Last updated: 2019-04-22

Checks: 6 0

Knit directory: apaQTL/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/mergedBW_byfrac/

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  _workflowr.yml
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/.snakemake/
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/README.md
    Untracked:  code/Rplots.pdf
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bam2bw.sh
    Untracked:  code/log/
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  data/PAS/
    Untracked:  data/README.md
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/assignedPeaks/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  nohup.out
    Untracked:  output/fastqc/

Unstaged changes:
    Modified:   README.md
    Modified:   analysis/._fastq2bam.Rmd
    Modified:   analysis/PASusageQC.Rmd
    Modified:   analysis/_site.yml
    Modified:   analysis/about.Rmd
    Modified:   analysis/bam2pas.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd
    Modified:   analysis/mapapaQTL.Rmd
    Modified:   code/Snakefile
    Modified:   code/SnakefilePAS
    Modified:   code/SnakefilefiltPAS
    Modified:   code/UsageDifferenceHeatmap.R
    Modified:   code/apaQTLCorrectPvalMakeQQ.R
    Modified:   code/apaQTL_Nominal.sh
    Modified:   code/apaQTL_permuted.sh
    Modified:   code/apaQTLsnake.err
    Modified:   code/apaQTLsnake.out
    Modified:   code/bed2saf.py
    Modified:   code/callPeaksYL.py
    Modified:   code/chooseAnno2SAF.py
    Modified:   code/cluster.json
    Modified:   code/clusterPAS.json
    Modified:   code/clusterfiltPAS.json
    Modified:   code/config.yaml
    Modified:   code/convertNumeric.py
    Modified:   code/filter5perc.R
    Modified:   code/filter5percPheno.py
    Modified:   code/filterpeaks.py
    Modified:   code/fixFChead.py
    Modified:   code/make5percPeakbed.py
    Modified:   code/makeFileID.py
    Modified:   code/makePheno.py
    Modified:   code/makeSampleList.py
    Modified:   code/mergeAllBam.sh
    Modified:   code/mergeByFracBam.sh
    Modified:   code/mergePeaks.sh
    Modified:   code/namePeaks.py
    Modified:   code/peak2PAS.py
    Modified:   code/peakFC.sh
    Modified:   code/pheno2countonly.R
    Modified:   code/quantassign2parsedpeak.py
    Modified:   code/snakemake.batch
    Modified:   code/snakemakePAS.batch
    Modified:   code/snakemakefiltPAS.batch
    Modified:   code/submit-snakemake.sh
    Modified:   code/submit-snakemakePAS.sh
    Modified:   code/submit-snakemakefiltPAS.sh
    Deleted:    code/test.txt
    Modified:   data/MetaDataSequencing.txt
    Modified:   output/README.md

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 13484a9 brimittleman 2019-04-13 re-add analysis
html c100d8d brimittleman 2019-04-13 Build site.
html 74555f9 brimittleman 2019-04-12 Build site.
Rmd f5e23f3 brimittleman 2019-04-11 add fastq 2 bam

The raw data in this analysis are fastq files for each of the libraries. The fastq files are in apaQTL/data/fastq/. The goal of this analysis is to process the fastq files into bam files with alligned and clean data. The major filtering steps in this process are removing reads with evidence of mapping bias due to allele specific effects and removing reads with evidence for misprimming. All of the steps for this analyis are completed through a snakemake pipeline. The necessary files to run the pipeline are in apaQTL/code/.

The snakemake pipeline can be run on a paralell set of data by changing the working directory in the config.yaml file. The environment for this analysis is creating using anaconda with the environemnt file apaQTL/code/environment.yaml.

Before running the pipeline it is usefull to load the environment and create a dag for all of the commands that will be run. This will allow me to make sure there are no syntax errors or path errors preventing the full pipeline from running.

module load Anaconda3
source activate three-prime-env
snakemake -np 

To run the pipeline I submit the snakemake.batch script. This will run submit-snakemake.sh and submit a job for each rule. All of the log files will be in apaQTL/code/log/

sbatch code/snakemake.batch  

All of the files created from this pipeline will be in apaQTL/data/. The final clean and filtered bam files that are ready for peak calling and further analysis are in apaQTL/data/sort_clean/.



sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.2.0 Rcpp_1.0.0      digest_0.6.18   rprojroot_1.3-2
 [5] backports_1.1.3 git2r_0.24.0    magrittr_1.5    evaluate_0.13  
 [9] stringi_1.3.1   fs_1.2.6        whisker_0.3-2   rmarkdown_1.11 
[13] tools_3.5.1     stringr_1.4.0   glue_1.3.0      xfun_0.5       
[17] yaml_2.2.0      compiler_3.5.1  htmltools_0.3.6 knitr_1.21