Last updated: 2019-03-12

Checks: 6 0

Knit directory: threeprimeseq/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/perm_QTL_trans_noMP_5percov/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  KalistoAbundance18486.txt
    Untracked:  analysis/4suDataIGV.Rmd
    Untracked:  analysis/DirectionapaQTL.Rmd
    Untracked:  analysis/EmpDistforOverlaps.Rmd
    Untracked:  analysis/EvaleQTLs.Rmd
    Untracked:  analysis/YL_QTL_test.Rmd
    Untracked:  analysis/groSeqAnalysis.Rmd
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  analysis/verifybam_dubs.Rmd
    Untracked:  code/PeaksToCoverPerReads.py
    Untracked:  code/strober_pc_pve_heatmap_func.R
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/AllPeak_counts/
    Untracked:  data/ApaQTLs/
    Untracked:  data/ApaQTLs_otherPhen/
    Untracked:  data/ChromHmmOverlap/
    Untracked:  data/DistTXN2Peak_genelocAnno/
    Untracked:  data/FeatureoverlapPeaks/
    Untracked:  data/GM12878.chromHMM.bed
    Untracked:  data/GM12878.chromHMM.txt
    Untracked:  data/GWAS_overlap/
    Untracked:  data/LianoglouLCL/
    Untracked:  data/LocusZoom/
    Untracked:  data/LocusZoom_Unexp/
    Untracked:  data/LocusZoom_proc/
    Untracked:  data/MatchedSnps/
    Untracked:  data/NucSpecQTL/
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/PeakCounts/
    Untracked:  data/PeakCounts_noMP_5perc/
    Untracked:  data/PeakCounts_noMP_genelocanno/
    Untracked:  data/PeakUsage/
    Untracked:  data/PeakUsage_noMP/
    Untracked:  data/PeakUsage_noMP_GeneLocAnno/
    Untracked:  data/PeaksUsed/
    Untracked:  data/PeaksUsed_noMP_5percCov/
    Untracked:  data/PolyA_DB/
    Untracked:  data/QTL_overlap/
    Untracked:  data/RNAkalisto/
    Untracked:  data/RefSeq_annotations/
    Untracked:  data/Replicates_usage/
    Untracked:  data/Signal_Loc/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/UnderstandPeaksQC/
    Untracked:  data/WASP_STAT/
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/YL_QTL_test/
    Untracked:  data/apaExamp/
    Untracked:  data/apaExamp_proc/
    Untracked:  data/apaQTL_examp_noMP/
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/diff_iso_GeneLocAnno/
    Untracked:  data/diff_iso_proc/
    Untracked:  data/diff_iso_trans/
    Untracked:  data/eQTLs_Lietal/
    Untracked:  data/ensemble_to_genename.txt
    Untracked:  data/example_gene_peakQuant/
    Untracked:  data/explainProtVar/
    Untracked:  data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
    Untracked:  data/first50lines_closest.txt
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/molPheno_noMP/
    Untracked:  data/mol_overlap/
    Untracked:  data/mol_pheno/
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nom_QTL_trans/
    Untracked:  data/nuc6up/
    Untracked:  data/nuc_10up/
    Untracked:  data/other_qtls/
    Untracked:  data/pQTL_otherphen/
    Untracked:  data/pacbio_cov/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/peaks4DT/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
    Untracked:  data/perm_QTL_diffWindow/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/perm_QTL_trans/
    Untracked:  data/perm_QTL_trans_filt/
    Untracked:  data/protAndAPAAndExplmRes.Rda
    Untracked:  data/protAndAPAlmRes.Rda
    Untracked:  data/protAndExpressionlmRes.Rda
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  data/threePrimeSeqMetaData.csv
    Untracked:  data/threePrimeSeqMetaData55Ind.txt
    Untracked:  data/threePrimeSeqMetaData55Ind.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
    Untracked:  output/LZ/
    Untracked:  output/deeptools_plots/
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf

Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/CompareLianoglouData.Rmd
    Modified:   analysis/NewPeakPostMP.Rmd
    Modified:   analysis/PeakToXper.Rmd
    Modified:   analysis/apaQTLoverlapGWAS.Rmd
    Modified:   analysis/characterize_apaQTLs.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explainpQTLs.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/fixBWChromNames.Rmd
    Modified:   analysis/flash2mash.Rmd
    Modified:   analysis/initialPacBioQuant.Rmd
    Modified:   analysis/mispriming_approach.Rmd
    Modified:   analysis/overlapMolQTL.Rmd
    Modified:   analysis/overlapMolQTL.opposite.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/peakQCPPlots.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/pipeline_55Ind.Rmd
    Modified:   analysis/swarmPlots_QTLs.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   analysis/test.smash.Rmd
    Modified:   analysis/understandPeaks.Rmd
    Modified:   analysis/unexplainedeQTL_analysis.Rmd
    Modified:   code/Snakefile

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html 0537a72 Briana Mittleman 2019-03-11 Build site.
Rmd 88e8b7d Briana Mittleman 2019-03-11 try with permuted values

Look for the snps that are QTLs in the nuclear fraction but not the total fraction. To do this I want to plot the association in the total fraction vs. the association in the nuclear fraction. I can look for snps that fall off the 1:1 line towards the nuclear fraction.

I need to look for the snps tested in both fractions. The nominal results are in:

  • /project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Nuclear.fixed.pheno_5perc.fc.gz.qqnorm_allNomRes.txt
  • /project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Total.fixed.pheno_5perc.fc.gz.qqnorm_allNomRes.txt

This will not include the 18982867 more assocaitions in nucelar. I can only look at those that are tested in both analyses.

Format of file: * peakID * snp * dist * pval * slope (effect size)

I can make a dictionary with gene:snp:peak as the keys and a dictionary for the values- the inner dictionary will have the fraction as the key and the pvalue as the value

totalandnuclear_commonassociation.py

totRes=open("/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Total.fixed.pheno_5perc.fc.gz.qqnorm_allNomRes.txt","r")
nucRes=open("/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Nuclear.fixed.pheno_5perc.fc.gz.qqnorm_allNomRes.txt", "r")  


outfile=open("/project2/gilad/briana/threeprimeseq/data/NucSpecQTL/TotNucRes_overlapassociations.txt", "w")

resDict={}
for ln in totRes:
    gene=ln.split()[0].split(":")[-1].split("_")[0]
    peak=ln.split()[0].split(":")[-1].split("_")[-1]
    snp=ln.split()[1]
    id=gene + ":" + peak + ":" + snp
    pval=ln.split()[3]
    resDict[id]={}
    resDict[id]["Total"]=pval

for ln in nucRes:
    gene=ln.split()[0].split(":")[-1].split("_")[0]
    peak=ln.split()[0].split(":")[-1].split("_")[-1]
    snp=ln.split()[1]
    id=gene + ":" + peak + ":" + snp
    pval=ln.split()[3]
    if id in resDict.keys():
        resDict[id]["Nuclear"]=pval
    else:
        continue   
        
#now i have a double dictionary. i need to write it out. i want id, the total pval, then the nuc pval  
for outer, inner in resDict.items():
    id=outer
    outPval=[]
    for key in inner:
        outPval.append(inner[key])
    print(outPval)
    if(len(outPval))==2:
         outfile.write("%s\t%s\t%s\n"%(id, outPval[0], outPval[1]))


outfile.close()        
        

run it: run_totalandnuclear_commonassociation.sh

#!/bin/bash

#SBATCH --job-name=run_totalandnuclear_commonassociation
#SBATCH --account=pi-yangili1
#SBATCH --time=5:00:00
#SBATCH --output=run_totalandnuclear_commonassociation.out
#SBATCH --error=run_totalandnuclear_commonassociation.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env


python totalandnuclear_commonassociation.py

Tot assoc: 105456802 nuclear assoc: 124439669 common: 94176434 This means 41 percent are common. This means in the make phenotpye step, different genes and peaks are removed. Results: /project2/gilad/briana/threeprimeseq/data/NucSpecQTL/TotNucRes_overlapassociations.txt

makeTotalNucAssocPlot.R

library(tidyverse)
library(data.table)

file=fread("../data/NucSpecQTL/TotNucRes_overlapassociations.txt", col.names =c("ID","Total", "Nuclear"))

cor_plot=ggplot(file, aes(x=-log10(Total), y=-log10(Nuclear))) + geom_point() + geom_density2d(na.rm = TRUE, size = 1, colour = 'red') + labs(title="Common Peak/Snp/ID associations Total and Nuclear", x="-log10(Total Pval)", y="-log10(Nuclear Pval)") + geom_smooth(aes(x=-log10(Total),y=-log10(Nuclear)),method = "lm")


#print(summary(lm(data=file, -log10(Total) ~ -log10(Nuclear))))

#cor_plot

#ggsave(plot, "/project2/gilad/briana/threeprimeseq/output/TotalvNucPavalCommonAssoc.png")  

in python with pyplotlib:


import matplotlib.pyplot as plt
import numpy as np


inF=open("/project2/gilad/briana/threeprimeseq/data/NucSpecQTL/TotNucRes_overlapassociations.txt", "r")


total=[]
nuclear=[]
for ln in inF:
  loca, tot, nuc = ln.split()
  total.append(float(tot))
  nuclear.append(float(nuc))

  
np.asarray(total)
np.asarray(nuclear)
diff =np.subtract(total, nuclear)

plt.plot(total,nuclear)
plt.savefig("/project2/gilad/briana/threeprimeseq/output/TotalvNucPavalCommonAssoc.png")

run_makeTotalNucAssocPlot.sh

#!/bin/bash

#SBATCH --job-name=run_makeTotalNucAssocPlot
#SBATCH --account=pi-yangili1
#SBATCH --time=5:00:00
#SBATCH --output=run_makeTotalNucAssocPlot.out
#SBATCH --error=run_makeTotalNucAssocPlot.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env

Rscript makeTotalNucAssocPlot.R

These are too many values: I need to use the permuted. this will jsut be the pvalue for the same peak:gene combo

try with perm

totalandnuclear_commonassociationPerm.py

totRes=open("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno.NoMP_sm_quant.Total.fixed.pheno_5perc_permRes.txt","r")
nucRes=open("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno.NoMP_sm_quant.Nuclear.fixed.pheno_5perc_permRes.txt", "r")  


outfile=open("/project2/gilad/briana/threeprimeseq/data/NucSpecQTL/TotNucRes_Permoverlapassociations.txt", "w")

resDict={}
for ln in totRes:
    gene=ln.split()[0].split(":")[-1].split("_")[0]
    peak=ln.split()[0].split(":")[-1].split("_")[-1]
    id=gene + ":" + peak 
    pval=ln.split()[-2]
    resDict[id]={}
    resDict[id]["Total"]=pval

for ln in nucRes:
    gene=ln.split()[0].split(":")[-1].split("_")[0]
    peak=ln.split()[0].split(":")[-1].split("_")[-1]
    id=gene + ":" + peak
    pval=ln.split()[-2]
    if id in resDict.keys():
        resDict[id]["Nuclear"]=pval
    else:
        continue   
        
#now i have a double dictionary. i need to write it out. i want id, the total pval, then the nuc pval  
for outer, inner in resDict.items():
    id=outer
    outPval=[]
    for key in inner:
        outPval.append(inner[key])
    print(outPval)
    if(len(outPval))==2:
         outfile.write("%s\t%s\t%s\n"%(id, outPval[0], outPval[1]))


outfile.close()        
        
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0       ✔ purrr   0.3.1  
✔ tibble  2.0.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.4.0  
✔ readr   1.3.1       ✔ forcats 0.4.0  
Warning: package 'tibble' was built under R version 3.5.2
Warning: package 'tidyr' was built under R version 3.5.2
Warning: package 'purrr' was built under R version 3.5.2
Warning: package 'dplyr' was built under R version 3.5.2
Warning: package 'stringr' was built under R version 3.5.2
Warning: package 'forcats' was built under R version 3.5.2
── Conflicts ──────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(data.table)
Warning: package 'data.table' was built under R version 3.5.2

Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':

    between, first, last
The following object is masked from 'package:purrr':

    transpose
library(cowplot)
Warning: package 'cowplot' was built under R version 3.5.2

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave
file=fread("../data/NucSpecQTL/TotNucRes_Permoverlapassociations.txt", col.names =c("ID","Total", "Nuclear"))

cor_plot=ggplot(file, aes(x=Total, y=Nuclear)) + geom_point() + geom_density2d(na.rm = TRUE, size = 1, colour = 'red') + labs(title="Common Peak associations Total and Nuclear") 

cor_plot
Warning: Removed 20 rows containing missing values (geom_point).

Version Author Date
0537a72 Briana Mittleman 2019-03-11

This is similar to what was happening in the nominal case.

I think I need to plot just the total in nuclaer and nuclear in total. this way i can see the outliers.

names=c("SNP", "peak", "pval")
NucQTLinTot=read.table("../data/QTL_overlap/NucQTLs_inTotFractionRes.txt", stringsAsFactors = F, col.names = names)
TotQTLinNuc=read.table("../data/QTL_overlap/TotQTLs_inNucFractionRes.txt", stringsAsFactors = F, col.names = names)

QTL_names= c("pid", "nvar", "shape1", "shape2", "dummy", "SNP", "dist", "npval", "slope", "ppval", "bpval", "bh")
NucQTL=read.table("../data/ApaQTLs/NuclearapaQTLs.GeneLocAnno.noMP.5perc.10FDR.txt", col.names = QTL_names, stringsAsFactors = F) %>% separate(pid, into=c("chr", "start","end", "peakID"), sep=":") %>% separate(peakID, into=c("gene", "strand", "peak"), sep="_") %>% select(SNP, peak, ppval)

TotQTL=read.table("../data/ApaQTLs/TotalapaQTLs.GeneLocAnno.noMP.5perc.10FDR.txt", col.names = QTL_names, stringsAsFactors = F) %>% separate(pid, into=c("chr", "start","end", "peakID"), sep=":") %>% separate(peakID, into=c("gene", "strand", "peak"), sep="_") %>% select(SNP, peak, ppval)

Join these:

TotQTL_bothfrac= TotQTL %>% inner_join(TotQTLinNuc, by=c("SNP", "peak"))
colnames(TotQTL_bothfrac)= c("SNP", "peak", "Total", "Nuclear")
NucQTL_bothfrac= NucQTL %>% inner_join(NucQTLinTot, by=c("SNP", "peak"))
colnames(NucQTL_bothfrac)= c("SNP", "peak", "Nuclear", "Total")

All qtls together:

allQTL=TotQTL_bothfrac %>% bind_rows(NucQTL_bothfrac)
ggplot(allQTL, aes(x=Nuclear, y=Total)) + geom_point()

The pvalues are not consistent. I need to get the original pvalues from the nominal files.

nominal associations for each QTL:

getNominal4QTLs.py


nucQTLs="/project2/gilad/briana/threeprimeseq/data/ApaQTLs/Nuclear.apaQTLs.sort.bed"  
totQTLs="/project2/gilad/briana/threeprimeseq/data/ApaQTLs/Total.apaQTLs.sort.bed"  

nucNom="/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Nuclear.fixed.pheno_5perc.fc.gz.qqnorm_allNomRes.txt"
totNom="/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Total.fixed.pheno_5perc.fc.gz.qqnorm_allNomRes.txt"

outtot="/project2/gilad/briana/threeprimeseq/data/NucSpecQTL/TotQTLs_inTotFractionRes.txt"
outnuc="/project2/gilad/briana/threeprimeseq/data/NucSpecQTL/NucQTLs_inNucFractionRes.txt"


def sameFract(inRes, inQTL, out):
    fout=open(out, "w")
    qtl_dic={}
    #SNP is key, peak is value
    for ln in open(inQTL,"r"):
        snp=ln.split()[2]
        chrom=ln.split()[0]
        peak=ln.split()[3].split(":")[0]
        qtl=str(chrom) + ":" + str(snp)
        if qtl not in qtl_dic.keys():
            qtl_dic[qtl]=[peak]
        else: 
            qtl_dic[qtl].append(peak)
    #print(qtl_dic)
    for ln in open(inRes, "r"):
        pval=ln.split()[3]
        snp=ln.split()[1]
        peak=ln.split()[0].split(":")[3].split("_")[-1]
        if snp in qtl_dic.keys():
            if peak in qtl_dic[snp]:
                fout.write("%s\t%s\t%s\n"%(snp, peak, pval))   
    fout.close()
    

sameFract(nucNom, nucQTLs,outnuc)  
sameFract(totNom, totQTLs, outtot)  
                

run_getNominal4QTLs.sh

#!/bin/bash

#SBATCH --job-name=run_getNominal4QTLs
#SBATCH --account=pi-yangili1
#SBATCH --time=5:00:00
#SBATCH --output=run_getNominal4QTLs.out
#SBATCH --error=run_getNominal4QTLs.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env

python getNominal4QTLs.py

I now want to plot the total vs nuclear nominal pvalues for the nuclear QTLs.

colnames(NucQTLinTot)=c("SNP", "peak", "totalPval")

NucQTLinNuc=read.table("../data/NucSpecQTL/NucQTLs_inNucFractionRes.txt", col.names = c("SNP", "peak","nuclearPval"), stringsAsFactors = F)


NucQTL_all= NucQTLinTot %>% inner_join(NucQTLinNuc, by=c("SNP", "peak"))

summary(lm(data=NucQTL_all,-log10(totalPval) ~ -log10(nuclearPval)))

Call:
lm(formula = -log10(totalPval) ~ -log10(nuclearPval), data = NucQTL_all)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.1638 -2.7988 -0.9846  1.5394 17.9462 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   4.1767     0.1719    24.3   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.824 on 494 degrees of freedom
bothPval_nucqtl=ggplot(NucQTL_all, aes(x=-log10(totalPval), y=-log10(nuclearPval))) + geom_point() + geom_density2d(na.rm = TRUE, size = 1, colour = 'red') + geom_smooth(aes(x=-log10(totalPval),y=-log10(nuclearPval)),method = "lm") + labs(title="Nominal Pvalues for Nuclear APA qtls")
#+geom_text(aes(label=SNP),hjust=0, vjust=0)

bothPval_nucqtl

ggplot(NucQTL_all, aes(x=totalPval, y=nuclearPval)) + geom_point() + labs(title="Nominal Pval results for Nuclear QTLs") + geom_density2d(na.rm = TRUE, size = 1, colour = 'red')  +geom_vline(xintercept=.05)

nNucQTLNotSigTot= NucQTL_all %>% filter(totalPval>.05) %>% nrow()
nNucQTLNotSigTot
[1] 118

For Total QTLs:

colnames(TotQTLinNuc)=c("SNP", "peak", "nuclearPval")

TotQTLinTot=read.table("../data/NucSpecQTL/TotQTLs_inTotFractionRes.txt", col.names = c("SNP", "peak","totalPval"), stringsAsFactors = F)


TotQTL_all= TotQTLinNuc %>% inner_join(TotQTLinTot, by=c("SNP", "peak"))

summary(lm(data=NucQTL_all,-log10(nuclearPval) ~ -log10(totalPval)))

Call:
lm(formula = -log10(nuclearPval) ~ -log10(totalPval), data = NucQTL_all)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4270 -1.9985 -1.1978  0.9371 15.8122 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   7.1208     0.1385   51.41   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.082 on 494 degrees of freedom
bothPval_totqtl=ggplot(TotQTL_all, aes(x=-log10(nuclearPval), y=-log10(totalPval))) + geom_point() + geom_density2d(na.rm = TRUE, size = 1, colour = 'red') + geom_smooth(aes(x=-log10(nuclearPval),y=-log10(totalPval)),method = "lm") + labs(title="Nominal Pvalues for Total APA qtls")
#+geom_text(aes(label=SNP),hjust=0, vjust=0)

bothPval_totqtl

bothFracPlots=plot_grid(bothPval_nucqtl,bothPval_totqtl)
bothFracPlots

ggsave(bothFracPlots, file="../output/plots/NominalPvalcondQTL.png", height=7, width=12 )
ggplot(TotQTL_all, aes(x=nuclearPval, y=totalPval)) + geom_point() + labs(title="Nominal Pval results for Total QTLs") + geom_density2d(na.rm = TRUE, size = 1, colour = 'red') 

nTotQTLNotSigNuc= TotQTL_all %>% filter(nuclearPval>.05) %>% nrow()
nTotQTLNotSigNuc
[1] 39

Is the difference significant. More likely to have nuclear specific qlts?

phyper(118, 495, 272, 157, lower.tail = F)
[1] 0.0005207115

Plot for this:

compareSpecQTL=as.data.frame(cbind(fraction=c("Total QTL", "Total QTL","Nuclear QTL","Nuclear QTL"), SigInOther=c("No","Yes","No","Yes"),Value=c(.14,.86 ,.24,.76)))

compareSpecQTL$Value=as.numeric(as.character(compareSpecQTL$Value))
qtls_oppfrac=ggplot(compareSpecQTL,aes(x=fraction, fill=SigInOther, y=Value))  + geom_bar(stat="identity") +scale_fill_manual(values=c("red","grey")) + labs(y="Proportion", title="QTLs by nominal significance in other fraction")  + annotate("text", label="p < .0005", y=1.2, x=1.5) + geom_segment(aes(x=1.1, xend=1.9, y=1.1, yend=1.1))

qtls_oppfrac

ggsave(qtls_oppfrac, file="../output/plots/QTLsSiginOppFraction.png")
Saving 7 x 5 in image


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_0.9.4     data.table_1.12.0 forcats_0.4.0    
 [4] stringr_1.4.0     dplyr_0.8.0.1     purrr_0.3.1      
 [7] readr_1.3.1       tidyr_0.8.3       tibble_2.0.1     
[10] ggplot2_3.1.0     tidyverse_1.2.1  

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5 xfun_0.5         haven_2.1.0      lattice_0.20-38 
 [5] colorspace_1.4-0 generics_0.0.2   htmltools_0.3.6  yaml_2.2.0      
 [9] rlang_0.3.1      pillar_1.3.1     glue_1.3.0       withr_2.1.2     
[13] modelr_0.1.4     readxl_1.3.0     plyr_1.8.4       munsell_0.5.0   
[17] gtable_0.2.0     workflowr_1.2.0  cellranger_1.1.0 rvest_0.3.2     
[21] evaluate_0.13    labeling_0.3     knitr_1.21       broom_0.5.1     
[25] Rcpp_1.0.0       scales_1.0.0     backports_1.1.3  jsonlite_1.6    
[29] fs_1.2.6         hms_0.4.2        digest_0.6.18    stringi_1.3.1   
[33] grid_3.5.1       rprojroot_1.3-2  cli_1.0.1        tools_3.5.1     
[37] magrittr_1.5     lazyeval_0.2.1   crayon_1.3.4     whisker_0.3-2   
[41] pkgconfig_2.0.2  MASS_7.3-51.1    xml2_1.2.0       lubridate_1.7.4 
[45] assertthat_0.2.0 rmarkdown_1.11   httr_1.4.0       rstudioapi_0.9.0
[49] R6_2.4.0         nlme_3.1-137     git2r_0.24.0     compiler_3.5.1