Last updated: 2019-03-15

Checks: 6 0

Knit directory: threeprimeseq/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/perm_QTL_trans_noMP_5percov/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  KalistoAbundance18486.txt
    Untracked:  analysis/4suDataIGV.Rmd
    Untracked:  analysis/DirectionapaQTL.Rmd
    Untracked:  analysis/EvaleQTLs.Rmd
    Untracked:  analysis/YL_QTL_test.Rmd
    Untracked:  analysis/groSeqAnalysis.Rmd
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  analysis/verifybam_dubs.Rmd
    Untracked:  code/PeaksToCoverPerReads.py
    Untracked:  code/strober_pc_pve_heatmap_func.R
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/AllPeak_counts/
    Untracked:  data/ApaQTLs/
    Untracked:  data/ApaQTLs_otherPhen/
    Untracked:  data/ChromHmmOverlap/
    Untracked:  data/DistTXN2Peak_genelocAnno/
    Untracked:  data/EmpiricalDists/
    Untracked:  data/FeatureoverlapPeaks/
    Untracked:  data/GM12878.chromHMM.bed
    Untracked:  data/GM12878.chromHMM.txt
    Untracked:  data/GWAS_overlap/
    Untracked:  data/LianoglouLCL/
    Untracked:  data/LocusZoom/
    Untracked:  data/LocusZoom_Unexp/
    Untracked:  data/LocusZoom_proc/
    Untracked:  data/MatchedSnps/
    Untracked:  data/NucSpecQTL/
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/PeakCounts/
    Untracked:  data/PeakCounts_noMP_5perc/
    Untracked:  data/PeakCounts_noMP_genelocanno/
    Untracked:  data/PeakUsage/
    Untracked:  data/PeakUsage_noMP/
    Untracked:  data/PeakUsage_noMP_GeneLocAnno/
    Untracked:  data/PeaksUsed/
    Untracked:  data/PeaksUsed_noMP_5percCov/
    Untracked:  data/PolyA_DB/
    Untracked:  data/QTL_overlap/
    Untracked:  data/RNAdecay/
    Untracked:  data/RNAkalisto/
    Untracked:  data/RefSeq_annotations/
    Untracked:  data/Replicates_usage/
    Untracked:  data/Signal_Loc/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/UnderstandPeaksQC/
    Untracked:  data/WASP_STAT/
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/YL_QTL_test/
    Untracked:  data/apaExamp/
    Untracked:  data/apaExamp_proc/
    Untracked:  data/apaQTL_examp_noMP/
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/diff_iso_GeneLocAnno/
    Untracked:  data/diff_iso_proc/
    Untracked:  data/diff_iso_trans/
    Untracked:  data/eQTL_inAPA/
    Untracked:  data/eQTLs_Lietal/
    Untracked:  data/ensemble_to_genename.txt
    Untracked:  data/example_gene_peakQuant/
    Untracked:  data/explainProtVar/
    Untracked:  data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
    Untracked:  data/first50lines_closest.txt
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/molPheno_noMP/
    Untracked:  data/mol_overlap/
    Untracked:  data/mol_pheno/
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nom_QTL_trans/
    Untracked:  data/nuc6up/
    Untracked:  data/nuc_10up/
    Untracked:  data/other_qtls/
    Untracked:  data/pQTL_inAPA/
    Untracked:  data/pQTL_otherphen/
    Untracked:  data/pacbio_cov/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/peaks4DT/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
    Untracked:  data/perm_QTL_diffWindow/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/perm_QTL_trans/
    Untracked:  data/perm_QTL_trans_filt/
    Untracked:  data/protAndAPAAndExplmRes.Rda
    Untracked:  data/protAndAPAlmRes.Rda
    Untracked:  data/protAndExpressionlmRes.Rda
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  data/threePrimeSeqMetaData.csv
    Untracked:  data/threePrimeSeqMetaData55Ind.txt
    Untracked:  data/threePrimeSeqMetaData55Ind.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
    Untracked:  output/LZ/
    Untracked:  output/deeptools_plots/
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf

Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/CompareLianoglouData.Rmd
    Modified:   analysis/EmpDistforOverlaps.Rmd
    Modified:   analysis/NewPeakPostMP.Rmd
    Modified:   analysis/NuclearSpecQTL.Rmd
    Modified:   analysis/PeakToXper.Rmd
    Modified:   analysis/apaQTLoverlapGWAS.Rmd
    Modified:   analysis/characterize_apaQTLs.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explainpQTLs.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/fixBWChromNames.Rmd
    Modified:   analysis/flash2mash.Rmd
    Modified:   analysis/initialPacBioQuant.Rmd
    Modified:   analysis/mispriming_approach.Rmd
    Modified:   analysis/overlapMolQTL.Rmd
    Modified:   analysis/overlapMolQTL.opposite.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/peakQCPPlots.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/pipeline_55Ind.Rmd
    Modified:   analysis/swarmPlots_QTLs.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   analysis/test.smash.Rmd
    Modified:   analysis/understandPeaks.Rmd
    Modified:   analysis/unexplainedeQTL_analysis.Rmd
    Modified:   code/Snakefile

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 5d6ac93 Briana Mittleman 2019-03-15 add decay analysis

I want to ask if more nuclear specific transcripts compared to total is associated with RNA decay.

library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0       ✔ purrr   0.3.1  
✔ tibble  2.0.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.4.0  
✔ readr   1.3.1       ✔ forcats 0.4.0  
Warning: package 'tibble' was built under R version 3.5.2
Warning: package 'tidyr' was built under R version 3.5.2
Warning: package 'purrr' was built under R version 3.5.2
Warning: package 'dplyr' was built under R version 3.5.2
Warning: package 'stringr' was built under R version 3.5.2
Warning: package 'forcats' was built under R version 3.5.2
── Conflicts ──────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
decay=read.table(file = "../data/RNAdecay/tr_decay_table_norm.txt", header=T, stringsAsFactors = F) %>% select(gene_id,contains("RNAdecay"))

Change gene names:

geneNames=read.table("../data/ensemble_to_genename.txt", sep="\t", col.names = c('gene_id', 'GeneName', 'source' ),stringsAsFactors = F)
decay_geneNames=decay %>% inner_join(geneNames, by="gene_id") %>% select(GeneName, contains("RNAdecay"))

decay_geneNames_long=melt(decay_geneNames,id.vars = "GeneName", value.name = "RNA_Decay", variable.name = "Decay_Ind") %>% separate(Decay_Ind, into=c("type", "ind"), sep="_") %>% mutate(Individual=paste("X" , ind, sep="")) %>% select(GeneName, Individual, RNA_Decay)

Prepare apa value:

For each gene I need to get nuclear counts/nuclear + counts

I want to use the filtered 5% peak counts.

/project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Nuclear.fixed.5perc.fc

/project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Total.fixed.5perc.fc

Make a dictionary from the individuals in the first line. I want them to have NA##### format

makepheno4decayComparison.py

nucCounts="/project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Nuclear.fixed.5perc.fc"

totCounts="/project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Total.fixed.5perc.fc"

#top key is individual
OutPutdic={}


#problem keeping ind connected to column

Try in R

Nuclear first:

NucAPA=read.table("../data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Nuclear.fixed.5perc.fc", stringsAsFactors = F, header = T) %>% select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peak", "chrom", "start", "end", "strand", "GeneName"), sep=":") %>% select(-chrom, -start, -end, -strand)

NucApaMelt=melt(NucAPA, id.vars =c( "peak", "GeneName"), value.name="count", variable.name="Ind") %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_") %>% select(peak, GeneName, Individual, count)


NucAPA_bygene= NucApaMelt %>% group_by(GeneName,Individual) %>% summarise(NuclearSum=sum(count))

Total first:

TotAPA=read.table("../data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Total.fixed.5perc.fc", stringsAsFactors = F, header = T) %>% select(-Chr, -Start, -End, -Strand, -Length) %>% separate(Geneid, into=c("peak", "chrom", "start", "end", "strand", "GeneName"), sep=":") %>% select(-chrom, -start, -end, -strand)

TotApaMelt=melt(TotAPA, id.vars =c( "peak", "GeneName"), value.name="count", variable.name="Ind")  %>% separate(Ind, into=c('Individual', 'fraction') ,sep="_") %>% select(peak, GeneName, Individual, count)


TotAPA_bygene=TotApaMelt %>% group_by(GeneName,Individual) %>% summarise(TotalSum=sum(count))

Sum these together:

Apa_all=TotAPA_bygene %>% inner_join(NucAPA_bygene, by=c("GeneName", "Individual")) %>% filter(NuclearSum>0 |TotalSum>0 )  %>% mutate(APAvalue=NuclearSum/(NuclearSum+TotalSum)) %>% select(GeneName, Individual, APAvalue)

Join ith decay

APAandDecay=decay_geneNames_long %>% inner_join(Apa_all, by=c('GeneName', 'Individual'))


ngenes=APAandDecay %>% select(GeneName) %>% unique() %>% nrow()
ngenes
[1] 7888

plot it:

summary(lm(data=APAandDecay, APAvalue~RNA_Decay))

Call:
lm(formula = APAvalue ~ RNA_Decay, data = APAandDecay)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.46459 -0.15044 -0.01135  0.13392  0.58497 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.4373568  0.0003228 1354.83   <2e-16 ***
RNA_Decay   -0.0257699  0.0019255  -13.38   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2017 on 398991 degrees of freedom
Multiple R-squared:  0.0004487, Adjusted R-squared:  0.0004462 
F-statistic: 179.1 on 1 and 398991 DF,  p-value: < 2.2e-16
APAdecalAllindplot=ggplot(APAandDecay, aes(y=APAvalue, x=RNA_Decay)) + geom_point(aes(col=Individual)) +geom_density2d(na.rm = TRUE, size = 1, colour = 'red') + geom_smooth(method="lm") + annotate("text", label="Estimated Slope= -.026", y=1, x=-1) + labs(title="Relationship between RNA decay \nand APA fraction counts", x=" mRNA decay rate/h", y= "Nuclear/(Nuclear + Total)")

APAdecalAllindplot

ggsave(APAdecalAllindplot, file="../output/plots/APAandRNADecay_allInd.png", height = 7, width=15)

1 individual:

APAandDecay_18498= APAandDecay %>% filter(Individual=="X18498")

APAdecay_18498=ggplot(APAandDecay_18498, aes(y=APAvalue, x=RNA_Decay)) + geom_point() +geom_density2d(na.rm = TRUE, size = 1, colour = 'red') + annotate("text", label="Estimated Slope= -.133", y=0, x=-.8) + geom_smooth(method="lm")+ labs(title="Relationship between RNA decay \nand APA fraction counts", x=" mRNA decay rate/h", y= "Nuclear/(Nuclear + Total)")



APAdecay_18498

ggsave(APAdecay_18498, file="../output/plots/APAandRNADecay_18498.png")
Saving 7 x 5 in image
summary(lm(data=APAandDecay_18498, APAvalue~RNA_Decay))

Call:
lm(formula = APAvalue ~ RNA_Decay, data = APAandDecay_18498)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.63123 -0.17159  0.00659  0.17479  0.47142 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.581252   0.002667 217.933  < 2e-16 ***
RNA_Decay   -0.133867   0.016938  -7.903 3.09e-15 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2324 on 7766 degrees of freedom
Multiple R-squared:  0.007979,  Adjusted R-squared:  0.007851 
F-statistic: 62.46 on 1 and 7766 DF,  p-value: 3.094e-15


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reshape2_1.4.3  forcats_0.4.0   stringr_1.4.0   dplyr_0.8.0.1  
 [5] purrr_0.3.1     readr_1.3.1     tidyr_0.8.3     tibble_2.0.1   
 [9] ggplot2_3.1.0   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0       cellranger_1.1.0 plyr_1.8.4       pillar_1.3.1    
 [5] compiler_3.5.1   git2r_0.24.0     workflowr_1.2.0  tools_3.5.1     
 [9] digest_0.6.18    lubridate_1.7.4  jsonlite_1.6     evaluate_0.13   
[13] nlme_3.1-137     gtable_0.2.0     lattice_0.20-38  pkgconfig_2.0.2 
[17] rlang_0.3.1      cli_1.0.1        rstudioapi_0.9.0 yaml_2.2.0      
[21] haven_2.1.0      xfun_0.5         withr_2.1.2      xml2_1.2.0      
[25] httr_1.4.0       knitr_1.21       hms_0.4.2        generics_0.0.2  
[29] fs_1.2.6         rprojroot_1.3-2  grid_3.5.1       tidyselect_0.2.5
[33] glue_1.3.0       R6_2.4.0         readxl_1.3.0     rmarkdown_1.11  
[37] modelr_0.1.4     magrittr_1.5     whisker_0.3-2    MASS_7.3-51.1   
[41] backports_1.1.3  scales_1.0.0     htmltools_0.3.6  rvest_0.3.2     
[45] assertthat_0.2.0 colorspace_1.4-0 labeling_0.3     stringi_1.3.1   
[49] lazyeval_0.2.1   munsell_0.5.0    broom_0.5.1      crayon_1.3.4