Last updated: 2018-10-08

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 0c2fffb

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/genometrack_figs.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/39indQC.Rmd
        Modified:   analysis/PeakToGeneAssignment.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 0c2fffb Briana Mittleman 2018-10-08 add p1 to plots and create histograms
    html 7369f8e Briana Mittleman 2018-10-02 Build site.
    Rmd f66679b Briana Mittleman 2018-10-02 overlap plots at peak level


In this analysis I want to use the resuls from the total and nuclear APA qtl calling. I will ask if conditioning on a nuclear QTL increases the signal in the total QTL and vice versa. I will start with the significant snp-peak pairs from the permuted files. I will then overlap with the nominal pvalues from the other fraction. I will do this similar to how I did in the overlaMolQTL analysis. However in this analysis I do not have the multiple peaks per gene problem that I have when I overlap the pvalues. I can map the same peak to snp pair.

Due to file size I will do this only with the permuted files.

  • Load Libraries
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
 library(qvalue)
  • Load Data

Permuted

permTot=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt",header=T ,stringsAsFactors = F)
permNuc=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt",header=T, stringsAsFactors = F)

Nominal

nomnames=c("pid", "sid", "dist", "npval", "slope")
#nomTot=read_table("../data/nom_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_NomRes.txt", col_names=nomnames, col_types = c(col_character(), col_character(), col_double(), col_double(), col_double()))
#nomNuc=read_table("../data/nom_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_NomRes.txt", col_names=nomnames, col_types = c(col_character(), col_character(), col_double(), col_double(), col_double()))

Make QQplots

overlapQTLplot_totalQTL=function(cut, plotfile){

    #helper functions  
    sigsnp=function(cutoff){
      permTot$bh=p.adjust(permTot$bpval, method="fdr")
      file_sig=permTot %>% filter(-log10(bh)> cutoff) %>% select(sid)
      print(paste("Sig snps=", nrow(file_sig), sep=" "))
      return(file_sig)
    }
    randomsnps=function(SigSnpList){
      nsnp=nrow(SigSnpList)
      randomSnpDF= permTot %>% sample_n(nsnp) %>% arrange(sid) %>% select(sid)
      return(randomSnpDF)
    }
    top_Nuclear=function(snp_list){
      filt_nuc=permNuc %>% semi_join(snp_list, by="sid") %>% group_by(sid) %>% add_tally() %>% ungroup() %>% mutate(corrPval=bpval)
      filt_nuc_top= filt_nuc %>% group_by(sid) %>% top_n(-1, corrPval)
      print(paste("Nuclear overlap=", nrow(filt_nuc_top), sep=" "))
      return(filt_nuc_top)
    }
    makeQQ=function(test, baseline){
      plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$corrPval), ylab="Observed", xlab="Expected", main="Significant Total QTLs- nuclear Pval")
      points(sort(-log10(runif(nrow(test)))), sort(-log10(test$corrPval)), col= alpha("Red"))
      abline(0,1)
      return(plot)
    }
  
    TL=sigsnp(cut)
    BL=randomsnps(TL)
    #top snps test and base total
    topN_T=top_Nuclear(TL)
    topN_B=top_Nuclear(BL)
    #plot Total
    png(plotfile)
    totalPlot=makeQQ(topN_T,topN_B)
    dev.off()

}

overlapQTLplot_totalQTL(1, "../output/plots/TotalQTLinNuclear.png")
[1] "Sig snps= 118"
[1] "Nuclear overlap= 31"
[1] "Nuclear overlap= 9"
quartz_off_screen 
                2 
overlapQTLplot_totalQTL=function(cut, plotfile){

    #helper functions  
    sigsnp=function(cutoff){
      permNuc$bh=p.adjust(permNuc$bpval, method="fdr")
      file_sig=permNuc %>% filter(-log10(bh)> cutoff) %>% select(sid)
      print(paste("Sig snps=", nrow(file_sig), sep=" "))
      return(file_sig)
    }
    randomsnps=function(SigSnpList){
      nsnp=nrow(SigSnpList)
      randomSnpDF= permNuc %>% sample_n(nsnp) %>% arrange(sid) %>% select(sid)
      return(randomSnpDF)
    }
    top_Total=function(snp_list){
      filt_tot=permTot %>% semi_join(snp_list, by="sid") %>% group_by(sid) %>% add_tally() %>% ungroup() %>% mutate(corrPval=bpval)
      filt_tot_top= filt_tot %>% group_by(sid) %>% top_n(-1, corrPval)
      print(paste("Total overlap=", nrow(filt_tot_top), sep=" "))
      return(filt_tot_top)
    }
    makeQQ=function(test, baseline){
      plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$corrPval), ylab="Observed", xlab="Expected", main="Significant Nuclear QTLs- Total Pval")
      points(sort(-log10(runif(nrow(test)))), sort(-log10(test$corrPval)), col= alpha("Red"))
      abline(0,1)
      return(plot)
    }
  
    TL=sigsnp(cut)
    BL=randomsnps(TL)
    #top snps test and base total
    topN_T=top_Total(TL)
    topN_B=top_Total(BL)
    #plot Total
    png(plotfile)
    totalPlot=makeQQ(topN_T,topN_B)
    dev.off()

}
overlapQTLplot_totalQTL(1, "../output/plots/NuclearQTLinTotal.png")
[1] "Sig snps= 880"
[1] "Total overlap= 85"
[1] "Total overlap= 48"
quartz_off_screen 
                2 

I should change this to focus on peak. I can say give me the genes with significant QTLs in total or nuclear then look at the pvalues for those peaks in the other file. As I did before, I am going to work on all of the functions seperatly then put them together.

Get the peaks with significant QTLs, and the same number of random peaks.

sigpeak=function(cutoff){
    permNuc$bh=p.adjust(permNuc$bpval, method="fdr")
    file_sig=permNuc %>% filter(-log10(bh)> cutoff) %>%separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% select(peak)
    print(paste("Sig peaks=", nrow(file_sig), sep=" "))
    return(file_sig)
    }
    
x=sigpeak(1)

randompeak=function(SigSnpList){
  nsnp=nrow(SigSnpList)
  randomPeakDF= permNuc %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% select(peak)
  return(randomPeakDF)
}

y=randompeak(x)

I can now get the top pvalue for each of these using the total permuted pval.

Peak_overlap=function(snp_list){
      filt_tot=permTot %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
      print(paste("Total overlap=", nrow(filt_tot), sep=" "))
      return(filt_tot)
}


#run on real sig peaks and random peaks  
Test=Peak_overlap(x)
base=Peak_overlap(y)

Plot:

  makeQQ_peak=function(test, baseline){
      plot=qqplot(-log10(runif(nrow(test))), -log10(test$bpval), ylab="Observed", xlab="Expected", main="Peaks with Significant QTLs in Nuc \n pvalues in Tot")
      points(sort(-log10(runif(nrow(baseline)))), sort(-log10(baseline$bpval)), col=alpha("Red"))
      abline(0,1)
      return(plot)
}
plot=makeQQ_peak(Test,base)
SigNucPeakOverlapTot=function(cutoff, plotfile){
    sigpeak=function(cutoff){
      permNuc$bh=p.adjust(permNuc$bpval, method="fdr")
      file_sig=permNuc %>% filter(-log10(bh)> cutoff) %>%separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
      print(paste("Sig peaks=", nrow(file_sig), sep=" "))
      return(file_sig)
      }
  
  randompeak=function(SigSnpList){
    nsnp=nrow(SigSnpList)
    randomPeakDF= permNuc %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
    return(randomPeakDF)
  }
  Peak_overlap=function(snp_list){
        filt_tot=permTot %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
        print(paste("Total overlap=", nrow(filt_tot), sep=" "))
        return(filt_tot)
  }

  makeQQ_peak=function(test, baseline){
      p0test=pi0est(test$bpval)
      p1test=1-p0test$pi0
      plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$bpval), ylab="Observed", xlab="Expected", main="Peaks with Significant QTLs in Nuclear \n pvalues in Total")
      points(sort(-log10(runif(nrow(test)))), sort(-log10(test$bpval)), col= alpha("Red"))
      abline(0,1)
      text(1.5,3, paste("pi_1=", round(p1test, digit=3), sep=" "))
      return(plot)
  }
  
  
testPeaks=sigpeak(1)
basePeaks=randompeak(testPeaks)
testSet=Peak_overlap(testPeaks)
baselineSet=Peak_overlap(basePeaks)
png(plotfile)
plot=makeQQ_peak(testSet,baselineSet )
dev.off()
}

SigNucPeakOverlapTot(1, "../output/plots/SigNucPeakTotpval.png")
[1] "Sig peaks= 880"
[1] "Total overlap= 353"
[1] "Total overlap= 348"
quartz_off_screen 
                2 
SigTotPeakOverlapNuc=function(cutoff, plotfile){
    sigpeak=function(cutoff){
      permTot$bh=p.adjust(permTot$bpval, method="fdr")
      file_sig=permTot %>% filter(-log10(bh)> cutoff) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
      print(paste("Sig peaks=", nrow(file_sig), sep=" "))
      return(file_sig)
      }
  
  randompeak=function(SigSnpList){
    nsnp=nrow(SigSnpList)
    randomPeakDF= permTot %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
    return(randomPeakDF)
  }
  Peak_overlap=function(snp_list){
        filt_nuc=permNuc %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
        print(paste("Nuclear overlap=", nrow(filt_nuc), sep=" "))
        return(filt_nuc)
  }

  makeQQ_peak=function(test, baseline){
      p0test=pi0est(test$bpval)
      p1test=1-p0test$pi0
      plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$bpval), ylab="Observed", xlab="Expected", main="Peaks with Significant QTLs in Total \n pvalues in Nuclear")
      points(sort(-log10(runif(nrow(test)))), sort(-log10(test$bpval)), col= alpha("Red"))
      abline(0,1)
      text(2,3, paste("pi_1=", round(p1test, digit=3), sep=" "))
      return(plot)
  }
  
  
testPeaks=sigpeak(1)
basePeaks=randompeak(testPeaks)
testSet=Peak_overlap(testPeaks)
baselineSet=Peak_overlap(basePeaks)
png(plotfile)
plot=makeQQ_peak(testSet,baselineSet )
dev.off()
}

SigTotPeakOverlapNuc(1, "../output/plots/SigTotPeakNucpval.png")
[1] "Sig peaks= 118"
[1] "Nuclear overlap= 69"
[1] "Nuclear overlap= 70"
quartz_off_screen 
                2 

Try historgram:

SigNucPeakOverlapTot_hist=function(cutoff, plotfile){
    sigpeak=function(cutoff){
      permNuc$bh=p.adjust(permNuc$bpval, method="fdr")
      file_sig=permNuc %>% filter(-log10(bh)> cutoff) %>%separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
      print(paste("Sig peaks=", nrow(file_sig), sep=" "))
      return(file_sig)
      }
  
  randompeak=function(SigSnpList){
    nsnp=nrow(SigSnpList)
    randomPeakDF= permNuc %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
    return(randomPeakDF)
  }
  Peak_overlap=function(snp_list){
        filt_tot=permTot %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
        print(paste("Total overlap=", nrow(filt_tot), sep=" "))
        return(filt_tot)
  }

  makeQQ_peak=function(test, baseline){
      p0test=pi0est(test$bpval)
      p1test=1-p0test$pi0
      plot=hist(test$bpval, breaks=20, main="Peaks with Significant QTLs in Nuclear \n Pvalues in Total", xlab="Total APAqtl Pvalue")
      text(.8,140, paste("pi_1=", round(p1test, digit=3), sep=" "))
      return(plot)
  }
  
  
testPeaks=sigpeak(1)
basePeaks=randompeak(testPeaks)
testSet=Peak_overlap(testPeaks)
baselineSet=Peak_overlap(basePeaks)
png(plotfile)
plot=makeQQ_peak(testSet,baselineSet )
dev.off()
}

SigNucPeakOverlapTot_hist(1, "../output/plots/SigNucPeakTotpval_hist.png")
[1] "Sig peaks= 880"
[1] "Total overlap= 353"
[1] "Total overlap= 352"
quartz_off_screen 
                2 
SigTotPeakOverlapNuc_hist=function(cutoff, plotfile){
    sigpeak=function(cutoff){
      permTot$bh=p.adjust(permTot$bpval, method="fdr")
      file_sig=permTot %>% filter(-log10(bh)> cutoff) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
      print(paste("Sig peaks=", nrow(file_sig), sep=" "))
      return(file_sig)
      }
  
  randompeak=function(SigSnpList){
    nsnp=nrow(SigSnpList)
    randomPeakDF= permTot %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
    return(randomPeakDF)
  }
  Peak_overlap=function(snp_list){
        filt_nuc=permNuc %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
        print(paste("Nuclear overlap=", nrow(filt_nuc), sep=" "))
        return(filt_nuc)
  }

  makeQQ_peak=function(test, baseline){
      p0test=pi0est(test$bpval)
      p1test=1-p0test$pi0
      plot=hist(test$bpval, breaks=20, main="Peaks with Significant QTLs in Total \n Pvalues in Nuclear",xlab="Nuclear APAqtl Pvalue")
      text(.8,40, paste("pi_1=", round(p1test, digit=3), sep=" "))
      return(plot)
  }
  
  
testPeaks=sigpeak(1)
basePeaks=randompeak(testPeaks)
testSet=Peak_overlap(testPeaks)
baselineSet=Peak_overlap(basePeaks)
png(plotfile)
plot=makeQQ_peak(testSet,baselineSet )
dev.off()
}

SigTotPeakOverlapNuc_hist(1, "../output/plots/SigTotPeakNucpval_hist.png")
[1] "Sig peaks= 118"
[1] "Nuclear overlap= 69"
[1] "Nuclear overlap= 60"
quartz_off_screen 
                2 

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2  qvalue_2.12.0   workflowr_1.1.1 reshape2_1.4.3 
 [5] forcats_0.3.0   stringr_1.3.1   dplyr_0.7.6     purrr_0.2.5    
 [9] readr_1.1.1     tidyr_0.8.1     tibble_1.4.2    ggplot2_3.0.0  
[13] tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  splines_3.5.1     haven_1.1.2      
 [4] lattice_0.20-35   colorspace_1.3-2  htmltools_0.3.6  
 [7] yaml_2.2.0        rlang_0.2.2       R.oo_1.22.0      
[10] pillar_1.3.0      glue_1.3.0        withr_2.1.2      
[13] R.utils_2.7.0     modelr_0.1.2      readxl_1.1.0     
[16] bindr_0.1.1       plyr_1.8.4        munsell_0.5.0    
[19] gtable_0.2.0      cellranger_1.1.0  rvest_0.3.2      
[22] R.methodsS3_1.7.1 evaluate_0.11     knitr_1.20       
[25] broom_0.5.0       Rcpp_0.12.19      scales_1.0.0     
[28] backports_1.1.2   jsonlite_1.5      hms_0.4.2        
[31] digest_0.6.17     stringi_1.2.4     grid_3.5.1       
[34] rprojroot_1.3-2   cli_1.0.1         tools_3.5.1      
[37] magrittr_1.5      lazyeval_0.2.1    crayon_1.3.4     
[40] whisker_0.3-2     pkgconfig_2.0.2   xml2_1.2.0       
[43] lubridate_1.7.4   assertthat_0.2.0  rmarkdown_1.10   
[46] httr_1.3.1        rstudioapi_0.8    R6_2.3.0         
[49] nlme_3.1-137      git2r_0.23.0      compiler_3.5.1   



This reproducible R Markdown analysis was created with workflowr 1.1.1