Last updated: 2019-01-25

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 3789767

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/DirectionapaQTL.Rmd
        Untracked:  analysis/EvaleQTLs.Rmd
        Untracked:  analysis/YL_QTL_test.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  code/PeaksToCoverPerReads.py
        Untracked:  code/strober_pc_pve_heatmap_func.R
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/ChromHmmOverlap/
        Untracked:  data/GM12878.chromHMM.bed
        Untracked:  data/GM12878.chromHMM.txt
        Untracked:  data/LianoglouLCL/
        Untracked:  data/LocusZoom/
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/PeakCounts/
        Untracked:  data/PeakCounts_noMP_5perc/
        Untracked:  data/PeakUsage/
        Untracked:  data/PeakUsage_noMP/
        Untracked:  data/PeaksUsed/
        Untracked:  data/PeaksUsed_noMP_5percCov/
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/UnderstandPeaksQC/
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/YL_QTL_test/
        Untracked:  data/apaExamp/
        Untracked:  data/apaQTL_examp_noMP/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/diff_iso_proc/
        Untracked:  data/diff_iso_trans/
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/example_gene_peakQuant/
        Untracked:  data/explainProtVar/
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/molPheno_noMP/
        Untracked:  data/mol_overlap/
        Untracked:  data/mol_pheno/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/nuc_10up/
        Untracked:  data/other_qtls/
        Untracked:  data/pQTL_otherphen/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/perm_QTL_trans_filt/
        Untracked:  data/perm_QTL_trans_noMP_5percov/
        Untracked:  data/protAndAPAAndExplmRes.Rda
        Untracked:  data/protAndAPAlmRes.Rda
        Untracked:  data/protAndExpressionlmRes.Rda
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  data/threePrimeSeqMetaData.csv
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/CompareLianoglouData.Rmd
        Modified:   analysis/apaQTLoverlapGWAS.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explainpQTLs.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/flash2mash.Rmd
        Modified:   analysis/mispriming_approach.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlapMolQTL.opposite.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/peakQCPPlots.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   analysis/understandPeaks.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 3789767 Briana Mittleman 2019-01-25 add Exp model and full model
    html 7120162 Briana Mittleman 2019-01-24 Build site.
    Rmd 9df8d7e Briana Mittleman 2019-01-24 add linear model code with res for stephens lab


There are a few things about the data I need to understand before I can run ash. First I need to find the genes that overlap with protein and RNA. Then I need to pick those with 1 dominant peak.

set.seed(1)
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ───────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave

Apa and Protein

Upload data:

I want the filtered peak counts. I need to filter the counts file for the total fraction based on the filtered peaks.

Total counts: /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.fc

okPeaks: /project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.pheno.5percPeaks.txt

filterTotalCounts_noMP_5percCov.py

totalokPeaks5perc_file="/project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.pheno.5percPeaks.txt"
countFile=open("/project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.fc","r")

outFile=open("/project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_5percCov_fixed.fc", "w")

allPeakOk={}
for ln in open(totalokPeaks5perc_file,"r"):
    peakname=ln.split()[5]
    peaknum=peakname[4:]
    if peaknum not in allPeakOk.keys():
        allPeakOk[peaknum]=""
    
for i,ln in enumerate(countFile):
    if i==1:
      outFile.write(ln)
    if i>1:
      ID=ln.split()[0]
      peak=ID.split(":")[0]
      peaknum=peak[4:]
      if peaknum in allPeakOk.keys():
          outFile.write(ln)
outFile.close()
total_Cov=read.table("../data/PeakCounts_noMP_5perc/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_5percCov_fixed.fc", stringsAsFactors = F,header = T) %>%  separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "Name"), sep=":")
total_genes=total_Cov %>% select(Name) %>% arrange(Name) %>% unique()

Gene names:

geneNames=read.table("../data/ensemble_to_genename.txt",sep="\t", header=T, stringsAsFactors = F, col.names=c("ID", "Name", "Source"))
prot=read.table("../data/mol_pheno/fastqtl_qqnorm_prot.fixed.noChr.txt",header=T,stringsAsFactors = F) %>% inner_join(geneNames, by="ID")

Keep the protein genes in APA:

prot_inAPA=prot %>% semi_join(total_genes, by="Name")

This shows we have 4209 genes with data for both. Now I can back filter the total peaks for the genes in prot_inAPA

total_Cov_wProt= total_Cov %>% semi_join(prot_inAPA,by="Name")

Need to give Stephens lab: unadjusted R-squared, and n and p for each protein, where p is the number of apa s that you are using in the regression and n is the number of samples?

To do this I need to get the overlapping individuals:

protInd=colnames(prot)[5:(dim(prot)[2]-2)]

ApaInd=c()
for (i in colnames(total_Cov)[12:ncol(total_Cov)]){
  num=substr(i,2,6)
  name=paste("NA", num, sep="")
  ApaInd=c(ApaInd, name)
}


IndBoth=intersect(protInd,ApaInd)
length(IndBoth)
[1] 29

I have 29 individuals in common for these.

I need to make a matrix for each gene. It will have a row for each commmon individual. A column for the protein, and a column for each assocaited peaks. After I have this I will be able to get the R2 value.

First create a function.

get_R2=function(gene, Cov=total_Cov, prot=prot_inAPA, apaName=ApaInd){
  gene_un= enexpr(gene)
  #deal with APA
  genePeaks=total_Cov %>% filter(Name==!!gene_un)
  n=nrow(genePeaks)
  drop_col=c('chr','Chr', 'start','end','strand','Name', 'Start','End','Strand','Length')
  genePeaks_sm= genePeaks %>% select(-one_of(drop_col))
  colnames(genePeaks_sm)=c("peak", ApaInd) 
  genePeakM=genePeaks_sm %>% column_to_rownames(var="peak") %>% t()
  genePeakDF=as.data.frame(genePeakM) %>% rownames_to_column(var="Ind")
  #deal with prot
  drop_col_prot= c("Chr", "start", "end", "ID", "Name", "Source")
  geneProt=prot %>% filter(Name==!!gene_un) %>% select(-one_of(drop_col_prot)) %>% t()
  colnames(geneProt)="prot"
  #print(dim(geneProt))
  geneProt_df=as.data.frame(geneProt) %>% rownames_to_column(var="Ind") %>% drop_na(prot)
  #print(geneProt_df)
  both=geneProt_df %>% inner_join(genePeakDF,by="Ind")
  num=seq(1,n)
  base="summary(lm(both$prot~"
  for (i in 3:dim(both)[2]){
    base=paste(base, "+both[,",i,"]",sep="")
  }
  code=paste(base, "))$r.squared", sep="")
  r2=eval(parse(text=code))
  final=c(gene, r2,nrow(both),n)
  return(final)
}

Run this on all genes:

final_matrix=matrix(c("gene","r2","n","p"),1,4)
for (i in prot_inAPA$Name){
 final_matrix= rbind(final_matrix,get_R2(i))
}

Make this a dataframe:

final_df=as.data.frame(final_matrix)

colnames(final_df)=as.character(unlist(final_df[1,]))

final_df <- final_df[-1 ,]

save(final_df,file="../data/protAndAPAlmRes.Rda")

When the stephens lab ran ASH on this, all R2 shrunk to zero. ##Protein and expression

I want to look at the the protein ~ expression model. This is easier because there is always only 1 expression level per gene.

rna=read.table("../data/mol_pheno/fastqtl_qqnorm_RNAseq_phase2.fixed.noChr.txt",header=T,stringsAsFactors = F) %>%  separate(ID, into=c("ID", "ver"), sep ="[.]") %>%  inner_join(geneNames, by="ID")

I want to filter this by genes we have proteinn for.

rnaandProt= rna %>% semi_join(prot, by="Name")

These are the gene I want to run the analsis on. I will make a similar function to run the linear model.

get_R2_Protexp=function(gene, exp=rnaandProt, protein=prot){
  #gene_un= enexpr(gene)
  exp_gene=exp %>% filter(Name ==gene)
  #print(exp_gene)
  drop_col_exp= c("Chr", "start", "end", "ID", "ver", "Name", "Source")
  exp_gene_sm= exp_gene %>% select(-one_of(drop_col_exp)) %>% t()
  colnames(exp_gene_sm)="Expression"
  exp_gene_df=as.data.frame(exp_gene_sm) %>% rownames_to_column(var="Ind")
  #print(exp_gene_df)
  drop_col_p= c("Chr", "start", "end", "ID", "Name", "Source")
  prot_gene= protein %>% filter(Name ==gene)%>% select(-one_of(drop_col_p)) %>% t()
  colnames(prot_gene)= "Protein"
  prot_gene_df= as.data.frame(prot_gene) %>% rownames_to_column(var="Ind") %>% drop_na(Protein)
  #print(prot_gene_df)
  both=prot_gene_df %>% inner_join(exp_gene_df, by="Ind")
  #print(both)
  r2=summary(lm(both$Protein ~both$Expression))$r.squared
  #print(r2)
  final=c(gene, r2, nrow(both))
}

test=get_R2_Protexp(gene="ISG15")

Run on all genes in rnaandProt

final_matrix_protExp=matrix(c("gene","r2","n"),1,3)
for (i in rnaandProt$Name){
 final_matrix_protExp= rbind(final_matrix_protExp,get_R2_Protexp(i))
}

Fix as df and save

final_df_protExp=as.data.frame(final_matrix_protExp)

colnames(final_df_protExp)=as.character(unlist(final_df_protExp[1,]))

final_df_protExp <- final_df_protExp[-1 ,]

save(final_df_protExp,file="../data/protAndExpressionlmRes.Rda")

Protein, APA, Exp

I need to subset the protein for genes in apa and expr.

prot_inAPAandExp=prot %>% semi_join(total_genes, by="Name") %>% semi_join(rna,by="Name")
get_R2_full=function(gene, Cov=total_Cov, prot=prot_inAPAandExp, apaName=ApaInd,exp=rna){
  gene_un= enexpr(gene)
  #deal with APA
  genePeaks=total_Cov %>% filter(Name==!!gene_un)
  n=nrow(genePeaks)
  drop_col=c('chr','Chr', 'start','end','strand','Name', 'Start','End','Strand','Length')
  genePeaks_sm= genePeaks %>% select(-one_of(drop_col))
  colnames(genePeaks_sm)=c("peak", ApaInd) 
  genePeakM=genePeaks_sm %>% column_to_rownames(var="peak") %>% t()
  genePeakDF=as.data.frame(genePeakM) %>% rownames_to_column(var="Ind")
  #deal with prot
  drop_col_prot= c("Chr", "start", "end", "ID", "Name", "Source")
  geneProt=prot %>% filter(Name==!!gene_un) %>% select(-one_of(drop_col_prot)) %>% t()
  colnames(geneProt)="prot"
  #print(dim(geneProt))
  geneProt_df=as.data.frame(geneProt) %>% rownames_to_column(var="Ind") %>% drop_na(prot)
  #print(geneProt_df)
  #deal with expr
  exp_gene=exp %>% filter(Name ==gene)
  drop_col_exp= c("Chr", "start", "end", "ID", "ver", "Name", "Source")
  exp_gene_sm= exp_gene %>% select(-one_of(drop_col_exp)) %>% t()
  colnames(exp_gene_sm)="Expression"
  exp_gene_df=as.data.frame(exp_gene_sm) %>% rownames_to_column(var="Ind")
  #make full model  
  both=geneProt_df %>% inner_join(exp_gene_df, by="Ind") %>% inner_join(genePeakDF,by="Ind")
  num=seq(1,n)
  base="summary(lm(both$prot~ both$Expression"
  for (i in 4:dim(both)[2]){
    base=paste(base, "+both[,",i,"]",sep="")
  }
  code=paste(base, "))$r.squared", sep="")
  #print(code)
  r2=eval(parse(text=code))
  final=c(gene, r2,nrow(both),n)
  return(final)
}

test_full=get_R2_full("ISG15")

Run this on all genes:

final_matrix_full=matrix(c("gene","r2","n","p"),1,4)
for (i in prot_inAPAandExp$Name){
 final_matrix_full= rbind(final_matrix_full,get_R2_full(i))
}

Make this a dataframe:

final_df_full=as.data.frame(final_matrix_full)

colnames(final_df_full)=as.character(unlist(final_df_full[1,]))

final_df_full <- final_df_full[-1 ,]

save(final_df_full,file="../data/protAndAPAAndExplmRes.Rda")

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2  cowplot_0.9.3   reshape2_1.4.3  forcats_0.3.0  
 [5] stringr_1.3.1   dplyr_0.7.6     purrr_0.2.5     readr_1.1.1    
 [9] tidyr_0.8.1     tibble_1.4.2    ggplot2_3.0.0   tidyverse_1.2.1
[13] workflowr_1.1.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  haven_1.1.2       lattice_0.20-35  
 [4] colorspace_1.3-2  htmltools_0.3.6   yaml_2.2.0       
 [7] rlang_0.2.2       R.oo_1.22.0       pillar_1.3.0     
[10] glue_1.3.0        withr_2.1.2       R.utils_2.7.0    
[13] modelr_0.1.2      readxl_1.1.0      bindr_0.1.1      
[16] plyr_1.8.4        munsell_0.5.0     gtable_0.2.0     
[19] cellranger_1.1.0  rvest_0.3.2       R.methodsS3_1.7.1
[22] evaluate_0.11     knitr_1.20        broom_0.5.0      
[25] Rcpp_0.12.19      scales_1.0.0      backports_1.1.2  
[28] jsonlite_1.5      hms_0.4.2         digest_0.6.17    
[31] stringi_1.2.4     grid_3.5.1        rprojroot_1.3-2  
[34] cli_1.0.1         tools_3.5.1       magrittr_1.5     
[37] lazyeval_0.2.1    crayon_1.3.4      whisker_0.3-2    
[40] pkgconfig_2.0.2   xml2_1.2.0        lubridate_1.7.4  
[43] assertthat_0.2.0  rmarkdown_1.10    httr_1.3.1       
[46] rstudioapi_0.8    R6_2.3.0          nlme_3.1-137     
[49] git2r_0.23.0      compiler_3.5.1   



This reproducible R Markdown analysis was created with workflowr 1.1.1