rename("gene"=GeneName)
5 perc apa
peaknumlist=read.table("../data/peaks_5perc/APApeak_Peaks_GeneLocAnno.5perc.bed", stringsAsFactors = F, header=F, col.names = c("chr", "start","end", "id", "score", "strand"))  %>% separate(id, into=c("peaknum", "geneid"), sep=":") %>% mutate(peakid=paste("peak", peaknum,sep=""))
Nuclear apa
NucAPA=read.table("../data/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.Nuclear.Quant.Fixed.fc", stringsAsFactors = F, header = T) %>% dplyr::select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peakid","chrom", "start", "end", "strand", "geneID"),sep=":") %>% semi_join(peaknumlist, by="peakid") %>% separate(geneID, into=c("gene", "loc"), sep="_") %>% dplyr::select(-chrom , -start, -end, -strand, -loc)
NucApaMelt=melt(NucAPA, id.vars =c( "peakid", "gene"), value.name="count", variable.name="Ind") %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_")%>% dplyr::select(peakid, gene, Individual, count)
NucAPA_bygene= NucApaMelt %>% group_by(gene,Individual) %>% summarise(NuclearSum=sum(count))
total apa
TotAPA=read.table("../data/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.Total.Quant.Fixed.fc", stringsAsFactors = F, header = T) %>% dplyr::select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peakid","chrom", "start", "end", "strand", "geneID"),sep=":") %>% semi_join(peaknumlist, by="peakid") %>% separate(geneID, into=c("gene", "loc"), sep="_") %>% dplyr::select(-chrom , -start, -end, -strand, -loc)
TotApaMelt=melt(TotAPA, id.vars =c( "peakid", "gene"), value.name="count", variable.name="Ind") %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_")%>% dplyr::select(peakid, gene, Individual, count)
TotAPA_bygene= TotApaMelt %>% group_by(gene,Individual) %>% summarise(TotalSum=sum(count))
Sum together:
ApaBothFrac=TotAPA_bygene %>% inner_join(NucAPA_bygene, by=c("gene", "Individual"))
ApaBothFrac_melt=melt(ApaBothFrac, id.vars=c("gene", "Individual"),value.name="APA_val" ) %>% mutate(fraction=ifelse(variable=="TotalSum", "total", "nuclear"), line=paste("NA", substring(Individual, 2), sep="")) %>% dplyr::select(gene, fraction, line, APA_val)
Normalize with meta data info:
metadata=read.table("../data/MetaDataSequencing.txt", header = T,stringsAsFactors = F) %>% dplyr::select(line, fraction, Mapped_noMP)
metadata$line= as.character(metadata$line)
ApaBothFracStand=ApaBothFrac_melt %>% full_join(metadata, by=c("line", "fraction")) %>% mutate(StandApa=APA_val/Mapped_noMP)
ApaBothFracStand_geneMean=ApaBothFracStand %>% group_by(fraction, gene) %>% summarise(meanAPA=mean(StandApa, na.rm=T))
ApaBothFracStand_geneMean_spread= spread(ApaBothFracStand_geneMean,fraction,meanAPA ) %>% mutate(APAVal=nuclear/(total+ nuclear)) 
Density function:
get_density <- function(x, y, ...) {
  dens <- MASS::kde2d(x, y, ...)
  ix <- findInterval(x, dens$x)
  iy <- findInterval(y, dens$y)
  ii <- cbind(ix, iy)
  return(dens$z[ii])
}
set.seed(1)
dat <- data.frame(
  x = c(
    rnorm(1e4, mean = 0, sd = 0.1),
    rnorm(1e3, mean = 0, sd = 0.1)
  ),
  y = c(
    rnorm(1e4, mean = 0, sd = 0.1),
    rnorm(1e3, mean = 0.1, sd = 0.2)
  )
)
Joing apa and transcription
APAandTranscrption= Transcription %>% inner_join(ApaBothFracStand_geneMean_spread, by="gene")
APAandTranscrption$density <- get_density(APAandTranscrption$APAVal, APAandTranscrption$Transcription, n = 100)
summary(lm(data=APAandTranscrption, APAVal~Transcription))
Call:
lm(formula = APAVal ~ Transcription, data = APAandTranscrption)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.37416 -0.09802  0.01235  0.10753  0.38048 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.393873   0.007265   54.22   <2e-16 ***
Transcription 0.285418   0.013551   21.06   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1338 on 7885 degrees of freedom
Multiple R-squared:  0.05326,   Adjusted R-squared:  0.05314 
F-statistic: 443.6 on 1 and 7885 DF,  p-value: < 2.2e-16
Plot:
ggplot(APAandTranscrption, aes(x=Transcription, y=APAVal))+ geom_point(aes(color=density)) + geom_smooth(method = "lm") + labs(x="4su/4su+RNA", y="Nuclear/Nuclear+Total", title="Relationship between APA fraction and transcription") + scale_color_viridis()

| Version | Author | Date | 
|---|---|---|
| 81a3e16 | brimittleman | 2019-05-15 | 
I will have to change the gene names for the 3’ info:
NucAPAIntron=read.table("../data/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.Nuclear.Quant.Fixed.fc", stringsAsFactors = F, header = T) %>% dplyr::select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peakid","chrom", "start", "end", "strand", "geneID"),sep=":") %>% semi_join(peaknumlist, by="peakid") %>% separate(geneID, into=c("gene", "loc"), sep="_") %>% filter(loc=="intron")%>% dplyr::select(-chrom , -start, -end, -strand, -loc)
NucApaIntronMelt=melt(NucAPAIntron, id.vars =c( "peakid", "gene"), value.name="count", variable.name="Ind") %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_")%>% dplyr::select(peakid, gene, Individual, count)
NucAPAIntron_bygene= NucApaIntronMelt %>% group_by(gene,Individual) %>% summarise(NuclearIntronSum=sum(count))
TotUTRAPA=read.table("../data/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.Total.Quant.Fixed.fc", stringsAsFactors = F, header = T) %>% dplyr::select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peakid","chrom", "start", "end", "strand", "geneID"),sep=":") %>% semi_join(peaknumlist, by="peakid") %>% separate(geneID, into=c("gene", "loc"), sep="_") %>%filter(loc=="utr3") %>%  dplyr::select(-chrom , -start, -end, -strand, -loc)
TotApaUTRMelt=melt(TotUTRAPA, id.vars =c( "peakid", "gene"), value.name="count", variable.name="Ind") %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_")%>% dplyr::select(peakid, gene, Individual, count)
TotAPAUTR_bygene= TotApaUTRMelt %>% group_by(gene,Individual) %>% summarise(TotalUTRSum=sum(count))
ApaBothFracLoc=TotAPAUTR_bygene %>% inner_join(NucAPAIntron_bygene, by=c("gene", "Individual"))
ApaBothFracLoc_melt=melt(ApaBothFracLoc, id.vars=c("gene", "Individual"),value.name="APA_val" ) %>% mutate(fraction=ifelse(variable=="TotalUTRSum", "total", "nuclear"), line=paste("NA", substring(Individual, 2), sep="")) %>% dplyr::select(gene, fraction, line, APA_val)
ApaBothFracLocStand=ApaBothFracLoc_melt %>% full_join(metadata, by=c("line", "fraction")) %>% mutate(StandApa=APA_val/Mapped_noMP)
ApaBothFracLocStand_geneMean=ApaBothFracLocStand %>% group_by(fraction, gene) %>% summarise(meanAPA=mean(StandApa, na.rm=T))
ApaBothFracLocStand_geneMean_spread= spread(ApaBothFracLocStand_geneMean,fraction,meanAPA ) %>% mutate(APAValLoc=nuclear/(total+nuclear)) 
ApaBothFracLocStand_geneMean_spread2= spread(ApaBothFracLocStand_geneMean,fraction,meanAPA ) %>% mutate(APAValLoc=nuclear/total) 
Join this with the transcription info:
APAlocationandTranscrption= Transcription %>% inner_join(ApaBothFracLocStand_geneMean_spread, by="gene")
APAlocationandTranscrption$density <- get_density(APAlocationandTranscrption$APAValLoc, APAlocationandTranscrption$Transcription, n = 100)
ggplot(APAlocationandTranscrption, aes(x=Transcription, y=APAValLoc))+ geom_point(aes(color=density)) + geom_smooth(method = "lm") + labs(x="4su/4su+RNA", y="NuclearIntron/TotalUTR + IntronNuclear", title="Relationship between APA fraction and transcription") + scale_color_viridis()

| Version | Author | Date | 
|---|---|---|
| 460e1fb | brimittleman | 2019-05-16 | 
summary(lm(data=APAlocationandTranscrption, APAValLoc~Transcription))
Call:
lm(formula = APAValLoc ~ Transcription, data = APAlocationandTranscrption)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.40940 -0.19655 -0.07216  0.15348  0.80483 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)    0.02328    0.01768   1.317    0.188    
Transcription  0.47752    0.03232  14.777   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2455 on 5491 degrees of freedom
Multiple R-squared:  0.03825,   Adjusted R-squared:  0.03807 
F-statistic: 218.4 on 1 and 5491 DF,  p-value: < 2.2e-16
Just the ratio:
APAlocationandTranscrption2= Transcription2 %>% inner_join(ApaBothFracLocStand_geneMean_spread2, by="gene")
APAlocationandTranscrption2$density <- get_density(APAlocationandTranscrption2$APAValLoc, APAlocationandTranscrption2$Transcription, n = 100)
summary(lm(data=APAlocationandTranscrption2, log10(APAValLoc)~log10(Transcription)))
Call:
lm(formula = log10(APAValLoc) ~ log10(Transcription), data = APAlocationandTranscrption2)
Residuals:
    Min      1Q  Median      3Q     Max 
-3.2920 -0.4924  0.0373  0.5100  3.3917 
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)          -0.69768    0.01097  -63.59   <2e-16 ***
log10(Transcription)  0.90749    0.05474   16.58   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7643 on 5491 degrees of freedom
Multiple R-squared:  0.04766,   Adjusted R-squared:  0.04749 
F-statistic: 274.8 on 1 and 5491 DF,  p-value: < 2.2e-16
ggplot(APAlocationandTranscrption2, aes(x=log10(Transcription), y=log10(APAValLoc)))+ geom_point(aes(color=density)) + geom_smooth(method = "lm") + labs(x="log10(4su/RNA)", y="log10(NuclearIntron/TotalUTR)", title="Relationship between APA fraction and transcription") + scale_color_viridis()

| Version | Author | Date | 
|---|---|---|
| 460e1fb | brimittleman | 2019-05-16 | 
NucAPAUTR=read.table("../data/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.Nuclear.Quant.Fixed.fc", stringsAsFactors = F, header = T) %>% dplyr::select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peakid","chrom", "start", "end", "strand", "geneID"),sep=":") %>% semi_join(peaknumlist, by="peakid") %>% separate(geneID, into=c("gene", "loc"), sep="_") %>% filter(loc=="utr3")%>% dplyr::select(-chrom , -start, -end, -strand, -loc)
NucAPAUTRMelt=melt(NucAPAUTR, id.vars =c( "peakid", "gene"), value.name="count", variable.name="Ind") %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_")%>% dplyr::select(peakid, gene, Individual, count)
NucAPAUTR_bygene= NucAPAUTRMelt %>% group_by(gene,Individual) %>% summarise(NuclearUTRSum=sum(count))
ApaBothFracUTR=TotAPAUTR_bygene %>% inner_join(NucAPAUTR_bygene, by=c("gene", "Individual"))
ApaBothFracUTR_melt=melt(ApaBothFracUTR, id.vars=c("gene", "Individual"),value.name="APA_val" ) %>% mutate(fraction=ifelse(variable=="TotalUTRSum", "total", "nuclear"), line=paste("NA", substring(Individual, 2), sep="")) %>% dplyr::select(gene, fraction, line, APA_val)
ApaBothFracUTRStand=ApaBothFracUTR_melt %>% full_join(metadata, by=c("line", "fraction")) %>% mutate(StandApa=APA_val/Mapped_noMP)
ApaBothFracUTRStand_geneMean=ApaBothFracUTRStand %>% group_by(fraction, gene) %>% summarise(meanAPA=mean(StandApa, na.rm=T))
ApaBothFracUTRStand_geneMean_spread= spread(ApaBothFracUTRStand_geneMean,fraction,meanAPA ) %>% mutate(APAValLoc=nuclear/total)
ApaBothFracUTRStand_geneMean_spread2= spread(ApaBothFracUTRStand_geneMean,fraction,meanAPA ) %>% mutate(APAValLoc=nuclear/(total+nuclear))
THis is nuclear vs total only looking at teh UTR:
APAUTRandTranscrption= Transcription %>% inner_join(ApaBothFracUTRStand_geneMean_spread, by="gene")
APAUTRandTranscrption$density <- get_density(APAUTRandTranscrption$APAValLoc, APAUTRandTranscrption$Transcription, n = 100)
summary(lm(data=APAUTRandTranscrption, log10(APAValLoc)~log10(Transcription)))
Call:
lm(formula = log10(APAValLoc) ~ log10(Transcription), data = APAUTRandTranscrption)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.69221 -0.18902 -0.00244  0.19660  0.90638 
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)          0.155656   0.008892   17.50   <2e-16 ***
log10(Transcription) 0.485080   0.028924   16.77   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.252 on 7753 degrees of freedom
Multiple R-squared:  0.03501,   Adjusted R-squared:  0.03488 
F-statistic: 281.3 on 1 and 7753 DF,  p-value: < 2.2e-16
ggplot(APAUTRandTranscrption, aes(x=Transcription, y=APAValLoc))+ geom_point(aes(color=density)) + geom_smooth(method = "lm") + labs(x="4su/RNA", y="NuclearUTR/TotalUTR", title="Relationship between APA fraction and transcription") + scale_color_viridis()

| Version | Author | Date | 
|---|---|---|
| 460e1fb | brimittleman | 2019-05-16 | 
APAUTRandTranscrption2= Transcription %>% inner_join(ApaBothFracUTRStand_geneMean_spread2, by="gene")
APAUTRandTranscrption2$density <- get_density(APAUTRandTranscrption2$APAValLoc, APAUTRandTranscrption2$Transcription, n = 100)
summary(lm(data=APAUTRandTranscrption2, log10(APAValLoc)~log10(Transcription)))
Call:
lm(formula = log10(APAValLoc) ~ log10(Transcription), data = APAUTRandTranscrption2)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.45055 -0.08567  0.01585  0.10118  0.37283 
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)    
(Intercept)          -0.23370    0.00447  -52.29   <2e-16 ***
log10(Transcription)  0.26974    0.01454   18.55   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1267 on 7753 degrees of freedom
Multiple R-squared:  0.04251,   Adjusted R-squared:  0.04239 
F-statistic: 344.2 on 1 and 7753 DF,  p-value: < 2.2e-16
ggplot(APAUTRandTranscrption2, aes(x=Transcription, y=APAValLoc))+ geom_point(aes(color=density)) + geom_smooth(method = "lm") + labs(x="4su/RNA+4su", y="NuclearUTR/TotalUTR+NuclearUTR", title="Relationship between APA fraction and transcription") + scale_color_viridis()

| Version | Author | Date | 
|---|---|---|
| 460e1fb | brimittleman | 2019-05-16 | 
Nuclear intron= NucAPAIntron_bygene
all nuclear =NucAPA_bygene
Create this pheno:
ApaNuclear_byloc=NucAPAIntron_bygene %>% inner_join(NucAPA_bygene, by=c("gene", "Individual")) %>% mutate(IntronOverAll=NuclearIntronSum/NuclearSum) %>% mutate(fraction="nuclear",line=paste("NA", substring(Individual, 2), sep="")) %>% dplyr::select(gene, fraction, line, IntronOverAll) %>% group_by(gene) %>% filter(IntronOverAll!=0) %>%  summarise(MeanIntronoverAll=mean(IntronOverAll)) %>% dplyr::rename("GeneName"=gene)
Join with RNA
nuclearandRNA=ApaNuclear_byloc %>% inner_join(RNA_geneMean, by="GeneName")
nuclearandRNA$density <- get_density(nuclearandRNA$MeanIntronoverAll, nuclearandRNA$Mean_RNA, n = 100)
Plot:
ggplot(nuclearandRNA, aes(x=log10(Mean_RNA), y=MeanIntronoverAll))+ geom_point(aes(color=density)) + geom_smooth(method = "lm") + labs(x="log10(RNA)", y="NuclearIntron/NuclearAll", title="Relationship between APA fraction and transcription") + scale_color_viridis()

| Version | Author | Date | 
|---|---|---|
| 460e1fb | brimittleman | 2019-05-16 | 
summary(lm(data=nuclearandRNA, MeanIntronoverAll~log10(Mean_RNA)))
Call:
lm(formula = MeanIntronoverAll ~ log10(Mean_RNA), data = nuclearandRNA)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.39640 -0.15292 -0.04646  0.11444  0.84926 
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -0.408362   0.024437  -16.71   <2e-16 ***
log10(Mean_RNA) -0.159782   0.005852  -27.30   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2018 on 5560 degrees of freedom
Multiple R-squared:  0.1182,    Adjusted R-squared:  0.1181 
F-statistic: 745.5 on 1 and 5560 DF,  p-value: < 2.2e-16
ApaNuclear_byloc_rename=ApaNuclear_byloc %>% dplyr::rename("gene"=GeneName)
nuclearandtranscription=ApaNuclear_byloc_rename %>% inner_join(Transcription, by="gene")
nuclearandtranscription$density <- get_density(nuclearandtranscription$MeanIntronoverAll, nuclearandtranscription$Transcription, n = 100)
ggplot(nuclearandtranscription, aes(x=Transcription, y=MeanIntronoverAll))+ geom_point(aes(color=density)) + geom_smooth(method = "lm") + labs(x="4su/4su+RNA", y="NuclearIntron/NuclearAll", title="Relationship between APA fraction and transcription") + scale_color_viridis()

summary(lm(data=nuclearandtranscription, MeanIntronoverAll~Transcription))
Call:
lm(formula = MeanIntronoverAll ~ Transcription, data = nuclearandtranscription)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.29935 -0.17119 -0.05628  0.12082  0.79573 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)    0.14461    0.01530   9.452  < 2e-16 ***
Transcription  0.20500    0.02797   7.329 2.66e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2138 on 5560 degrees of freedom
Multiple R-squared:  0.009567,  Adjusted R-squared:  0.009389 
F-statistic: 53.71 on 1 and 5560 DF,  p-value: 2.658e-13
First I need to get the total intronic:
TotAPAIntron=read.table("../data/peakCoverage/APAPeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.Total.Quant.Fixed.fc", stringsAsFactors = F, header = T) %>% dplyr::select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peakid","chrom", "start", "end", "strand", "geneID"),sep=":") %>% semi_join(peaknumlist, by="peakid") %>% separate(geneID, into=c("gene", "loc"), sep="_") %>%filter(loc=="intron") %>%  dplyr::select(-chrom , -start, -end, -strand, -loc)
TotAPAIntronMelt=melt(TotAPAIntron, id.vars =c( "peakid", "gene"), value.name="count", variable.name="Ind") %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_")%>% dplyr::select(peakid, gene, Individual, count)
TotAPAIntron_bygene= TotAPAIntronMelt %>% group_by(gene,Individual) %>% summarise(TotalIntronSum=sum(count))
ApaTotal_byloc=TotAPAIntron_bygene %>% inner_join(TotAPA_bygene, by=c("gene", "Individual")) %>% mutate(IntronOverAll=TotalIntronSum/TotalSum) %>% mutate(fraction="total",line=paste("NA", substring(Individual, 2), sep="")) %>% dplyr::select(gene, fraction, line, IntronOverAll) %>% group_by(gene) %>% filter(IntronOverAll!=0) %>%  summarise(MeanIntronoverAll=mean(IntronOverAll)) %>% dplyr::rename("GeneName"=gene)
Join with RNA
totalandRNA=ApaTotal_byloc %>% inner_join(RNA_geneMean, by="GeneName")
totalandRNA$density <- get_density(totalandRNA$MeanIntronoverAll, totalandRNA$Mean_RNA, n = 100)
Plot:
ggplot(totalandRNA, aes(x=log10(Mean_RNA), y=MeanIntronoverAll))+ geom_point(aes(color=density)) + geom_smooth(method = "lm") + labs(x="log10(RNA)", y="TotalIntron/TotalAll", title="Relationship between APA fraction and transcription") + scale_color_viridis()

summary(lm(data=totalandRNA, MeanIntronoverAll~log10(Mean_RNA)))
Call:
lm(formula = MeanIntronoverAll ~ log10(Mean_RNA), data = totalandRNA)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.30265 -0.10190 -0.03972  0.05381  0.92485 
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -0.445003   0.019435  -22.90   <2e-16 ***
log10(Mean_RNA) -0.145939   0.004654  -31.36   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1605 on 5560 degrees of freedom
Multiple R-squared:  0.1503,    Adjusted R-squared:  0.1501 
F-statistic: 983.2 on 1 and 5560 DF,  p-value: < 2.2e-16
ApaTotal_byloc_rename=ApaTotal_byloc %>% dplyr::rename("gene"=GeneName)
totalandtranscription=ApaTotal_byloc_rename %>% inner_join(Transcription, by="gene")
totalandtranscription$density <- get_density(totalandtranscription$MeanIntronoverAll, totalandtranscription$Transcription, n = 100)
ggplot(totalandtranscription, aes(x=Transcription, y=MeanIntronoverAll))+ geom_point(aes(color=density)) + geom_smooth(method = "lm") + labs(x="4su/4su+RNA", y="TotalIntron/TotalAll", title="Relationship between APA fraction and transcription") + scale_color_viridis()

summary(lm(data=totalandtranscription, MeanIntronoverAll~Transcription))
Call:
lm(formula = MeanIntronoverAll ~ Transcription, data = totalandtranscription)
Residuals:
     Min       1Q   Median       3Q      Max 
-0.19578 -0.11811 -0.05860  0.05286  0.87881 
Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)    0.07454    0.01240   6.012 1.95e-09 ***
Transcription  0.16028    0.02267   7.070 1.74e-12 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1733 on 5560 degrees of freedom
Multiple R-squared:  0.00891,   Adjusted R-squared:  0.008732 
F-statistic: 49.99 on 1 and 5560 DF,  p-value: 1.739e-12
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
 [1] viridis_0.5.1     viridisLite_0.3.0 forcats_0.3.0    
 [4] stringr_1.3.1     dplyr_0.8.0.1     purrr_0.3.2      
 [7] readr_1.3.1       tidyr_0.8.3       tibble_2.1.1     
[10] ggplot2_3.1.1     tidyverse_1.2.1   workflowr_1.3.0  
[13] reshape2_1.4.3   
loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5 haven_1.1.2      lattice_0.20-38  colorspace_1.3-2
 [5] generics_0.0.2   htmltools_0.3.6  yaml_2.2.0       rlang_0.3.1     
 [9] pillar_1.3.1     glue_1.3.0       withr_2.1.2      modelr_0.1.2    
[13] readxl_1.1.0     plyr_1.8.4       munsell_0.5.0    gtable_0.2.0    
[17] cellranger_1.1.0 rvest_0.3.2      evaluate_0.12    labeling_0.3    
[21] knitr_1.20       broom_0.5.1      Rcpp_1.0.0       scales_1.0.0    
[25] backports_1.1.2  jsonlite_1.6     fs_1.2.6         gridExtra_2.3   
[29] hms_0.4.2        digest_0.6.18    stringi_1.2.4    grid_3.5.1      
[33] rprojroot_1.3-2  cli_1.0.1        tools_3.5.1      magrittr_1.5    
[37] lazyeval_0.2.1   crayon_1.3.4     whisker_0.3-2    pkgconfig_2.0.2 
[41] MASS_7.3-51.1    xml2_1.2.0       lubridate_1.7.4  assertthat_0.2.0
[45] rmarkdown_1.10   httr_1.3.1       rstudioapi_0.10  R6_2.3.0        
[49] nlme_3.1-137     git2r_0.23.0     compiler_3.5.1