Last updated: 2018-09-26
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(12345) 
The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: fa7f707 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/.DS_Store
Untracked files:
    Untracked:  analysis/PeakToGeneAssignment.Rmd
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/RNAkalisto/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nuc6up/
    Untracked:  data/other_qtls/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf
Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   code/Snakefile
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | fa7f707 | Briana Mittleman | 2018-09-26 | ribo QTL code | 
I will use this analysis file to recall the other molecular QTLs using the same VCF files I am using for the APAqtls. This is important because we want to overlap QTLs called with the same genotype information.
processed (WASP+normalized) 4sU-seq (30m)
processed (WASP+normalized) 4sU-seq (60m)
processed (WASP+normalized) RNA-seq (Pickrell)
processed (WASP+normalized) RNA-seq (GEUVADIS)
processed (WASP+normalized) ribo-seq
LiftOver from (Battle et al., 2015) protein
I am download the processed data from http://eqtl.uchicago.edu/jointLCL/ and putting it in /project2/gilad/briana/threeprimeseq/data/molecular_phenos.
The protein file is already in the format needed for fastQTL. I need to change the headers to include the NA before the individuals.I will need to use:
bgzip phenotypes.bed && tabix -p bed phenotypes.bed.gz
To index the file for the program.
I will create a python script that adds the NA to the individuals.
def main(inF, outF):
  infile= open(inF, "r")
  fout = open(outF,'w')
  for i, line in enumerate(infile):
      if i == 0:
          linelist=line.split()
          for i, item in enumerate(linelist):
              if i > 3:
                  linelist[i]="NA" + item
          fout.write("  ".join(linelist) + '\n' )
      else:
         fout.write(line)
  fout.close()
if __name__ == "__main__":
    import sys
    inF = sys.argv[1]
    outF= sys.argv[2]
    main(inF, outF)
    Next step is to get the PCs to use as covariates in the analysis.
https://qtltools.github.io/qtltools/
This package is in /project/gilad/software/midway1/ and was installed by Peter Carbaneto from the RCC. I can add this to my path with:
export PATH=/project/gilad/software/midway1/qtltools-1.0:$PATHI am going to use the QTLtools pca function. I need to run this on midway1.
QTLtools pca --bed /project2/gilad/briana/threeprimeseq/data/molecular_phenos/fastqtl_qqnorm_ribo_phase2.fixed.bed.gz --scale --center --out /project2/gilad/briana/threeprimeseq/data/molecular_phenos/fastqtl_qqnorm_ribo_phase2.fixed.bed.PC.txt
#keep top 5 PCs for analysis
head -n 6 fastqtl_qqnorm_ribo_phase2.fixed.bed.PC.txt.pca > fastqtl_qqnorm_ribo_phase2.fixed.bed.5PCs.txt.pca I then make a samples file wit the head of the PCA file. Remove 19192,19193 from sample file I need to make 1 vcf file with all of the chroms to run this.
riboQTL.nom.sh
#!/bin/bash
#SBATCH --job-name=riboQTL.nom
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=riboQTL.nom.out
#SBATCH --error=riboQTL.nom.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
for i in $(seq 1 30)
do
/home/brimittleman/software/bin/FastQTL/bin/fastQTL.static --vcf /project2/gilad/briana/YRI_geno_hg19/allChrom.dose.filt.vcf.gz  --cov /project2/gilad/briana/threeprimeseq/data/molecular_phenos/fastqtl_qqnorm_ribo_phase2.fixed.bed.5PCs_tab.txt.pca --bed /project2/gilad/briana/threeprimeseq/data/molecular_phenos/fastqtl_qqnorm_ribo_phase2.fixed.noChr.bed.gz --out /project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_ribo_phase2.fixed.nominal.out --chunk $i 30  --window 5e4 --include-samples /project2/gilad/briana/threeprimeseq/data/molecular_phenos/samples.txt
done
problem chr in pheno file and not in vcf
 sed 's/^chr//'  fastqtl_qqnorm_ribo_phase2.fixed.bed > fastqtl_qqnorm_ribo_phase2.fixed.noChr.bedtry changing /project2/gilad/briana/threeprimeseq/data/molecular_phenos/fastqtl_qqnorm_ribo_phase2.fixed.bed.5PCs.txt.pca first part of header to id like in the FastQTL site. and use tr to make it tap deliminated from " "
riboQTL.perm.sh
#!/bin/bash
#SBATCH --job-name=riboQTL.perm
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=riboQTL.perm.out
#SBATCH --error=riboQTL.perm.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
for i in $(seq 1 30)
do
/home/brimittleman/software/bin/FastQTL/bin/fastQTL.static --permute 1000  --vcf /project2/gilad/briana/YRI_geno_hg19/allChrom.dose.filt.vcf.gz  --cov /project2/gilad/briana/threeprimeseq/data/molecular_phenos/fastqtl_qqnorm_ribo_phase2.fixed.bed.5PCs_tab.txt.pca --bed /project2/gilad/briana/threeprimeseq/data/molecular_phenos/fastqtl_qqnorm_ribo_phase2.fixed.noChr.bed.gz --out /project2/gilad/briana/threeprimeseq/data/molecular_QTLs/perm/fastqtl_qqnorm_ribo_phase2.fixed.perm.chunk$i.out --chunk $i 30  --window 5e4 --include-samples /project2/gilad/briana/threeprimeseq/data/molecular_phenos/samples.txt
donesessionInfo()R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
loaded via a namespace (and not attached):
 [1] workflowr_1.1.1   Rcpp_0.12.18      digest_0.6.16    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.23.0      magrittr_1.5      evaluate_0.11    
[10] stringi_1.2.4     whisker_0.3-2     R.oo_1.22.0      
[13] R.utils_2.7.0     rmarkdown_1.10    tools_3.5.1      
[16] stringr_1.3.1     yaml_2.2.0        compiler_3.5.1   
[19] htmltools_0.3.6   knitr_1.20       
This reproducible R Markdown analysis was created with workflowr 1.1.1