• Session information

Last updated: 2018-05-26

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 2076ce9

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
    
    Untracked files:
        Untracked:  data/gene_cov/
        Untracked:  data/reads_mapped_three_prime_seq.csv
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 2076ce9 Briana Mittleman 2018-05-26 initial commit, gene level analysis


I will use this analysis to take a look at the initial protein conding gene counts.

library(workflowr)
Loading required package: rmarkdown
This is workflowr version 1.0.1
Run ?workflowr for help getting started
library(ggplot2)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
library(edgeR)
Warning: package 'edgeR' was built under R version 3.4.3
Loading required package: limma
Warning: package 'limma' was built under R version 3.4.3

Imput the data that was created from my coding gene rule in the snakefile.

N_18486_cov= read.table("../data/gene_cov/YL-SP-18486-N_S10_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))

T_18486_cov= read.table("../data/gene_cov/YL-SP-18486-T_S9_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18497_cov= read.table("../data/gene_cov/YL-SP-18497-N_S12_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18497_cov= read.table("../data/gene_cov/YL-SP-18497-T_S11_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18500_cov= read.table("../data/gene_cov/YL-SP-18500-N_S20_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18500_cov= read.table("../data/gene_cov/YL-SP-18500-T_S19_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18505_cov= read.table("../data/gene_cov/YL-SP-18505-N_S2_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18505_cov= read.table("../data/gene_cov/YL-SP-18505-T_S1_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18508_cov= read.table("../data/gene_cov/YL-SP-18508-N_S6_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18508_cov= read.table("../data/gene_cov/YL-SP-18508-T_S5_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18853_cov= read.table("../data/gene_cov/YL-SP-18853-N_S32_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18853_cov= read.table("../data/gene_cov/YL-SP-18853-T_S31_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18870_cov= read.table("../data/gene_cov/YL-SP-18870-N_S24_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18870_cov= read.table("../data/gene_cov/YL-SP-18870-T_S23_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19128_cov= read.table("../data/gene_cov/YL-SP-19128-N_S30_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19128_cov= read.table("../data/gene_cov/YL-SP-19128-T_S29_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19141_cov= read.table("../data/gene_cov/YL-SP-19141-N_S18_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19141_cov= read.table("../data/gene_cov/YL-SP-19141-T_S17_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19193_cov= read.table("../data/gene_cov/YL-SP-19193-N_S22_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19193_cov= read.table("../data/gene_cov/YL-SP-19193-T_S21_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19209_cov= read.table("../data/gene_cov/YL-SP-19209-N_S16_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19209_cov= read.table("../data/gene_cov/YL-SP-19209-T_S15_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19223_cov= read.table("../data/gene_cov/YL-SP-19223-N_S8_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19223_cov= read.table("../data/gene_cov/YL-SP-19233-T_S7_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19225_cov= read.table("../data/gene_cov/YL-SP-19225-N_S28_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19225_cov= read.table("../data/gene_cov/YL-SP-19225-T_S27_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19238_cov= read.table("../data/gene_cov/YL-SP-19238-N_S4_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19238_cov= read.table("../data/gene_cov/YL-SP-19238-T_S3_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19239_cov= read.table("../data/gene_cov/YL-SP-19239-N_S14_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19239_cov= read.table("../data/gene_cov/YL-SP-19239-T_S13_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19257_cov= read.table("../data/gene_cov/YL-SP-19257-N_S26_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19257_cov= read.table("../data/gene_cov/YL-SP-19257-T_S25_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))

Look at the total libraries first:

total_count_matrix=cbind(T_18486_cov$count, T_18497_cov$count, T_18500_cov$count, T_18505_cov$count, T_18508_cov$count, T_18853_cov$count, T_18870_cov$count, T_19128_cov$count, T_19141_cov$count, T_19193_cov$count, T_19209_cov$count, T_19223_cov$count, T_19225_cov$count, T_19238_cov$count,T_19239_cov$count, T_19257_cov$count)

#gene length vector
gene_length=T_18497_cov %>% mutate(genelength=end-start) %>% select(genelength) 
gene_length_vec=as.vector(gene_length$genelength)
total_count_matrix_cpm=cpm(total_count_matrix, log=T, gene.length=gene_length_vec )

Plot distribution of log2 cpm for total libraries.

plotDensities(total_count_matrix_cpm, legend = "bottomright", main="Pre-filtering total fraction")

Look at gene distributions for the nuclear fractions.

nuclear_count_matrix=cbind(N_18486_cov$count, N_18497_cov$count, N_18500_cov$count, N_18505_cov$count, N_18508_cov$count, N_18853_cov$count, N_18870_cov$count, N_19128_cov$count, N_19141_cov$count, N_19193_cov$count, N_19209_cov$count, N_19223_cov$count, N_19225_cov$count, N_19238_cov$count,N_19239_cov$count, N_19257_cov$count)

#cpm  

nuclear_count_matrix_cpm=cpm(nuclear_count_matrix, log=T, gene.length=gene_length_vec )

Plot distribution of log2 cpm for nuclear libraries.

plotDensities(nuclear_count_matrix_cpm, legend = "bottomright", main="Pre-filtering nuclear fraction")

The distributions look similar. I can filter based on alll of the libraries. I will filter for 1cpm in more than half of the libraries. After this I can ask how many genes are detected in each library.

all_count_matrix=cbind(T_18486_cov$count, T_18497_cov$count, T_18500_cov$count, T_18505_cov$count, T_18508_cov$count, T_18853_cov$count, T_18870_cov$count, T_19128_cov$count, T_19141_cov$count, T_19193_cov$count, T_19209_cov$count, T_19223_cov$count, T_19225_cov$count, T_19238_cov$count,T_19239_cov$count, T_19257_cov$count,N_18486_cov$count, N_18497_cov$count, N_18500_cov$count, N_18505_cov$count, N_18508_cov$count, N_18853_cov$count, N_18870_cov$count, N_19128_cov$count, N_19141_cov$count, N_19193_cov$count, N_19209_cov$count, N_19223_cov$count, N_19225_cov$count, N_19238_cov$count,N_19239_cov$count, N_19257_cov$count )


#cpm  

all_count_matrix_cpm=cpm(all_count_matrix, log=T, gene.length=gene_length_vec )
plotDensities(all_count_matrix_cpm, legend = "bottomright", main="Pre-filtering all libraries")

Filter:

keep.exprs=rowSums(all_count_matrix_cpm>1) >= 16
all_count_matrix_cpm_filt= all_count_matrix_cpm[keep.exprs,]

plotDensities(all_count_matrix_cpm_filt, legend = "bottomright", main="Post-filtering all libraries")

Post filtering we are left with 12461 protein coding genes.

Session information

sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] bindrcpp_0.2    edgeR_3.20.9    limma_3.34.9    dplyr_0.7.4    
[5] ggplot2_2.2.1   workflowr_1.0.1 rmarkdown_1.8.5

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.15      compiler_3.4.2    pillar_1.1.0     
 [4] git2r_0.21.0      plyr_1.8.4        bindr_0.1        
 [7] R.methodsS3_1.7.1 R.utils_2.6.0     tools_3.4.2      
[10] digest_0.6.14     evaluate_0.10.1   tibble_1.4.2     
[13] gtable_0.2.0      lattice_0.20-35   pkgconfig_2.0.1  
[16] rlang_0.1.6       yaml_2.1.16       stringr_1.2.0    
[19] knitr_1.18        locfit_1.5-9.1    rprojroot_1.3-2  
[22] grid_3.4.2        glue_1.2.0        R6_2.2.2         
[25] magrittr_1.5      whisker_0.3-2     backports_1.1.2  
[28] scales_0.5.0      htmltools_0.3.6   assertthat_0.2.0 
[31] colorspace_1.3-2  stringi_1.1.6     lazyeval_0.2.1   
[34] munsell_0.4.3     R.oo_1.22.0      



This reproducible R Markdown analysis was created with workflowr 1.0.1