Last updated: 2019-02-28
Checks: 6 0
Knit directory: threeprimeseq/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: data/perm_QTL_trans_noMP_5percov/
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/4suDataIGV.Rmd
Untracked: analysis/DirectionapaQTL.Rmd
Untracked: analysis/EvaleQTLs.Rmd
Untracked: analysis/YL_QTL_test.Rmd
Untracked: analysis/fixBWChromNames.Rmd
Untracked: analysis/groSeqAnalysis.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: analysis/verifybam_dubs.Rmd
Untracked: code/PeaksToCoverPerReads.py
Untracked: code/strober_pc_pve_heatmap_func.R
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/AllPeak_counts/
Untracked: data/ApaQTLs/
Untracked: data/ApaQTLs_otherPhen/
Untracked: data/ChromHmmOverlap/
Untracked: data/DistTXN2Peak_genelocAnno/
Untracked: data/GM12878.chromHMM.bed
Untracked: data/GM12878.chromHMM.txt
Untracked: data/LianoglouLCL/
Untracked: data/LocusZoom/
Untracked: data/LocusZoom_Unexp/
Untracked: data/LocusZoom_proc/
Untracked: data/MatchedSnps/
Untracked: data/NuclearApaQTLs.txt
Untracked: data/PeakCounts/
Untracked: data/PeakCounts_noMP_5perc/
Untracked: data/PeakCounts_noMP_genelocanno/
Untracked: data/PeakUsage/
Untracked: data/PeakUsage_noMP/
Untracked: data/PeakUsage_noMP_GeneLocAnno/
Untracked: data/PeaksUsed/
Untracked: data/PeaksUsed_noMP_5percCov/
Untracked: data/QTL_overlap/
Untracked: data/RNAkalisto/
Untracked: data/RefSeq_annotations/
Untracked: data/Replicates_usage/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/UnderstandPeaksQC/
Untracked: data/WASP_STAT/
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/YL_QTL_test/
Untracked: data/apaExamp/
Untracked: data/apaExamp_proc/
Untracked: data/apaQTL_examp_noMP/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/diff_iso_GeneLocAnno/
Untracked: data/diff_iso_proc/
Untracked: data/diff_iso_trans/
Untracked: data/eQTLs_Lietal/
Untracked: data/ensemble_to_genename.txt
Untracked: data/example_gene_peakQuant/
Untracked: data/explainProtVar/
Untracked: data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/molPheno_noMP/
Untracked: data/mol_overlap/
Untracked: data/mol_pheno/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/nuc_10up/
Untracked: data/other_qtls/
Untracked: data/pQTL_otherphen/
Untracked: data/pacbio_cov/
Untracked: data/peakPerRefSeqGene/
Untracked: data/peaks4DT/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
Untracked: data/perm_QTL_diffWindow/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/perm_QTL_trans_filt/
Untracked: data/protAndAPAAndExplmRes.Rda
Untracked: data/protAndAPAlmRes.Rda
Untracked: data/protAndExpressionlmRes.Rda
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: data/threePrimeSeqMetaData.csv
Untracked: data/threePrimeSeqMetaData55Ind.txt
Untracked: data/threePrimeSeqMetaData55Ind.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
Untracked: output/LZ/
Untracked: output/deeptools_plots/
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/CompareLianoglouData.Rmd
Modified: analysis/NewPeakPostMP.Rmd
Modified: analysis/apaQTLoverlapGWAS.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/coloc_apaQTLs_protQTLs.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diffIsoAnalysisNewMapping.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explainpQTLs.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/flash2mash.Rmd
Modified: analysis/mispriming_approach.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlapMolQTL.opposite.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/peakQCPPlots.Rmd
Modified: analysis/peakQCplotsSTARprocessing.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/pipeline_55Ind.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: analysis/test.smash.Rmd
Modified: analysis/understandPeaks.Rmd
Modified: analysis/unexplainedeQTL_analysis.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | ea34b3c | Briana Mittleman | 2019-02-28 | add nuclear spec peaks |
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.4.0
✔ readr 1.1.1 ✔ forcats 0.3.0
Warning: package 'stringr' was built under R version 3.5.2
── Conflicts ─────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(workflowr)
This is workflowr version 1.2.0
Run ?workflowr for help getting started
merge net seq data:
/project2/gilad/briana/Net-seq/Net-seq3/data/sort/*-sort.bam
/project2/gilad/briana/Net-seq/Net-seq3/data/sort/mergeAndMakeBWnet3.sh
#!/bin/bash
#SBATCH --job-name=mergeAndMakeBWnet3
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeAndMakeBWnet3.out
#SBATCH --error=mergeAndMakeBWnet3.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
samtools merge /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.bam /project2/gilad/briana/Net-seq/Net-seq3/data/sort/*-sort.bam
samtools sort /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.bam > /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bam
samtools index /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bam
bamCoverage -b /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bam -o /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw
Look 3kb on each side
NetseqDTPlotmyPeaks_noMPFilt.sh
#!/bin/bash
#SBATCH --job-name=NetseqDTPlotmyPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at All Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myPeaksNompfilt.png
Do this for intronic peaks
NetseqDTPlotmyIntronPeaks_noMPFilt.sh
#!/bin/bash
#SBATCH --job-name=NetseqDTPlotmyIntronPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyIntronPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyIntronPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_INTRON.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myIntronPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myIntronPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Intronic Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myIntronPeaksNompfilt.png
Top used intronic in nuclear
NetseqDTPlotmyToptIntronPeaks_noMPFilt.sh
#!/bin/bash
#SBATCH --job-name=NetseqDTPlotmyToptIntronPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyTopIntronPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyTopIntronPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_INTRON_top200Usage.Nuclear.sort.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopIntronPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopIntronPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Top Nuclear Intronic Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTotIntronPeaksNompfilt.png
/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_INTRON_top200Usage_Total.sort.bed NetseqDTPlotmyTopTotIntronPeaks_noMPFilt.sh
#!/bin/bash
#SBATCH --job-name=NetseqDTPlotmyTopTotIntronPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyTopTotIntronPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyTopTotIntronTotPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_INTRON_top200Usage_Total.sort.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopTotIntronPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopTotIntronPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Top Total Intronic Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myTopTotIntronPeaksNompfilt.png
UTR peaks
NetseqDTPlotmyUTRPeaks_noMPFilt.sh
#!/bin/bash
#SBATCH --job-name=NetseqDTPlotmyUTRPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlotmyUTRPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlotmyUTRPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_noMP_GeneLoc_3UTR/Filtered_APApeaks_merged_allchrom_noMP.sort.named.noCHR_geneLocParsed_5perc_FixedStrand_3UTR.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myUTRPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myUTRPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at 3' UTR Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_myUTRPeaksNompfilt.png
I want to look at the peaks used more often in the nucelear fraction and see if we have enrichment at these.
NucPeaks=read.table("../data/diff_iso_GeneLocAnno/SigPeaksHigherInNuc.txt", header=T, stringsAsFactors = F) %>% separate(intron, into=c("Chr2", "Start", "End", "gene"), sep=":")
NucPeaks$Start=as.numeric(NucPeaks$Start)
NucPeaks$End=as.numeric(NucPeaks$End)
Now I want to pull in the corrected strand peaks.
DTPeaks=read.table("../data/peaks4DT/APAPeaks_5percCov_fixedStrand.bed",header = F, col.names = c("Chr", "Start", "End","Name", "Score", "Strand" )) %>% mutate(Chr2=paste("chr", Chr, sep=""))
DTPeaks_filt=DTPeaks %>% semi_join(NucPeaks, by=c("Chr2", "Start", "End")) %>% select(-Chr2)
#write it
write.table(DTPeaks_filt, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc.bed", col.names = F, row.names = F, quote=F, sep="\t")
NetseqDTPlot_NucDiffUsedPeaks_noMPFilt.sh
#!/bin/bash
#SBATCH --job-name=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt.out
#SBATCH --error=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt.png
There are a few peaks driving the signal. I can split these up into 5 peak files
DTPeaks_filt_1= DTPeaks_filt %>% slice(1:150)
DTPeaks_filt_2= DTPeaks_filt %>% slice(151:300)
DTPeaks_filt_3= DTPeaks_filt %>% slice(301:450)
DTPeaks_filt_4= DTPeaks_filt %>% slice(451:600)
DTPeaks_filt_5= DTPeaks_filt %>% slice(601:762)
write.table(DTPeaks_filt_1, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_1.bed", col.names = F, row.names = F, quote=F, sep="\t")
write.table(DTPeaks_filt_2, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_2.bed", col.names = F, row.names = F, quote=F, sep="\t")
write.table(DTPeaks_filt_3, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_3.bed", col.names = F, row.names = F, quote=F, sep="\t")
write.table(DTPeaks_filt_4, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_4.bed", col.names = F, row.names = F, quote=F, sep="\t")
write.table(DTPeaks_filt_5, "../data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_5.bed", col.names = F, row.names = F, quote=F, sep="\t")
NetseqDTPlot_NucDiffUsedPeaks_noMPFilt_5plots.sh
#!/bin/bash
#SBATCH --job-name=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt_5plots
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt_5plots.out
#SBATCH --error=NetseqDTPlot_NucDiffUsedPeaks_noMPFilt_5plots.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
#1
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_1.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt1.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt1.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt1.png
#2
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_2.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt2.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt2.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt2.png
#3
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_3.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt3.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt3.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt3.png
#4
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_4.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt4.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt4.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt4.png
#5
computeMatrix reference-point -S /project2/gilad/briana/Net-seq/Net-seq3/data/sort/Merged.Net3.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_5.bed -b 3000 -a 3000 -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt5.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt5.gz --refPointLabel "Called PAS" --plotTitle "Combined NetSeq at Nuclear Specific PAS" --heatmapHeight 7 --colorMap YlGnBu --averageTypeSummaryPlot "mean" -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Netseq_NucDiffUsedPeaksNompfilt5.png
Data are a bit too noisy to say anything here.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 workflowr_1.2.0 forcats_0.3.0 stringr_1.4.0
[5] dplyr_0.7.6 purrr_0.2.5 readr_1.1.1 tidyr_0.8.1
[9] tibble_1.4.2 ggplot2_3.0.0 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 cellranger_1.1.0 plyr_1.8.4 compiler_3.5.1
[5] pillar_1.3.0 git2r_0.24.0 bindr_0.1.1 tools_3.5.1
[9] digest_0.6.17 lubridate_1.7.4 jsonlite_1.6 evaluate_0.13
[13] nlme_3.1-137 gtable_0.2.0 lattice_0.20-35 pkgconfig_2.0.2
[17] rlang_0.2.2 cli_1.0.1 rstudioapi_0.9.0 yaml_2.2.0
[21] haven_1.1.2 withr_2.1.2 xml2_1.2.0 httr_1.3.1
[25] knitr_1.20 hms_0.4.2 fs_1.2.6 rprojroot_1.3-2
[29] grid_3.5.1 tidyselect_0.2.4 glue_1.3.0 R6_2.3.0
[33] readxl_1.1.0 rmarkdown_1.11 modelr_0.1.2 magrittr_1.5
[37] whisker_0.3-2 backports_1.1.2 scales_1.0.0 htmltools_0.3.6
[41] rvest_0.3.2 assertthat_0.2.0 colorspace_1.3-2 stringi_1.2.4
[45] lazyeval_0.2.1 munsell_0.5.0 broom_0.5.0 crayon_1.3.4