Last updated: 2018-07-25

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 2d41f11

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/gene_cov/
        Untracked:  data/leafcutter/
        Untracked:  data/nuc6up/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 2d41f11 Briana Mittleman 2018-07-25 add expand smash to index


I want to run smash on a whole chromosome to see what regions I can do it on to get the whole genome. First I am going to try chromosome 22.

Prepare data

I want to create a bedgraph for the combined nuclear and total files.

  • /project2/gilad/briana/threeprimeseq/data/macs2/TotalBamFiles.sort.bam

  • /project2/gilad/briana/threeprimeseq/data/macs2/NuclearBamFiles.bam

#!/bin/bash

#SBATCH --job-name=5gencov_comb
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=5gencov_comb.out
#SBATCH --error=5gencov_com.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env 



bedtools genomecov -d -5 -ibam  /project2/gilad/briana/threeprimeseq/data/macs2/TotalBamFiles.sort.bam   > /project2/gilad/briana/threeprimeseq/data/genomecov/gencov5prime.combinedTotal.bed

bedtools genomecov -d -5 -ibam  /project2/gilad/briana/threeprimeseq/data/macs2/NuclearBamFiles.sort.bam > /project2/gilad/briana/threeprimeseq/data/genomecov/gencov5prime.combinedNuclear.bed

I now need to subset the bed files to chr22.

#!/bin/bash

#SBATCH --job-name=subset22
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=subset22.out
#SBATCH --error=subset22.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env 


awk '$1==22 {print}' /project2/gilad/briana/threeprimeseq/data/genomecov/gencov5prime.combinedNuclear.bed > /project2/gilad/briana/threeprimeseq/data/genomecov_chr22/gencov5prime.combinedNuclear.chr22.bed


awk '$1==22 {print}' /project2/gilad/briana/threeprimeseq/data/genomecov/gencov5prime.combinedTotal.bed > /project2/gilad/briana/threeprimeseq/data/genomecov_chr22/gencov5prime.combinedTotal.chr22.bed

Run smash

Chromosome 22 is 51304566 bases. I need this to satisfy the \(2^{x}\) criteria. I can use the log rule, \(log_{2}length=x\)

log2(51304566)
[1] 25.61258
2^26
[1] 67108864
zeros_to_add=67108864 -51304566

I will use 2^26, 67108864. This means I need to add 1.580429810^{7} 0s to the matrix. I can do this by making a matrix with the correct number of zeros and row binding it.

zero_matrix=matrix(0.1, zeros_to_add)

I will write and R script that I can run on the cluster. The file will take in the genomecoverage file and will output the graph and the smash results in a bedgraph format.

#!/bin/rscripts

# usage: ./run_smash.R gencoverage, outfile_plot, outfile_bedgraph

#this script takes the genomecov file and a name for an output plot (.png) and an output bedgraph (.bg)

#use optparse for management of input arguments I want to be able to imput the 6up nuc file and write out a filter file  

#script needs to run outside of conda env. should module load R in bash script when I submit it 
library(optparse)
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
library(smashr)


option_list = list(
  make_option(c("-f", "--file"), action="store", default=NA, type='character',
              help="input file"),
  make_option(c("-p", "--plot"), action="store", default=NA, type='character',
              help="output plot file"),
  make_option(c("-o", "--output"), action="store", default=NA, type='character',
              help="output file")
)
  

opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)


#interrupt execution if no file is  supplied
if (is.null(opt$file)){
  print_help(opt_parser)
  stop("Need input file", call.=FALSE)
}



#Functions for this script


criteria=function(x){
  #function takes a number and makes the matrix with 0s
  exp=log2(x)
  exp_round=ceiling(exp)
  zerosadd= 2^exp_round - x
  seq_0=rep(0, zerosadd)
  return(seq_0)
}


#import bedgraph
names=c("Chr", "Pos", "Count")
cov=read.table(file = opt$file,  col.names = names)

chromosome=cov[1,1]


#prepare data by adding 0s
zero_seq=criteria(nrow(cov))
data_vec=as.vector(cov$Count)
data_zero_vec=c(data_vec, zero_seq)
data_zero_matrix=matrix(data_zero_vec, 1, length(data_zero_vec))

#run smash

smash_res=smash.poiss(data_zero_matrix[1,],post.var=TRUE)


#create and save plot
pos=1:length(data_vec)
png(opt$plot)
finalplot=plot(pos,smash_res$est[1:length(data_vec)],type='l',xlab="position",ylab="intensity", main="SMASH results")
dev.off()

#create bedgraph and write it out  

bedgraph=cbind(lapply(cov$Chr, function(x) paste("chr", x, sep="")), cov$Pos, cov$Pos + 1,  smash_res$est[1:length(data_vec)])

write.table(bedgraph, file=opt$output, quote = F, row.names = F, col.names = F)  

To run this I will have to create a batch script similar to the following.

#!/bin/bash

#SBATCH --job-name=run.run_smash
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=run_runsmash.out
#SBATCH --error=run_runsmash.err
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END

module load R

Rscript run_smash.R -f /project2/gilad/briana/threeprimeseq/data/genomecov_chr22/gencov5prime.combinedTotal.chr22.bed -p /project2/gilad/briana/threeprimeseq/data/smash.chr22/smooth.combinedTotal.chr22.png -o /project2/gilad/briana/threeprimeseq/data/smash.chr22/smooth.combinedTotal.chr22.bg

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.1.1   Rcpp_0.12.18      digest_0.6.15    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.23.0      magrittr_1.5      evaluate_0.11    
[10] stringi_1.2.4     whisker_0.3-2     R.oo_1.22.0      
[13] R.utils_2.6.0     rmarkdown_1.10    tools_3.5.1      
[16] stringr_1.3.1     yaml_2.1.19       compiler_3.5.1   
[19] htmltools_0.3.6   knitr_1.20       



This reproducible R Markdown analysis was created with workflowr 1.1.1