Last updated: 2019-05-20

Checks: 6 0

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/DistPAS2Sig.py
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_UTR.sh
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/FC_newPeaks_olddata.sh
    Untracked:  code/LC_samplegroups.py
    Untracked:  code/README.md
    Untracked:  code/Rplots.pdf
    Untracked:  code/Upstream100Bases_general.py
    Untracked:  code/aAPAqtl_nominal39ind.sh
    Untracked:  code/apaQTLCorrectPvalMakeQQ_4pc.R
    Untracked:  code/apaQTL_Nominal_4pc.sh
    Untracked:  code/apaQTL_permuted.4pc.sh
    Untracked:  code/assignNucIntonpeak2intronlocs.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/bothFrac_FC.sh
    Untracked:  code/codingdms2bed.py
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/extractGenotypes.py
    Untracked:  code/fc2leafphen.py
    Untracked:  code/finalPASbed2SAF.py
    Untracked:  code/findbuginpeaks.R
    Untracked:  code/fix4su304corr.py
    Untracked:  code/fix4su604corr.py
    Untracked:  code/fix4sukalisto.py
    Untracked:  code/fixFChead_bothfrac.py
    Untracked:  code/fixFChead_summary.py
    Untracked:  code/fixH3k12ac.py
    Untracked:  code/fixRNAhead4corr.py
    Untracked:  code/fixRNAkalisto.py
    Untracked:  code/fixgroupedtranscript.py
    Untracked:  code/fixhead_netseqfc.py
    Untracked:  code/get100upPAS.py
    Untracked:  code/getSeq100up.sh
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/grouptranscripts.py
    Untracked:  code/log/
    Untracked:  code/makeSAFbothfrac5perc.py
    Untracked:  code/makegencondeTSSfile.py
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/netseqFC.sh
    Untracked:  code/qtlsPvalOppFrac.py
    Untracked:  code/removeloc_pheno.py
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_distPAS2Sig.sh
    Untracked:  code/run_leafcutterDiffIso.sh
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/selectNominalPvalues.py
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/subset_diffisopheno.py
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/subtractExons.sh
    Untracked:  code/transcriptdm2bed.py
    Untracked:  code/utrdms2saf.py
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/PAS/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/exampleQTLs/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intron_analysis/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/netseq/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg

Unstaged changes:
    Modified:   analysis/DiffIsoAnalysis.Rmd
    Modified:   analysis/PASusageQC.Rmd
    Modified:   analysis/choosePCs.Rmd
    Modified:   analysis/corrbetweenind.Rmd
    Modified:   analysis/nascenttranscription.Rmd
    Modified:   analysis/nucintronicanalysis.Rmd
    Modified:   analysis/rerunQTL_changePC.Rmd
    Modified:   analysis/rna_netseq_h3k12ac.Rmd
    Deleted:    code/Upstream10Bases_general.py
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/bed2saf.py
    Modified:   code/config.yaml
    Deleted:    code/test.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 8f883d8 brimittleman 2019-05-20 add overlap analysis

This analysis will investigate the sharing between total and nuclear apaQTls first by calculating the pi1 statistic and second by looking at the correlation of effect sizes.

library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ───────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
library(workflowr)
This is workflowr version 1.3.0
Run ?workflowr for help getting started
library(qvalue)

Pi 1 sharing

Concatinate nominal results and run

mkdir ../data/QTLoverlap/
python qtlsPvalOppFrac.py ../data/apaQTLs/Total_apaQTLs4pc_5fdr.txt ../data/apaQTLNominal_4pc/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm_AllChrom.txt ../data/QTLoverlap/TotalQTLinNuclearNominal.txt  


python qtlsPvalOppFrac.py ../data/apaQTLs/Nuclear_apaQTLs4pc_5fdr.txt ../data/apaQTLNominal_4pc/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm_AllChrom.txt ../data/QTLoverlap/NuclearQTLinTotalNominal.txt  
totAPAinNuc=read.table("../data/QTLoverlap/TotalQTLinNuclearNominal.txt", header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "slope"))
qval_tot=pi0est(totAPAinNuc$pval, pi0.method = "bootstrap")

nucAPAinTot=read.table("../data/QTLoverlap/NuclearQTLinTotalNominal.txt", header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "slope"))
qval_nuc=pi0est(nucAPAinTot$pval, pi0.method = "bootstrap")
par(mfrow=c(1,2))
hist(totAPAinNuc$pval, xlab="Nuclear Pvalue", main="Significant Total APA QTLs \n Nuclear")
text(.8,300, paste("pi_1=", round((1-qval_tot$pi0), digit=3), sep=" "))
hist(nucAPAinTot$pval, xlab="Total Pvalue", main="Significant Nuclear APA QTLs \n Total")
text(.8,450, paste("pi_1=", round((1-qval_nuc$pi0), digit=3), sep=" "))

Effect size sharing:

I need to get the nominal effect sizes. I can use the script I wrote above but put the same fraction in for the qtl and nom values.


python qtlsPvalOppFrac.py ../data/apaQTLs/Total_apaQTLs4pc_5fdr.txt ../data/apaQTLNominal_4pc/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm_AllChrom.txt ../data/QTLoverlap/TotalQTLinTotalNominal.txt  


python qtlsPvalOppFrac.py ../data/apaQTLs/Nuclear_apaQTLs4pc_5fdr.txt ../data/apaQTLNominal_4pc/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm_AllChrom.txt ../data/QTLoverlap/NuclearQTLinNuclearNominal.txt  
totAPAinTot=read.table("../data/QTLoverlap/TotalQTLinTotalNominal.txt", header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "slope")) %>% dplyr::select(peakID, snp, slope) %>% dplyr::rename("Originalslope"=slope)


nucAPAinNuc=read.table("../data/QTLoverlap/NuclearQTLinNuclearNominal.txt", header = F, stringsAsFactors = F, col.names=c("peakID", "snp", "dist", "pval", "slope")) %>% dplyr::select(peakID, snp, slope)%>% dplyr::rename("Originalslope"=slope)

Join the data frames:

Total:

TotBoth= totAPAinNuc %>% inner_join(totAPAinTot,by=c("peakID", "snp"))
summary(lm(TotBoth$slope ~ TotBoth$Originalslope))

Call:
lm(formula = TotBoth$slope ~ TotBoth$Originalslope)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.3171 -0.4603 -0.0005  0.5016  2.5768 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)            0.07316    0.02896   2.526   0.0118 *  
TotBoth$Originalslope  0.47108    0.01482  31.790   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6736 on 543 degrees of freedom
Multiple R-squared:  0.6505,    Adjusted R-squared:  0.6498 
F-statistic:  1011 on 1 and 543 DF,  p-value: < 2.2e-16
ggplot(TotBoth, aes(x=Originalslope, y=slope))+geom_point() + geom_smooth(method="lm") + labs(title="Total apaQTL effect sizes", x="Effect size in Nuclear",y="Effect size in Total") + geom_density_2d(col="red")

NucBoth= nucAPAinTot %>% inner_join(nucAPAinNuc,by=c("peakID", "snp"))
summary(lm(NucBoth$slope ~ NucBoth$Originalslope))

Call:
lm(formula = NucBoth$slope ~ NucBoth$Originalslope)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.9473 -0.2833 -0.0066  0.2964  6.8598 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)           0.020900   0.016866   1.239    0.216    
NucBoth$Originalslope 0.555704   0.009141  60.792   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5291 on 995 degrees of freedom
Multiple R-squared:  0.7879,    Adjusted R-squared:  0.7877 
F-statistic:  3696 on 1 and 995 DF,  p-value: < 2.2e-16
ggplot(NucBoth, aes(x=Originalslope, y=slope))+geom_point() + geom_smooth(method="lm") + labs(title="Nuclear apaQTL effect sizes", x="Effect size in Total",y="Effect size in Nuclear") + geom_density_2d(col="red")


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] qvalue_2.14.0   workflowr_1.3.0 reshape2_1.4.3  forcats_0.3.0  
 [5] stringr_1.3.1   dplyr_0.8.0.1   purrr_0.3.2     readr_1.3.1    
 [9] tidyr_0.8.3     tibble_2.1.1    ggplot2_3.1.1   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0       cellranger_1.1.0 pillar_1.3.1     compiler_3.5.1  
 [5] git2r_0.23.0     plyr_1.8.4       tools_3.5.1      digest_0.6.18   
 [9] lubridate_1.7.4  jsonlite_1.6     evaluate_0.12    nlme_3.1-137    
[13] gtable_0.2.0     lattice_0.20-38  pkgconfig_2.0.2  rlang_0.3.1     
[17] cli_1.0.1        rstudioapi_0.10  yaml_2.2.0       haven_1.1.2     
[21] withr_2.1.2      xml2_1.2.0       httr_1.3.1       knitr_1.20      
[25] hms_0.4.2        generics_0.0.2   fs_1.2.6         rprojroot_1.3-2 
[29] grid_3.5.1       tidyselect_0.2.5 glue_1.3.0       R6_2.3.0        
[33] readxl_1.1.0     rmarkdown_1.10   modelr_0.1.2     magrittr_1.5    
[37] whisker_0.3-2    MASS_7.3-51.1    splines_3.5.1    backports_1.1.2 
[41] scales_1.0.0     htmltools_0.3.6  rvest_0.3.2      assertthat_0.2.0
[45] colorspace_1.3-2 labeling_0.3     stringi_1.2.4    lazyeval_0.2.1  
[49] munsell_0.5.0    broom_0.5.1      crayon_1.3.4