Last updated: 2018-05-26
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: data/gene_cov/
Untracked: data/reads_mapped_three_prime_seq.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 2076ce9 | Briana Mittleman | 2018-05-26 | initial commit, gene level analysis |
I will use this analysis to take a look at the initial protein conding gene counts.
library(workflowr)
Loading required package: rmarkdown
This is workflowr version 1.0.1
Run ?workflowr for help getting started
library(ggplot2)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(edgeR)
Warning: package 'edgeR' was built under R version 3.4.3
Loading required package: limma
Warning: package 'limma' was built under R version 3.4.3
Imput the data that was created from my coding gene rule in the snakefile.
N_18486_cov= read.table("../data/gene_cov/YL-SP-18486-N_S10_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18486_cov= read.table("../data/gene_cov/YL-SP-18486-T_S9_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18497_cov= read.table("../data/gene_cov/YL-SP-18497-N_S12_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18497_cov= read.table("../data/gene_cov/YL-SP-18497-T_S11_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18500_cov= read.table("../data/gene_cov/YL-SP-18500-N_S20_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18500_cov= read.table("../data/gene_cov/YL-SP-18500-T_S19_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18505_cov= read.table("../data/gene_cov/YL-SP-18505-N_S2_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18505_cov= read.table("../data/gene_cov/YL-SP-18505-T_S1_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18508_cov= read.table("../data/gene_cov/YL-SP-18508-N_S6_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18508_cov= read.table("../data/gene_cov/YL-SP-18508-T_S5_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18853_cov= read.table("../data/gene_cov/YL-SP-18853-N_S32_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18853_cov= read.table("../data/gene_cov/YL-SP-18853-T_S31_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_18870_cov= read.table("../data/gene_cov/YL-SP-18870-N_S24_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_18870_cov= read.table("../data/gene_cov/YL-SP-18870-T_S23_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19128_cov= read.table("../data/gene_cov/YL-SP-19128-N_S30_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19128_cov= read.table("../data/gene_cov/YL-SP-19128-T_S29_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19141_cov= read.table("../data/gene_cov/YL-SP-19141-N_S18_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19141_cov= read.table("../data/gene_cov/YL-SP-19141-T_S17_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19193_cov= read.table("../data/gene_cov/YL-SP-19193-N_S22_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19193_cov= read.table("../data/gene_cov/YL-SP-19193-T_S21_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19209_cov= read.table("../data/gene_cov/YL-SP-19209-N_S16_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19209_cov= read.table("../data/gene_cov/YL-SP-19209-T_S15_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19223_cov= read.table("../data/gene_cov/YL-SP-19223-N_S8_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19223_cov= read.table("../data/gene_cov/YL-SP-19233-T_S7_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19225_cov= read.table("../data/gene_cov/YL-SP-19225-N_S28_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19225_cov= read.table("../data/gene_cov/YL-SP-19225-T_S27_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19238_cov= read.table("../data/gene_cov/YL-SP-19238-N_S4_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19238_cov= read.table("../data/gene_cov/YL-SP-19238-T_S3_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19239_cov= read.table("../data/gene_cov/YL-SP-19239-N_S14_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19239_cov= read.table("../data/gene_cov/YL-SP-19239-T_S13_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
N_19257_cov= read.table("../data/gene_cov/YL-SP-19257-N_S26_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
T_19257_cov= read.table("../data/gene_cov/YL-SP-19257-T_S25_R1_001-genecov.txt", stringsAsFactors = FALSE, header = F, col.names = c("chr", "start", "end", "gene", "score", "strand", "count" ))
Look at the total libraries first:
total_count_matrix=cbind(T_18486_cov$count, T_18497_cov$count, T_18500_cov$count, T_18505_cov$count, T_18508_cov$count, T_18853_cov$count, T_18870_cov$count, T_19128_cov$count, T_19141_cov$count, T_19193_cov$count, T_19209_cov$count, T_19223_cov$count, T_19225_cov$count, T_19238_cov$count,T_19239_cov$count, T_19257_cov$count)
#gene length vector
gene_length=T_18497_cov %>% mutate(genelength=end-start) %>% select(genelength)
gene_length_vec=as.vector(gene_length$genelength)
total_count_matrix_cpm=cpm(total_count_matrix, log=T, gene.length=gene_length_vec )
Plot distribution of log2 cpm for total libraries.
plotDensities(total_count_matrix_cpm, legend = "bottomright", main="Pre-filtering total fraction")
Look at gene distributions for the nuclear fractions.
nuclear_count_matrix=cbind(N_18486_cov$count, N_18497_cov$count, N_18500_cov$count, N_18505_cov$count, N_18508_cov$count, N_18853_cov$count, N_18870_cov$count, N_19128_cov$count, N_19141_cov$count, N_19193_cov$count, N_19209_cov$count, N_19223_cov$count, N_19225_cov$count, N_19238_cov$count,N_19239_cov$count, N_19257_cov$count)
#cpm
nuclear_count_matrix_cpm=cpm(nuclear_count_matrix, log=T, gene.length=gene_length_vec )
Plot distribution of log2 cpm for nuclear libraries.
plotDensities(nuclear_count_matrix_cpm, legend = "bottomright", main="Pre-filtering nuclear fraction")
The distributions look similar. I can filter based on alll of the libraries. I will filter for 1cpm in more than half of the libraries. After this I can ask how many genes are detected in each library.
all_count_matrix=cbind(T_18486_cov$count, T_18497_cov$count, T_18500_cov$count, T_18505_cov$count, T_18508_cov$count, T_18853_cov$count, T_18870_cov$count, T_19128_cov$count, T_19141_cov$count, T_19193_cov$count, T_19209_cov$count, T_19223_cov$count, T_19225_cov$count, T_19238_cov$count,T_19239_cov$count, T_19257_cov$count,N_18486_cov$count, N_18497_cov$count, N_18500_cov$count, N_18505_cov$count, N_18508_cov$count, N_18853_cov$count, N_18870_cov$count, N_19128_cov$count, N_19141_cov$count, N_19193_cov$count, N_19209_cov$count, N_19223_cov$count, N_19225_cov$count, N_19238_cov$count,N_19239_cov$count, N_19257_cov$count )
#cpm
all_count_matrix_cpm=cpm(all_count_matrix, log=T, gene.length=gene_length_vec )
plotDensities(all_count_matrix_cpm, legend = "bottomright", main="Pre-filtering all libraries")
Filter:
keep.exprs=rowSums(all_count_matrix_cpm>1) >= 16
all_count_matrix_cpm_filt= all_count_matrix_cpm[keep.exprs,]
plotDensities(all_count_matrix_cpm_filt, legend = "bottomright", main="Post-filtering all libraries")
Post filtering we are left with 12461 protein coding genes.
sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2 edgeR_3.20.9 limma_3.34.9 dplyr_0.7.4
[5] ggplot2_2.2.1 workflowr_1.0.1 rmarkdown_1.8.5
loaded via a namespace (and not attached):
[1] Rcpp_0.12.15 compiler_3.4.2 pillar_1.1.0
[4] git2r_0.21.0 plyr_1.8.4 bindr_0.1
[7] R.methodsS3_1.7.1 R.utils_2.6.0 tools_3.4.2
[10] digest_0.6.14 evaluate_0.10.1 tibble_1.4.2
[13] gtable_0.2.0 lattice_0.20-35 pkgconfig_2.0.1
[16] rlang_0.1.6 yaml_2.1.16 stringr_1.2.0
[19] knitr_1.18 locfit_1.5-9.1 rprojroot_1.3-2
[22] grid_3.4.2 glue_1.2.0 R6_2.2.2
[25] magrittr_1.5 whisker_0.3-2 backports_1.1.2
[28] scales_0.5.0 htmltools_0.3.6 assertthat_0.2.0
[31] colorspace_1.3-2 stringi_1.1.6 lazyeval_0.2.1
[34] munsell_0.4.3 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.0.1