Last updated: 2019-07-02
Checks: 7 0
Knit directory: apaQTL/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190411)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: .Rprofile
Untracked: ._.DS_Store
Untracked: .gitignore
Untracked: _workflowr.yml
Untracked: analysis/._PASdescriptiveplots.Rmd
Untracked: analysis/._cuttoffPercUsage.Rmd
Untracked: analysis/QTLexampleplots.Rmd
Untracked: analysis/cuttoffPercUsage.Rmd
Untracked: analysis/eQTLoverlap.Rmd
Untracked: analysis/mergeRNA.Rmd
Untracked: analysis/oldstuffNotNeeded.Rmd
Untracked: apaQTL.Rproj
Untracked: code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
Untracked: code/._ApaQTL_nominalNonnorm.sh
Untracked: code/._BothFracDTPlotGeneRegions_normalized.sh
Untracked: code/._EandPqtls.sh
Untracked: code/._FC_NucintornUpandDown.sh
Untracked: code/._FC_UTR.sh
Untracked: code/._FC_intornUpandDownsteamPAS.sh
Untracked: code/._FC_nascentseq.sh
Untracked: code/._FC_newPeaks_olddata.sh
Untracked: code/._HMMpermuteTotal.py
Untracked: code/._HmmPermute.py
Untracked: code/._LC_samplegroups.py
Untracked: code/._NascentRNAdtPlot.sh
Untracked: code/._NascentRNAdtPlot3UTRPAS.sh
Untracked: code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
Untracked: code/._NascentRNAdtPlotNucPAS.sh
Untracked: code/._NascentRNAdtPlotTotPAS.sh
Untracked: code/._NascentRNAdtPlotintronicPAS.sh
Untracked: code/._NascnetRNAdtPlotPAS.sh
Untracked: code/._NetSeq_fourthintronDT.sh
Untracked: code/._NomResfromPASSNP.py
Untracked: code/._PrematureQTLNominal.sh
Untracked: code/._PrematureQTLPermuted.sh
Untracked: code/._QTL2bed.py
Untracked: code/._QTL2bed_withstrand.py
Untracked: code/._RNAbam2bw.sh
Untracked: code/._SnakefilePAS
Untracked: code/._SnakefilefiltPAS
Untracked: code/._TESplots100bp.sh
Untracked: code/._TESplots150bp.sh
Untracked: code/._TESplots200bp.sh
Untracked: code/._Untitled
Untracked: code/._ZipandTabPheno.sh
Untracked: code/._aAPAqtl_nominal39ind.sh
Untracked: code/._apaQTLCorrectPvalMakeQQ.R
Untracked: code/._apaQTL_Nominal.sh
Untracked: code/._apaQTL_permuted.sh
Untracked: code/._assignNucIntonpeak2intronlocs.sh
Untracked: code/._assignTotIntronpeak2intronlocs.sh
Untracked: code/._bam2BW_5primemost.sh
Untracked: code/._bed2saf.py
Untracked: code/._bothFracDTplot1stintron.sh
Untracked: code/._bothFracDTplot4thintron.sh
Untracked: code/._bothFrac_FC.sh
Untracked: code/._callPeaksYL.py
Untracked: code/._changenomQTLres2geneName.py
Untracked: code/._chooseAnno2SAF.py
Untracked: code/._chooseSignalSite
Untracked: code/._chooseSignalSite.py
Untracked: code/._cluster.json
Untracked: code/._clusterPAS.json
Untracked: code/._clusterfiltPAS.json
Untracked: code/._codingdms2bed.py
Untracked: code/._config.yaml
Untracked: code/._config2.yaml
Untracked: code/._configOLD.yaml
Untracked: code/._convertNominal2SNPLOC.py
Untracked: code/._convertNumeric.py
Untracked: code/._correctNomeqtl.R
Untracked: code/._dag.pdf
Untracked: code/._eQTL_switch2snploc.py
Untracked: code/._eQTLgenestestedapa.py
Untracked: code/._encodeRNADTplots.sh
Untracked: code/._extractGenotypes.py
Untracked: code/._extractseqfromqtlfastq.py
Untracked: code/._fc2leafphen.py
Untracked: code/._filter5perc.R
Untracked: code/._filter5percPheno.py
Untracked: code/._filterpeaks.py
Untracked: code/._finalPASbed2SAF.py
Untracked: code/._fix4su304corr.py
Untracked: code/._fix4su604corr.py
Untracked: code/._fix4sukalisto.py
Untracked: code/._fixExandUnexeQTL
Untracked: code/._fixExandUnexeQTL.py
Untracked: code/._fixFChead.py
Untracked: code/._fixFChead_bothfrac.py
Untracked: code/._fixH3k12ac.py
Untracked: code/._fixPASregionSNPs.py
Untracked: code/._fixRNAhead4corr.py
Untracked: code/._fixRNAkalisto.py
Untracked: code/._fixgroupedtranscript.py
Untracked: code/._fixhead_netseqfc.py
Untracked: code/._getAPAfromanyeQTL.py
Untracked: code/._getApapval4eqtl.py
Untracked: code/._getApapval4eqtl_unexp.py
Untracked: code/._getDownstreamIntronNuclear.py
Untracked: code/._getIntronDownstreamPAS.py
Untracked: code/._getIntronUpstreamPAS.py
Untracked: code/._getQTLalleles.py
Untracked: code/._getQTLfastq.sh
Untracked: code/._getUpstreamIntronNuclear.py
Untracked: code/._grouptranscripts.py
Untracked: code/._intersectVCFandupPAS.sh
Untracked: code/._keep5perMAF.py
Untracked: code/._keepSNP_vcf.sh
Untracked: code/._make5percPeakbed.py
Untracked: code/._makeFileID.py
Untracked: code/._makePheno.py
Untracked: code/._makeSAFbothfrac5perc.py
Untracked: code/._makeSNP2rsidfile.py
Untracked: code/._makeeQTLempirical_unexp.py
Untracked: code/._makeeQTLempiricaldist.py
Untracked: code/._makegencondeTSSfile.py
Untracked: code/._mapSSsnps2PAS.sh
Untracked: code/._mergRNABam.sh
Untracked: code/._mergeAllBam.sh
Untracked: code/._mergeBW_norm.sh
Untracked: code/._mergeBamNascent.sh
Untracked: code/._mergeByFracBam.sh
Untracked: code/._mergePeaks.sh
Untracked: code/._mnase1stintron.sh
Untracked: code/._mnaseDT_fourthintron.sh
Untracked: code/._namePeaks.py
Untracked: code/._netseqDTplot1stIntron.sh
Untracked: code/._netseqFC.sh
Untracked: code/._peak2PAS.py
Untracked: code/._peakFC.sh
Untracked: code/._pheno2countonly.R
Untracked: code/._phenoQTLfromlist.py
Untracked: code/._processYRIgen.py
Untracked: code/._qtlRegionseq.sh
Untracked: code/._qtlsPvalOppFrac.py
Untracked: code/._quantassign2parsedpeak.py
Untracked: code/._removeXfromHmm.py
Untracked: code/._removeloc_pheno.py
Untracked: code/._runCorrectNomEqtl.sh
Untracked: code/._runHMMpermuteAPAqtls.sh
Untracked: code/._runHMMpermuteeQTLS.sh
Untracked: code/._runMakeEmpiricaleQTL_unexp.sh
Untracked: code/._runMakeeQTLempirical.sh
Untracked: code/._run_bam2bw_all3prime.sh
Untracked: code/._run_bam2bw_extra3.sh
Untracked: code/._run_getApaPval4eqtl.sh
Untracked: code/._run_getapafromeQTL.py
Untracked: code/._run_getapafromeQTL.sh
Untracked: code/._run_getapapval4eqtl_unexp.sh
Untracked: code/._run_leafcutterDiffIso.sh
Untracked: code/._run_sepUsagephen.sh
Untracked: code/._run_sepgenobychrom.sh
Untracked: code/._selectNominalPvalues.py
Untracked: code/._sepUsagePhen.py
Untracked: code/._sepgenobychrom.py
Untracked: code/._snakemakePAS.batch
Untracked: code/._snakemakefiltPAS.batch
Untracked: code/._sortindexRNAbam.sh
Untracked: code/._submit-snakemakePAS.sh
Untracked: code/._submit-snakemakefiltPAS.sh
Untracked: code/._subsetAPAnotEorPgene.py
Untracked: code/._subsetApanoteGene.py
Untracked: code/._subsetUnexplainedeQTLs.py
Untracked: code/._subsetVCF_SS.sh
Untracked: code/._subsetVCF_noSSregions.sh
Untracked: code/._subsetVCF_upstreamPAS.sh
Untracked: code/._subset_diffisopheno.py
Untracked: code/._subsetpermAPAwithGenelist.py
Untracked: code/._subsetvcf_otherreg.sh
Untracked: code/._subsetvcf_permSS.sh
Untracked: code/._subtrachfiveprimeUTR.sh
Untracked: code/._subtractExons.sh
Untracked: code/._subtractfiveprimeUTR.sh
Untracked: code/._tabixSNPS.sh
Untracked: code/._utrdms2saf.py
Untracked: code/._vcf2bed.py
Untracked: code/.snakemake/
Untracked: code/APAqtl_nominal.err
Untracked: code/APAqtl_nominal.out
Untracked: code/APAqtl_nominal_39.err
Untracked: code/APAqtl_nominal_39.out
Untracked: code/APAqtl_nominal_nonNorm.err
Untracked: code/APAqtl_nominal_nonNorm.out
Untracked: code/APAqtl_permuted.err
Untracked: code/APAqtl_permuted.out
Untracked: code/ApaQTL_nominalNonnorm.sh
Untracked: code/BothFracDTPlot1stintron.err
Untracked: code/BothFracDTPlot1stintron.out
Untracked: code/BothFracDTPlot4stintron.err
Untracked: code/BothFracDTPlot4stintron.out
Untracked: code/BothFracDTPlotGeneRegions.err
Untracked: code/BothFracDTPlotGeneRegions.out
Untracked: code/BothFracDTPlotGeneRegions_norm.err
Untracked: code/BothFracDTPlotGeneRegions_norm.out
Untracked: code/BothFracDTPlotGeneRegions_normalized.sh
Untracked: code/DistPAS2Sig.py
Untracked: code/EandPqtl.err
Untracked: code/EandPqtl.out
Untracked: code/EandPqtls.sh
Untracked: code/EncodeRNADTPlotGeneRegions.err
Untracked: code/EncodeRNADTPlotGeneRegions.out
Untracked: code/FC_NucintornUpandDown.sh
Untracked: code/FC_NucintronPASupandDown.err
Untracked: code/FC_NucintronPASupandDown.out
Untracked: code/FC_UTR.err
Untracked: code/FC_UTR.out
Untracked: code/FC_UTR.sh
Untracked: code/FC_intornUpandDownsteamPAS.sh
Untracked: code/FC_intronPASupandDown.err
Untracked: code/FC_intronPASupandDown.out
Untracked: code/FC_nascent.err
Untracked: code/FC_nascentout
Untracked: code/FC_nascentseq.sh
Untracked: code/FC_newPAS_olddata.err
Untracked: code/FC_newPAS_olddata.out
Untracked: code/FC_newPeaks_olddata.sh
Untracked: code/HMMpermuteTotal.py
Untracked: code/HmmPermute.p
Untracked: code/HmmPermute.py
Untracked: code/LC_samplegroups.py
Untracked: code/NascentDTPlotGeneRegions.err
Untracked: code/NascentDTPlotGeneRegions.out
Untracked: code/NascentDTPlotPAS.err
Untracked: code/NascentDTPlotPAS.out
Untracked: code/NascentDTPlotPAS_3utr.err
Untracked: code/NascentDTPlotPAS_3utr.out
Untracked: code/NascentDTPlotPAS_firstintron.err
Untracked: code/NascentDTPlotPAS_firstintron.out
Untracked: code/NascentDTPlotPAS_intron.err
Untracked: code/NascentDTPlotPAS_intron.out
Untracked: code/NascentDTPlotPAS_nuc.err
Untracked: code/NascentDTPlotPAS_nuc.out
Untracked: code/NascentDTPlotPAS_tot.err
Untracked: code/NascentDTPlotPAS_tot.out
Untracked: code/NascentRNAdtPlot.sh
Untracked: code/NascentRNAdtPlot3UTRPAS.sh
Untracked: code/NascentRNAdtPlotExcludeFirstintronicPAS.sh
Untracked: code/NascentRNAdtPlotFirstintronicPAS.sh
Untracked: code/NascentRNAdtPlotNucPAS.sh
Untracked: code/NascentRNAdtPlotTotPAS.sh
Untracked: code/NascentRNAdtPlotintronicPAS.sh
Untracked: code/NascnetRNAdtPlotPAS.sh
Untracked: code/NetSeq_fourthintronDT.sh
Untracked: code/NomResfromPASSNP.py
Untracked: code/Nuclear_example.err
Untracked: code/Nuclear_example.out
Untracked: code/PrematureQTLNominal.sh
Untracked: code/PrematureQTLPermuted.sh
Untracked: code/Prematureqtl_nominal.err
Untracked: code/Prematureqtl_nominal.out
Untracked: code/Prematureqtl_permuted.err
Untracked: code/Prematureqtl_permuted.out
Untracked: code/QTL2bed.py
Untracked: code/QTL2bed_withstrand.py
Untracked: code/README.md
Untracked: code/RNABam2BW.err
Untracked: code/RNABam2BW.out
Untracked: code/RNAbam2bw.sh
Untracked: code/Rplots.pdf
Untracked: code/Script4NuclearQTLexamples.sh
Untracked: code/Script4TotalQTLexamples.sh
Untracked: code/TESplots100bp.err
Untracked: code/TESplots100bp.out
Untracked: code/TESplots100bp.sh
Untracked: code/TESplots150bp.err
Untracked: code/TESplots150bp.out
Untracked: code/TESplots150bp.sh
Untracked: code/TESplots200bp.err
Untracked: code/TESplots200bp.out
Untracked: code/TESplots200bp.sh
Untracked: code/Total_example.err
Untracked: code/Total_example.out
Untracked: code/Untitled
Untracked: code/Upstream100Bases_general.py
Untracked: code/ZipandTabPheno.sh
Untracked: code/aAPAqtl_nominal39ind.sh
Untracked: code/apaQTLCorrectPvalMakeQQ_4pc.R
Untracked: code/apaQTL_Nominal_4pc.sh
Untracked: code/apaQTL_permuted.4pc.sh
Untracked: code/apafacetboxplots.R
Untracked: code/apaqtlfacetboxplots.R
Untracked: code/assignNucIntonpeak2intronlocs.sh
Untracked: code/assignPeak2Intronicregion.err
Untracked: code/assignPeak2Intronicregion.out
Untracked: code/assignTotIntronpeak2intronlocs.sh
Untracked: code/assigntotPeak2Intronicregion.err
Untracked: code/assigntotPeak2Intronicregion.out
Untracked: code/bam2BW_5primemost.sh
Untracked: code/bam2bw.err
Untracked: code/bam2bw.out
Untracked: code/bam2bw_5primemost.err
Untracked: code/bam2bw_5primemost.out
Untracked: code/bothFracDTplot1stintron.sh
Untracked: code/bothFracDTplot4thintron.sh
Untracked: code/bothFrac_FC.err
Untracked: code/bothFrac_FC.out
Untracked: code/bothFrac_FC.sh
Untracked: code/changenomQTLres2geneName.py
Untracked: code/codingdms2bed.py
Untracked: code/convertNominal2SNPLOC.py
Untracked: code/correctNomeqtl.R
Untracked: code/dag.pdf
Untracked: code/dagPAS.pdf
Untracked: code/dagfiltPAS.pdf
Untracked: code/eQTL_switch2snploc.py
Untracked: code/eQTLgenestestedapa.py
Untracked: code/encodeRNADTplots.sh
Untracked: code/extractGenotypes.py
Untracked: code/extractseqfromqtlfastq.py
Untracked: code/fc2leafphen.py
Untracked: code/finalPASbed2SAF.py
Untracked: code/findbuginpeaks.R
Untracked: code/fix4su304corr.py
Untracked: code/fix4su604corr.py
Untracked: code/fix4sukalisto.py
Untracked: code/fixExandUnexeQTL
Untracked: code/fixExandUnexeQTL.py
Untracked: code/fixFChead_bothfrac.py
Untracked: code/fixFChead_summary.py
Untracked: code/fixH3k12ac.py
Untracked: code/fixPASregionSNPs.py
Untracked: code/fixRNAhead4corr.py
Untracked: code/fixRNAkalisto.py
Untracked: code/fixgroupedtranscript.py
Untracked: code/fixhead_netseqfc.py
Untracked: code/genotypesYRI.gen.proc.keep.vcf.log
Untracked: code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
Untracked: code/get100upPAS.py
Untracked: code/getAPAfromanyeQTL.py
Untracked: code/getApapval4eqtl.py
Untracked: code/getApapval4eqtl_unexp.py
Untracked: code/getDownstreamIntronNuclear.py
Untracked: code/getIntronDownstreamPAS.py
Untracked: code/getIntronUpstreamPAS.py
Untracked: code/getQTLalleles.py
Untracked: code/getQTLfastq.sh
Untracked: code/getSeq100up.sh
Untracked: code/getUpstreamIntronNuclear.py
Untracked: code/getseq100up.err
Untracked: code/getseq100up.out
Untracked: code/grouptranscripts.err
Untracked: code/grouptranscripts.out
Untracked: code/grouptranscripts.py
Untracked: code/intersectPAS_ssSNPS.err
Untracked: code/intersectPAS_ssSNPS.out
Untracked: code/intersectVCFPAS.err
Untracked: code/intersectVCFPAS.out
Untracked: code/intersectVCFandupPAS.sh
Untracked: code/keep5perMAF.py
Untracked: code/keepSNP_vcf.sh
Untracked: code/log/
Untracked: code/makeSAFbothfrac5perc.py
Untracked: code/makeSNP2rsidfile.py
Untracked: code/makeeQTLempirical_unexp.py
Untracked: code/makeeQTLempiricaldist.py
Untracked: code/makegencondeTSSfile.py
Untracked: code/mapSSsnps2PAS.sh
Untracked: code/mergRNABam.sh
Untracked: code/mergeBW_norm.sh
Untracked: code/mergeBWnorm.err
Untracked: code/mergeBWnorm.out
Untracked: code/mergeBamNacent.err
Untracked: code/mergeBamNacent.out
Untracked: code/mergeBamNascent.sh
Untracked: code/mergeRNAbam.err
Untracked: code/mergeRNAbam.out
Untracked: code/mnase1stintron.sh
Untracked: code/mnaseDTPlot1stintron.err
Untracked: code/mnaseDTPlot1stintron.out
Untracked: code/mnaseDTPlot4thintron.err
Untracked: code/mnaseDTPlot4thintron.out
Untracked: code/mnaseDT_fourthintron.sh
Untracked: code/netDTPlot4thintron.out
Untracked: code/netseqDTplot1stIntron.sh
Untracked: code/netseqFC.err
Untracked: code/netseqFC.out
Untracked: code/netseqFC.sh
Untracked: code/neyDTPlot4thintron.err
Untracked: code/phenoQTLfromlist.py
Untracked: code/processYRIgen.py
Untracked: code/pullTwoMechData.py
Untracked: code/qtlFacetBoxplots.err
Untracked: code/qtlFacetBoxplots.out
Untracked: code/qtlRegionseq.sh
Untracked: code/qtlsPvalOppFrac.py
Untracked: code/removeXfromHmm.py
Untracked: code/removeloc_pheno.py
Untracked: code/runCorrectNomEqtl.sh
Untracked: code/runCorrectNomeqtl.err
Untracked: code/runCorrectNomeqtl.out
Untracked: code/runHMMpermute.err
Untracked: code/runHMMpermute.out
Untracked: code/runHMMpermuteAPAqtls.sh
Untracked: code/runHMMpermuteeQTLS.sh
Untracked: code/runHMMpermuteeQTLs.err
Untracked: code/runHMMpermuteeQTLs.out
Untracked: code/runMakeEmpiricaleQTL_unexp.sh
Untracked: code/runMakeEmpiricaleQTLs.err
Untracked: code/runMakeEmpiricaleQTLs.out
Untracked: code/runMakeEmpiricaleQTLsunex.err
Untracked: code/runMakeEmpiricaleQTLsunex.out
Untracked: code/runMakeeQTLempirical.sh
Untracked: code/run_DistPAS2Sig.err
Untracked: code/run_DistPAS2Sig.out
Untracked: code/run_bam2bw.err
Untracked: code/run_bam2bw.out
Untracked: code/run_bam2bw_all3prime.sh
Untracked: code/run_bam2bw_extra3.sh
Untracked: code/run_bam2bwexta.err
Untracked: code/run_bam2bwexta.out
Untracked: code/run_distPAS2Sig.sh
Untracked: code/run_getAPAfromanyeQTL.err
Untracked: code/run_getAPAfromanyeQTL.out
Untracked: code/run_getApaPval4eQTLs.err
Untracked: code/run_getApaPval4eQTLs.out
Untracked: code/run_getApaPval4eQTLsunexplained.err
Untracked: code/run_getApaPval4eQTLsunexplained.out
Untracked: code/run_getApaPval4eqtl.sh
Untracked: code/run_getapafromeQTL.sh
Untracked: code/run_getapapval4eqtl_unexp.sh
Untracked: code/run_leafcutterDiffIso.sh
Untracked: code/run_leafcutter_ds.err
Untracked: code/run_leafcutter_ds.out
Untracked: code/run_qtlFacetBoxplots.sh
Untracked: code/run_sepUsagephen.sh
Untracked: code/run_sepgenobychrom.err
Untracked: code/run_sepgenobychrom.out
Untracked: code/run_sepgenobychrom.sh
Untracked: code/run_sepusage.err
Untracked: code/run_sepusage.out
Untracked: code/selectNominalPvalues.py
Untracked: code/sepUsagePhen.py
Untracked: code/sepgenobychrom.py
Untracked: code/seqQTLfastq.err
Untracked: code/seqQTLfastq.out
Untracked: code/seqQTLregion.err
Untracked: code/seqQTLregion.out
Untracked: code/snakePASlog.out
Untracked: code/snakefiltPASlog.out
Untracked: code/sortindexRNABam.err
Untracked: code/sortindexRNABam.out
Untracked: code/sortindexRNAbam.sh
Untracked: code/subsetAPAnotEorPgene.py
Untracked: code/subsetApanoteGene.py
Untracked: code/subsetUnexplainedeQTLs.py
Untracked: code/subsetVCF_SS.sh
Untracked: code/subsetVCF_noSSregions.sh
Untracked: code/subsetVCF_upstreamPAS.sh
Untracked: code/subset_diffisopheno.py
Untracked: code/subsetpermAPAwithGenelist.py
Untracked: code/subsetvcf_SS.err
Untracked: code/subsetvcf_SS.out
Untracked: code/subsetvcf_noSS.err
Untracked: code/subsetvcf_noSS.out
Untracked: code/subsetvcf_otherreg.sh
Untracked: code/subsetvcf_pas.err
Untracked: code/subsetvcf_pas.out
Untracked: code/subsetvcf_perm.err
Untracked: code/subsetvcf_perm.out
Untracked: code/subsetvcf_permSS.sh
Untracked: code/subsetvcf_rand.err
Untracked: code/subsetvcf_rand.out
Untracked: code/subtract5UTR.err
Untracked: code/subtract5UTR.out
Untracked: code/subtractExons.err
Untracked: code/subtractExons.out
Untracked: code/subtractExons.sh
Untracked: code/subtractfiveprimeUTR.sh
Untracked: code/tabixSNPS.sh
Untracked: code/tabixSNPs.err
Untracked: code/tabixSNPs.out
Untracked: code/transcriptdm2bed.py
Untracked: code/utrdms2saf.py
Untracked: code/vcf2bed.py
Untracked: code/vcf_keepsnps.err
Untracked: code/vcf_keepsnps.out
Untracked: code/writeExampleQTLcode.py
Untracked: code/zipandtabPhen.err
Untracked: code/zipandtabPhen.out
Untracked: data/._.DS_Store
Untracked: data/ApaByEgene/
Untracked: data/ApaByPgene/
Untracked: data/Battle_pQTL/
Untracked: data/CompareOldandNew/
Untracked: data/DTmatrix/
Untracked: data/DiffIso/
Untracked: data/EncodeRNA/
Untracked: data/ExampleQTLPlots/
Untracked: data/GeuvadisRNA/
Untracked: data/HMMqtls/
Untracked: data/Li_eQTLs/
Untracked: data/NascentRNA/
Untracked: data/NucSpeceQTLeffect/
Untracked: data/PAS/
Untracked: data/PolyA_DB/
Untracked: data/PreTerm_pheno/
Untracked: data/PrematureQTLNominal/
Untracked: data/PrematureQTLPermuted/
Untracked: data/QTLGenotypes/
Untracked: data/QTLoverlap/
Untracked: data/QTLoverlap_nonNorm/
Untracked: data/README.md
Untracked: data/RNAseq/
Untracked: data/Reads2UTR/
Untracked: data/SNPinSS/
Untracked: data/SignalSiteFiles/
Untracked: data/TF_motifdisruption/
Untracked: data/ThirtyNineIndQtl_nominal/
Untracked: data/apaQTLNominal/
Untracked: data/apaQTLNominal_4pc/
Untracked: data/apaQTLPermuted/
Untracked: data/apaQTLPermuted_4pc/
Untracked: data/apaQTLs/
Untracked: data/assignedPeaks/
Untracked: data/bam/
Untracked: data/bam_clean/
Untracked: data/bam_waspfilt/
Untracked: data/bed_10up/
Untracked: data/bed_clean/
Untracked: data/bed_clean_sort/
Untracked: data/bed_waspfilter/
Untracked: data/bedsort_waspfilter/
Untracked: data/bothFrac_FC/
Untracked: data/bw/
Untracked: data/bw_norm/
Untracked: data/eQTLs/
Untracked: data/exampleQTLs/
Untracked: data/fastq/
Untracked: data/filterPeaks/
Untracked: data/fourSU/
Untracked: data/h3k27ac/
Untracked: data/highdiffsiggenes.txt
Untracked: data/inclusivePeaks/
Untracked: data/inclusivePeaks_FC/
Untracked: data/intronRNAratio/
Untracked: data/intron_analysis/
Untracked: data/locusZoom/
Untracked: data/mergedBG/
Untracked: data/mergedBW_byfrac/
Untracked: data/mergedBW_norm/
Untracked: data/mergedBam/
Untracked: data/mergedbyFracBam/
Untracked: data/molPhenos/
Untracked: data/molQTLs/
Untracked: data/motifdistrupt/
Untracked: data/netseq/
Untracked: data/nonNorm_pheno/
Untracked: data/nuc_10up/
Untracked: data/nuc_10upclean/
Untracked: data/overlapeQTL_try2/
Untracked: data/overlapeQTLs/
Untracked: data/peakCoverage/
Untracked: data/peaks_5perc/
Untracked: data/phenotype/
Untracked: data/phenotype_5perc/
Untracked: data/sigDiffGenes.txt
Untracked: data/sort/
Untracked: data/sort_clean/
Untracked: data/sort_waspfilter/
Untracked: data/twoMech/
Untracked: nohup.out
Untracked: output/._.DS_Store
Untracked: output/._meanCorrelationPhenotypes.svg
Untracked: output/dtPlots/
Untracked: output/fastqc/
Untracked: output/meanCorrelationPhenotypes.svg
Unstaged changes:
Modified: analysis/NuclearSpecAPAqtl.Rmd
Modified: analysis/NuclearSpecIncludeNotTested.Rmd
Modified: analysis/PrematureTermQTL.Rmd
Modified: analysis/Readdistagainstfeatures.Rmd
Modified: analysis/overlapapaqtlsandeqtls.Rmd
Modified: analysis/propeQTLs_explained.Rmd
Modified: analysis/signalsiteanalysis.Rmd
Modified: code/BothFracDTPlotGeneRegions.sh
Modified: code/Snakefile
Deleted: code/Upstream10Bases_general.py
Modified: code/apaQTLCorrectPvalMakeQQ.R
Modified: code/apaQTL_Nominal.sh
Modified: code/apaQTL_permuted.sh
Modified: code/apaQTLsnake.err
Modified: code/bam2bw.sh
Modified: code/bed2saf.py
Modified: code/cluster.json
Modified: code/clusterfiltPAS.json
Modified: code/config.yaml
Modified: code/environment.yaml
Modified: code/makePheno.py
Deleted: code/test.txt
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 36d86c0 | brimittleman | 2019-07-02 | post LM plot midifications |
html | 3e79995 | brimittleman | 2019-06-24 | Build site. |
Rmd | 494ab8a | brimittleman | 2019-06-24 | add diff prop test |
html | 499e504 | brimittleman | 2019-06-22 | Build site. |
Rmd | 97e2ea8 | brimittleman | 2019-06-22 | add pie chart |
html | 6679c95 | brimittleman | 2019-06-21 | Build site. |
Rmd | 842be25 | brimittleman | 2019-06-21 | fix fif |
html | 4f2326e | brimittleman | 2019-06-21 | Build site. |
Rmd | abd1a73 | brimittleman | 2019-06-21 | fix figures |
html | ae5c5a1 | brimittleman | 2019-06-21 | Build site. |
Rmd | 0d606c1 | brimittleman | 2019-06-21 | fix figures |
html | 2d1a80c | brimittleman | 2019-06-16 | Build site. |
Rmd | 8944f90 | brimittleman | 2019-06-16 | fix effect size header |
html | 9d0950c | brimittleman | 2019-06-13 | Build site. |
Rmd | 17955ab | brimittleman | 2019-06-13 | fix big bug |
html | b6ed10c | brimittleman | 2019-05-22 | Build site. |
Rmd | 312d7d7 | brimittleman | 2019-05-22 | add non facet plot |
html | bf3a1e0 | brimittleman | 2019-05-14 | Build site. |
Rmd | 77ca26a | brimittleman | 2019-05-14 | results by logef |
html | 760b297 | brimittleman | 2019-05-14 | Build site. |
Rmd | 4c10e8f | brimittleman | 2019-05-14 | add dist to PAS plot |
html | d0aa6a3 | brimittleman | 2019-05-13 | Build site. |
Rmd | f514b6e | brimittleman | 2019-05-13 | add combined plot |
html | 07c9125 | brimittleman | 2019-05-13 | Build site. |
Rmd | 981ac33 | brimittleman | 2019-05-13 | add location of highly used |
html | c561b14 | brimittleman | 2019-05-06 | Build site. |
Rmd | 1d8a0a3 | brimittleman | 2019-05-06 | add res |
html | 60093ce | brimittleman | 2019-05-02 | Build site. |
Rmd | 24c2ceb | brimittleman | 2019-05-02 | add diff iso |
library(workflowr)
This is workflowr version 1.4.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1 ✔ purrr 0.3.2
✔ tibble 2.1.1 ✔ dplyr 0.8.0.1
✔ tidyr 0.8.3 ✔ stringr 1.3.1
✔ readr 1.3.1 ✔ forcats 0.3.0
── Conflicts ──────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
In this analysis I wil use leafcutter to call PAS with differential ussage between fractions.
I first filter the annotated peak SAF file for peaks passing the 5% coverage in either fraction.
python makeSAFbothfrac5perc.py
mkdir bothFrac_FC
Run feature counts with these peaks with both fractions:
sbatch bothFrac_FC.sh
Fix the header:
python fixFChead_bothfrac.py ../data/bothFrac_FC/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fc ../data/bothFrac_FC/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.fc
Remove location demoniaiton:
mkdir ../data/DiffIso
python fc2leafphen.py
Fix pheno to remove location:
python removeloc_pheno.py ../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC.fc ../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC_noloc.fc
python subset_diffisopheno.py 1
python subset_diffisopheno.py 2
python subset_diffisopheno.py 3
python subset_diffisopheno.py 4
python subset_diffisopheno.py 5
python subset_diffisopheno.py 6
python subset_diffisopheno.py 7
python subset_diffisopheno.py 8
python subset_diffisopheno.py 9
python subset_diffisopheno.py 10
python subset_diffisopheno.py 11
python subset_diffisopheno.py 12
python subset_diffisopheno.py 13
python subset_diffisopheno.py 14
python subset_diffisopheno.py 15
python subset_diffisopheno.py 16
python subset_diffisopheno.py 18
python subset_diffisopheno.py 19
python subset_diffisopheno.py 20
python subset_diffisopheno.py 21
python subset_diffisopheno.py 22
Make the sample groups file:
python LC_samplegroups.py
The leafcutter environment is not in the three-prime-seq environment. Make sure leafcutter is installed and working.
sbatch run_leafcutterDiffIso.sh
Rscript /project2/gilad/briana/davidaknowles-leafcutter-c3d9474/scripts/leafcutter_ds.R –num_threads 4 ../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC.fc_22.txt ../data/bothFrac_FC/sample_groups.txt -o ../data/DiffIso/TN_diff_isoform_chr22.txt
Concatinate results:
awk '{if(NR>1)print}' ../data/DiffIso/TN_diff_isoform_chr*.txt_effect_sizes.txt > ../data/DiffIso/TN_diff_isoform_allChrom.txt_effect_sizes.txt
awk '{if(NR>1)print}' ../data/DiffIso/TN_diff_isoform_chr*.txt_cluster_significance.txt > ../data/DiffIso/TN_diff_isoform_AllChrom_cluster_significance.txt
sig=read.table("../data/DiffIso/TN_diff_isoform_AllChrom_cluster_significance.txt",sep="\t" ,col.names = c('status','loglr','df','p','cluster','p.adjust'),stringsAsFactors = F) %>% filter(status=="Success")
sig$p.adjust=as.numeric(as.character(sig$p.adjust))
qqplot(-log10(runif(nrow(sig))), -log10(sig$p.adjust),ylab="-log10 Total Adjusted Leafcutter pvalue", xlab="-log 10 Uniform expectation", main="Leafcutter differencial isoform analysis between fractions")
abline(0,1)
tested_genes=nrow(sig)
tested_genes
[1] 9564
sig_genes=sig %>% filter(p.adjust<.05)
number_sig_genes=nrow(sig_genes)
number_sig_genes
[1] 7479
sig_genesonly=sig_genes %>% separate(cluster,into=c("chrom", "geneName"), sep = ":") %>% dplyr::select(geneName)
write.table(sig_genesonly, file="../data/sigDiffGenes.txt", col.names = T, row.names = F, quote = F)
effectsize=read.table("../data/DiffIso/TN_diff_isoform_allChrom.txt_effect_sizes.txt", stringsAsFactors = F, col.names=c('intron', 'logef' ,'Nuclear', 'Total','deltaPAU')) %>% filter(intron != "intron")
write.table(effectsize,file="../data/DiffIso/EffectSizes.txt", quote = F, col.names = T, row.names = F)
effectsize$deltaPAU=as.numeric(as.character(effectsize$deltaPAU))
effectsize$logef=as.numeric(as.character(effectsize$logef))
Plot delta PAU:
plot(sort(effectsize$deltaPAU),main="Leafcutter delta PAU", ylab="Delta PAU", xlab="PAS Index")
Filter PAU > .2
effectsize_deltaPAU= effectsize %>% filter(abs(deltaPAU) > .2)
nrow(effectsize_deltaPAU)
[1] 2096
effectSize_highdiffGenes=effectsize_deltaPAU %>% separate(intron, into=c("chrom", "start", "end", "GeneName"), sep=":") %>% dplyr::select(GeneName) %>% unique()
write.table(effectSize_highdiffGenes, file="../data/highdiffsiggenes.txt", col.names = F, row.names = F, quote = F)
Genes in this set:
effectsize_deltaPAU_Genes= effectsize_deltaPAU %>% separate(intron, into=c("chrom", "start", "end","gene"),sep=":") %>% group_by(gene) %>% summarise(nperGene=n())
nrow(effectsize_deltaPAU_Genes)
[1] 1593
Filter >.2 in
effectsize_deltaPAU_nuclear= effectsize_deltaPAU %>% filter(deltaPAU < -0.2)
#write out at bed
#need strand info
PAS=read.table("../data/PAS/APAPAS_GeneLocAnno.5perc.bed", stringsAsFactors = F,col.names = c("chrom", "start", "end", "peak", "score", "strand") )%>% separate(peak, into=c("peaknum","peakID"), sep=":") %>% separate(peakID, into=c("gene", "loc"), sep="_") %>% dplyr::select(gene, strand) %>% unique()
effectsize_deltaPAU_nuclear_bed=effectsize_deltaPAU_nuclear %>% separate(intron, into=c("chr", "peakStart", "peakEnd", "gene"), sep=":") %>% inner_join(PAS, by="gene") %>% mutate(PASstart=ifelse(strand=="+", as.integer(peakEnd)-1, as.integer(peakStart)+1)) %>% mutate(PASend=ifelse(strand=="+", as.integer(peakEnd), as.integer(peakStart))) %>% mutate(score=".") %>% dplyr::select(chr, peakStart, peakEnd, gene, score, strand)
write.table(effectsize_deltaPAU_nuclear_bed, file="../data/PAS/UsedMoreNuclearPAU2.bed", col.names = F, row.names = F, quote = F,sep = "\t")
Filter >.2 in Total:
effectsize_deltaPAU_total= effectsize_deltaPAU %>% filter(deltaPAU > 0.2)
effectsize_deltaPAU_total_bed=effectsize_deltaPAU_total %>% separate(intron, into=c("chr", "peakStart", "peakEnd", "gene"), sep=":") %>% inner_join(PAS, by="gene") %>% mutate(PASstart=ifelse(strand=="+", as.integer(peakEnd)-1, as.integer(peakStart)+1)) %>% mutate(PASend=ifelse(strand=="+", as.integer(peakEnd), as.integer(peakStart))) %>% mutate(score=".") %>% dplyr::select(chr, peakStart, peakEnd, gene, score, strand)
write.table(effectsize_deltaPAU_total_bed, file="../data/PAS/UsedMoreTotalPAU2.bed", col.names = F, row.names = F, quote = F,sep="\t")
Sort the files:
sort -k1,1 -k2,2n ../data/PAS/UsedMoreTotalPAU2.bed > ../data/PAS/UsedMoreTotalPAU2.sort.bed
sort -k1,1 -k2,2n ../data/PAS/UsedMoreNuclearPAU2.bed > ../data/PAS/UsedMoreNuclearPAU2.sort.bed
Pull in location information for each PAS:
PAS=read.table("../data/peaks_5perc/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.SAF",stringsAsFactors = F,header = T) %>% separate(GeneID, into=c("num", "chr", "start", "end", "strand", "geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc"),sep="_") %>% mutate(intron=paste("chr", Chr, ":", Start, ":", End, ":", gene,sep="")) %>% select(intron, loc)
effectsize_deltaPAU_total_loc=effectsize_deltaPAU_total %>% inner_join(PAS, by="intron")
ggplot(effectsize_deltaPAU_total_loc,aes(x=loc)) + geom_histogram(stat="count") + labs(title="Location of Total peaks >.2 PAU")
Warning: Ignoring unknown parameters: binwidth, bins, pad
effectsize_deltaPAU_nuclear_loc=effectsize_deltaPAU_nuclear %>% inner_join(PAS, by="intron")
ggplot(effectsize_deltaPAU_nuclear_loc,aes(x=loc)) + geom_histogram(stat="count") + labs(title="Location of Nuclear peaks >.2 PAU")
Warning: Ignoring unknown parameters: binwidth, bins, pad
Version | Author | Date |
---|---|---|
9d0950c | brimittleman | 2019-06-13 |
I will want to look at proportions. I need to know how many peaks are in each location:
PAS_loc =PAS%>% group_by(loc) %>% summarise(nloc=n())
effectsize_deltaPAU_total_locProp=effectsize_deltaPAU_total_loc %>% group_by(loc) %>% summarise(nloctotal=n())
effectsize_deltaPAU_nuclear_locProp=effectsize_deltaPAU_nuclear_loc %>% group_by(loc) %>% summarise(nlocnuclear=n())
effectsize_deltaPAUProp_tot=effectsize_deltaPAU_total_locProp %>% inner_join(PAS_loc, by="loc") %>% mutate(Proportion_tot=nloctotal/nloc)
effectsize_deltaPAUProp_nuc=effectsize_deltaPAU_nuclear_locProp %>% inner_join(PAS_loc, by="loc") %>% mutate(Proportion_nuc=nlocnuclear/nloc)
ggplot(effectsize_deltaPAUProp_tot, aes(x=loc, y=Proportion_tot)) + geom_bar(stat="identity") + labs(y="Proportion of all called PAS", title="Location of high Total used PAS")
ggplot(effectsize_deltaPAUProp_nuc, aes(x=loc, y=Proportion_nuc)) + geom_bar(stat="identity") + labs(y="Proportion of all called PAS", title="Location of high nuclear used PAS")
Version | Author | Date |
---|---|---|
9d0950c | brimittleman | 2019-06-13 |
Merge to 1 figure:
effectsize_deltaPAUProp_both= effectsize_deltaPAUProp_nuc %>% inner_join(effectsize_deltaPAUProp_tot, by=c("loc","nloc")) %>% dplyr::rename(Nuclear=Proportion_nuc, Total=Proportion_tot) %>% select(loc, Nuclear, Total)
effectsize_deltaPAUProp_both_melt= effectsize_deltaPAUProp_both %>% melt(id.vars="loc", variable.name="Fraction", value.name = "Proportion")
effectsize_deltaPAUProp_both_melt$Fraction=as.character(effectsize_deltaPAUProp_both_melt$Fraction)
ggplot(effectsize_deltaPAUProp_both_melt, aes(x=loc, y=Proportion, by=Fraction, fill=Fraction)) + geom_bar(stat="identity", position="dodge") + scale_fill_manual(values=c("deepskyblue3","darkviolet")) + labs(title="Proportion of PAS differential used by location",x="") +scale_x_discrete(labels = c('Coding','5kb downstream','Intronic',"3' UTR", "5' UTR")) +theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(legend.position = c(0.1,.9), legend.direction = "horizontal") + theme(panel.background = element_blank())
effectsize_deltaPAU_total_locProp
# A tibble: 5 x 2
loc nloctotal
<chr> <int>
1 cds 34
2 end 77
3 intron 160
4 utr3 1085
5 utr5 40
sum(effectsize_deltaPAU_total_locProp$nloctotal)
[1] 1396
effectsize_deltaPAU_nuclear_locProp
# A tibble: 5 x 2
loc nlocnuclear
<chr> <int>
1 cds 10
2 end 100
3 intron 473
4 utr3 104
5 utr5 13
sum(effectsize_deltaPAU_nuclear_locProp$nlocnuclear)
[1] 700
effectsize_deltaPAUProp_both_melt_sm=effectsize_deltaPAUProp_both_melt %>% filter(loc=="intron" | loc=="utr3")
ggplot(effectsize_deltaPAUProp_both_melt_sm, aes(x=loc, y=Proportion, by=Fraction, fill=Fraction)) + geom_bar(stat="identity", position="dodge") + scale_fill_manual(values=c("deepskyblue3","darkviolet")) + labs(title="Proportion of PAS differential used by location",x="") +scale_x_discrete(labels = c('Intronic',"3' UTR")) +theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(legend.position = c(0.1,.9), legend.direction = "horizontal") + theme(panel.background = element_blank())
#intronic
prop.test(x=c(473,160), n=c(700,1396),alternative = "greater")
2-sample test for equality of proportions with continuity
correction
data: c(473, 160) out of c(700, 1396)
X-squared = 693.66, df = 1, p-value < 2.2e-16
alternative hypothesis: greater
95 percent confidence interval:
0.5277239 1.0000000
sample estimates:
prop 1 prop 2
0.6757143 0.1146132
#3' utr
prop.test(x=c(104,1085), n=c(700,1396),alternative = "less")
2-sample test for equality of proportions with continuity
correction
data: c(104, 1085) out of c(700, 1396)
X-squared = 748.03, df = 1, p-value < 2.2e-16
alternative hypothesis: less
95 percent confidence interval:
-1.0000000 -0.5988627
sample estimates:
prop 1 prop 2
0.1485714 0.7772206
More differentiall used in total. this makes sense because there are more used peaks in the nuclear which evens out the distribution of the ratios.
I want to create a data frame that has the location proportion distribution based on different \(\Delta\) PAU. 0-.1 .1-.2 .2-.3 .3-.4 .4-.5 >.5
First I will seperate the total and nuclear but the sign of the \(\Delta\) PAU.
colnames(effectsize)=c("intron", "logef","Nuclear", "Total", "deltaPAU")
Total_dpau= effectsize %>% filter(deltaPAU > 0) %>% inner_join(PAS, by="intron") %>% select(-logef, -Nuclear,-Total) %>% mutate(fraction="Total", PAU_Cat=ifelse(deltaPAU <.1, "<.1", ifelse(deltaPAU >=.1 & deltaPAU <.2, "<.2", ifelse(deltaPAU >=.2 & deltaPAU <.3, "<.3", ifelse(deltaPAU >=.3 & deltaPAU <.4, "<.4", "<.5")))))
Nuclear_dpau= effectsize %>% filter(deltaPAU <0) %>% inner_join(PAS, by="intron") %>% select(-logef,-Nuclear,-Total) %>% mutate(fraction="Nuclear", PAU_Cat=ifelse(deltaPAU >-.1, "<.1", ifelse(deltaPAU <=-.1 & deltaPAU > -.2, "<.2", ifelse(deltaPAU <=-.2 & deltaPAU >-.3, "<.3", ifelse(deltaPAU <=-.3 & deltaPAU >-.4, "<.4", "<.5")))))
Merge these together to start grouping:
allPAU=as.data.frame(rbind(Total_dpau, Nuclear_dpau)) %>% group_by(fraction, PAU_Cat, loc ) %>% summarise(nperLoc=n()) %>% full_join(PAS_loc, by ="loc") %>% mutate(Prop=nperLoc/nloc)
Plot it:
ggplot(allPAU, aes(x=loc,y=Prop, group=fraction, fill=fraction)) + geom_bar(stat="identity", position = "dodge") + facet_wrap(~PAU_Cat)+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title="Proportion of PAS by location and delta PAU")
Version | Author | Date |
---|---|---|
3e79995 | brimittleman | 2019-06-24 |
allPAU_remove.1= allPAU %>% filter(PAU_Cat != "<.1")
ggplot(allPAU_remove.1, aes(x=loc,y=Prop, group=fraction, fill=fraction)) + geom_bar(stat="identity", position = "dodge") + facet_wrap(~PAU_Cat)+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title="Proportion of PAS by location and delta PAU")
Proportion within group:
allPAU_ingroup= allPAU %>% mutate(nCat=sum(nperLoc),proppercat=nperLoc/nCat)
ggplot(allPAU_ingroup, aes(x=loc,y=proppercat, group=fraction, fill=fraction)) + geom_bar(stat="identity", position = "dodge") + facet_wrap(~PAU_Cat)+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title="Proportion of PAS by location and delta PAU")
I need to pull in the TSS information so I can look at the distance between the differentially used peaks and by distance .
tss=read.table("../../genome_anotation_data/refseq.ProteinCoding.bed",col.names = c("chrom", "start", "end", "gene", "score", "strand") ,stringsAsFactors = F) %>% mutate(TSS= ifelse(strand=="+", start, end)) %>% select(gene, TSS, strand)
Seperate effect size introns:
PAS base for + strand is end, PAS for neg stand in -
effectsize_TSS= effectsize %>% separate(intron, into=c("chrom", "start", "end", "gene"),sep=":") %>% mutate(fraction=ifelse(deltaPAU < 0, "nuclear", "total")) %>% inner_join(tss, by="gene") %>% mutate(dist2PAS=ifelse(strand=="+", as.numeric(end)-as.numeric(TSS), as.numeric(TSS)-as.numeric(start)))
effectsize_TSS_tot= effectsize_TSS %>% filter(fraction=="total") %>% mutate( PAU_Cat=ifelse(deltaPAU <.1, "<.1", ifelse(deltaPAU >=.1 & deltaPAU <.2, "<.2", ifelse(deltaPAU >=.2 & deltaPAU <.3, "<.3", ifelse(deltaPAU >=.3 & deltaPAU <.4, "<.4", "<.5")))))
effectsize_TSS_nuc=effectsize_TSS %>% filter(fraction=="nuclear") %>% mutate( PAU_Cat=ifelse(deltaPAU >-.1, "<.1", ifelse(deltaPAU <=-.1 & deltaPAU > -.2, "<.2", ifelse(deltaPAU <=-.2 & deltaPAU >-.3, "<.3", ifelse(deltaPAU <=-.3 & deltaPAU >-.4, "<.4", "<.5")))))
effectsize_TSS_cat=as.data.frame(rbind(effectsize_TSS_tot, effectsize_TSS_nuc)) %>% filter(dist2PAS >0)
ggplot(effectsize_TSS_cat, aes(x=log10(dist2PAS), by=fraction, fill=fraction))+ geom_density(alpha=.4) + facet_grid(~PAU_Cat) + labs(title="Distance to TSS for differentialy used PAS")+scale_fill_manual(values=c("deepskyblue3","darkviolet"))
length=read.table("../../genome_anotation_data/refseq.ProteinCoding.bed",col.names = c("chrom", "start", "end", "gene", "score", "strand") ,stringsAsFactors = F) %>% mutate(length=abs(end-start)) %>% mutate(TSS= ifelse(strand=="+", start, end)) %>% select(gene, length,TSS, strand)
effectsize_length= effectsize %>% separate(intron, into=c("chrom", "start", "end", "gene"),sep=":") %>% mutate(fraction=ifelse(deltaPAU < 0, "nuclear", "total")) %>% inner_join(length, by="gene") %>% mutate(PercLength=ifelse(strand=="+", ((as.numeric(end)-as.numeric(TSS))/as.numeric(length)), (1-(as.numeric(start)-as.numeric(TSS))/as.numeric(length))))
effectsize_length_tot= effectsize_length %>% filter(fraction=="total") %>% mutate( PAU_Cat=ifelse(deltaPAU <.1, "<.1", ifelse(deltaPAU >=.1 & deltaPAU <.2, "<.2", ifelse(deltaPAU >=.2 & deltaPAU <.3, "<.3", ifelse(deltaPAU >=.3 & deltaPAU <.4, "<.4", "<.5")))))
effectsize_length_nuc=effectsize_length %>% filter(fraction=="nuclear") %>% mutate( PAU_Cat=ifelse(deltaPAU >-.1, "<.1", ifelse(deltaPAU <=-.1 & deltaPAU > -.2, "<.2", ifelse(deltaPAU <=-.2 & deltaPAU >-.3, "<.3", ifelse(deltaPAU <=-.3 & deltaPAU >-.4, "<.4", "<.5")))))
effectsize_length_cat=as.data.frame(rbind(effectsize_length_tot, effectsize_length_nuc)) %>% filter(PercLength<=1 & PercLength >0)
effectsize_length_catall=as.data.frame(rbind(effectsize_length_tot, effectsize_length_nuc))
ggplot(effectsize_length_cat, aes(x=PercLength, by=fraction, fill=fraction))+ geom_histogram(alpha=.4,bins=10) + facet_grid(~PAU_Cat) + labs(title="Location of differentially used PAS within a gene body ")+scale_fill_manual(values=c("deepskyblue3","darkviolet"))
summary(effectsize_length_catall$PercLength)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-16763.99 0.87 1.03 28.84 1.89 86510.07
summary(effectsize$logef)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.44401 -0.33487 -0.01384 0.00000 0.34328 2.47805
ggplot(effectsize_length_cat, aes(x=PercLength, by=fraction, fill=fraction))+ geom_histogram(,bins=50) + labs(title="Location of differentially used PAS \nwithin a gene body", fill="Fraction", y="Number of PAS", x="Percent of Gene Length")+scale_fill_manual(values=c("deepskyblue3","darkviolet"),labels = c("Nuclear", "Total"))+ theme(legend.position = c(0.1,.9), legend.direction = "horizontal")+ theme(panel.background = element_blank())
Version | Author | Date |
---|---|---|
3e79995 | brimittleman | 2019-06-24 |
ggplot(effectsize_length_cat, aes(x=PercLength, by=fraction, fill=fraction))+ geom_density(alpha=.5) + labs(title="Location of differentially used PAS \nwithin a gene body", fill="Fraction", x="Percent of Gene Length")+scale_fill_manual(values=c("deepskyblue3","darkviolet"),labels = c("Nuclear", "Total"))+ theme(legend.position = c(0.1,.9), legend.direction = "horizontal")+ theme(panel.background = element_blank())
Version | Author | Date |
---|---|---|
3e79995 | brimittleman | 2019-06-24 |
Diff iso gene proportion:
genes_sig=sig %>% separate(cluster,into=c("chr", "gene"), sep=":") %>% group_by(gene) %>% summarise(n=n()) %>% nrow
genes_detlapau= effectSize_highdiffGenes %>% nrow()
testedgenes=read.table("../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC.fc",header = T, stringsAsFactors = F) %>% rownames_to_column("ID") %>% select(ID)%>% separate(ID, into=c("chr", "start", "end", "geneID"),sep=":") %>% separate(geneID, into=c("gene", "loc"),sep="_") %>% group_by(gene) %>% summarise(n=n()) %>% nrow()
notsig=testedgenes-genes_sig
sighothighpau=genes_sig-genes_detlapau
cat=c("NotSig", "SigNotHighPAU", "SigandHighPAU")
values=c(unlist(notsig),unlist(sighothighpau),unlist(genes_detlapau))
difiso_df=as.data.frame(cbind(cat, values))
difiso_df$values=as.numeric(as.character(difiso_df$values))
difiso_df=difiso_df%>% mutate(proportion=values/testedgenes)
ggplot(difiso_df, aes(x="",y=proportion, fill=cat)) + geom_bar(stat="identity")+geom_text(aes(label=values))
Version | Author | Date |
---|---|---|
3e79995 | brimittleman | 2019-06-24 |
slices <- c(notsig, sighothighpau,genes_detlapau)
lbls <- c("No Sig PAS", "At least 1 \nSig PAS", "At least 1 Sig PAS\n High Delta PAU")
pct <- round(slices/sum(slices)*100)
lbls <- paste(lbls, pct, sep="\n ") # add percents to labels
lbls <- paste(lbls,"%",sep="") # ad % to labels
pie(slices, labels = lbls,col=c("Azure2", "Aquamarine1","Darkslateblue"))
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] reshape2_1.4.3 forcats_0.3.0 stringr_1.3.1 dplyr_0.8.0.1
[5] purrr_0.3.2 readr_1.3.1 tidyr_0.8.3 tibble_2.1.1
[9] ggplot2_3.1.1 tidyverse_1.2.1 workflowr_1.4.0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 cellranger_1.1.0 pillar_1.3.1 compiler_3.5.1
[5] git2r_0.25.2 plyr_1.8.4 tools_3.5.1 digest_0.6.18
[9] lubridate_1.7.4 jsonlite_1.6 evaluate_0.12 nlme_3.1-137
[13] gtable_0.2.0 lattice_0.20-38 pkgconfig_2.0.2 rlang_0.3.1
[17] cli_1.0.1 rstudioapi_0.10 yaml_2.2.0 haven_1.1.2
[21] withr_2.1.2 xml2_1.2.0 httr_1.3.1 knitr_1.20
[25] hms_0.4.2 generics_0.0.2 fs_1.2.6 rprojroot_1.3-2
[29] grid_3.5.1 tidyselect_0.2.5 glue_1.3.0 R6_2.3.0
[33] fansi_0.4.0 readxl_1.1.0 rmarkdown_1.10 modelr_0.1.2
[37] magrittr_1.5 whisker_0.3-2 backports_1.1.2 scales_1.0.0
[41] htmltools_0.3.6 rvest_0.3.2 assertthat_0.2.0 colorspace_1.3-2
[45] labeling_0.3 utf8_1.1.4 stringi_1.2.4 lazyeval_0.2.1
[49] munsell_0.5.0 broom_0.5.1 crayon_1.3.4