Last updated: 2019-03-07

Checks: 6 0

Knit directory: threeprimeseq/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/perm_QTL_trans_noMP_5percov/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  KalistoAbundance18486.txt
    Untracked:  analysis/4suDataIGV.Rmd
    Untracked:  analysis/DirectionapaQTL.Rmd
    Untracked:  analysis/EmpDistforOverlaps.Rmd
    Untracked:  analysis/EvaleQTLs.Rmd
    Untracked:  analysis/YL_QTL_test.Rmd
    Untracked:  analysis/groSeqAnalysis.Rmd
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  analysis/verifybam_dubs.Rmd
    Untracked:  code/PeaksToCoverPerReads.py
    Untracked:  code/strober_pc_pve_heatmap_func.R
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/AllPeak_counts/
    Untracked:  data/ApaQTLs/
    Untracked:  data/ApaQTLs_otherPhen/
    Untracked:  data/ChromHmmOverlap/
    Untracked:  data/DistTXN2Peak_genelocAnno/
    Untracked:  data/FeatureoverlapPeaks/
    Untracked:  data/GM12878.chromHMM.bed
    Untracked:  data/GM12878.chromHMM.txt
    Untracked:  data/LianoglouLCL/
    Untracked:  data/LocusZoom/
    Untracked:  data/LocusZoom_Unexp/
    Untracked:  data/LocusZoom_proc/
    Untracked:  data/MatchedSnps/
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/PeakCounts/
    Untracked:  data/PeakCounts_noMP_5perc/
    Untracked:  data/PeakCounts_noMP_genelocanno/
    Untracked:  data/PeakUsage/
    Untracked:  data/PeakUsage_noMP/
    Untracked:  data/PeakUsage_noMP_GeneLocAnno/
    Untracked:  data/PeaksUsed/
    Untracked:  data/PeaksUsed_noMP_5percCov/
    Untracked:  data/PolyA_DB/
    Untracked:  data/QTL_overlap/
    Untracked:  data/RNAkalisto/
    Untracked:  data/RefSeq_annotations/
    Untracked:  data/Replicates_usage/
    Untracked:  data/Signal_Loc/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/UnderstandPeaksQC/
    Untracked:  data/WASP_STAT/
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/YL_QTL_test/
    Untracked:  data/apaExamp/
    Untracked:  data/apaExamp_proc/
    Untracked:  data/apaQTL_examp_noMP/
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/diff_iso_GeneLocAnno/
    Untracked:  data/diff_iso_proc/
    Untracked:  data/diff_iso_trans/
    Untracked:  data/eQTLs_Lietal/
    Untracked:  data/ensemble_to_genename.txt
    Untracked:  data/example_gene_peakQuant/
    Untracked:  data/explainProtVar/
    Untracked:  data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
    Untracked:  data/first50lines_closest.txt
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/molPheno_noMP/
    Untracked:  data/mol_overlap/
    Untracked:  data/mol_pheno/
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nom_QTL_trans/
    Untracked:  data/nuc6up/
    Untracked:  data/nuc_10up/
    Untracked:  data/other_qtls/
    Untracked:  data/pQTL_otherphen/
    Untracked:  data/pacbio_cov/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/peaks4DT/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
    Untracked:  data/perm_QTL_diffWindow/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/perm_QTL_trans/
    Untracked:  data/perm_QTL_trans_filt/
    Untracked:  data/protAndAPAAndExplmRes.Rda
    Untracked:  data/protAndAPAlmRes.Rda
    Untracked:  data/protAndExpressionlmRes.Rda
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  data/threePrimeSeqMetaData.csv
    Untracked:  data/threePrimeSeqMetaData55Ind.txt
    Untracked:  data/threePrimeSeqMetaData55Ind.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
    Untracked:  output/LZ/
    Untracked:  output/deeptools_plots/
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf

Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/CompareLianoglouData.Rmd
    Modified:   analysis/NewPeakPostMP.Rmd
    Modified:   analysis/apaQTLoverlapGWAS.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explainpQTLs.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/fixBWChromNames.Rmd
    Modified:   analysis/flash2mash.Rmd
    Modified:   analysis/mispriming_approach.Rmd
    Modified:   analysis/overlapMolQTL.Rmd
    Modified:   analysis/overlapMolQTL.opposite.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/peakQCPPlots.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/pipeline_55Ind.Rmd
    Modified:   analysis/swarmPlots_QTLs.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   analysis/test.smash.Rmd
    Modified:   analysis/understandPeaks.Rmd
    Modified:   analysis/unexplainedeQTL_analysis.Rmd
    Modified:   code/Snakefile

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 72c34ce Briana Mittleman 2019-03-07 signal site loc based on front side
html 4bf5d09 Briana Mittleman 2019-03-06 Build site.
Rmd 8717550 Briana Mittleman 2019-03-06 res for AATAAA
html 4023fe0 Briana Mittleman 2019-03-06 Build site.
Rmd d561190 Briana Mittleman 2019-03-06 analysis up to getting seqs
html ba63ea2 Briana Mittleman 2019-03-06 Build site.
Rmd c200503 Briana Mittleman 2019-03-06 add signal site loc analysis

In the Signal Site enrichment analysis I looked at the peaks to see if signal sites are enriched upstream of my peaks. I found this is true but now I want to see where the signal sites are in comparison to my peaks. I am going to use the biostrings package tool matchPWM for this analysis.

library(workflowr)
This is workflowr version 1.2.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0       ✔ purrr   0.3.1  
✔ tibble  2.0.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.4.0  
✔ readr   1.3.1       ✔ forcats 0.4.0  
Warning: package 'tibble' was built under R version 3.5.2
Warning: package 'tidyr' was built under R version 3.5.2
Warning: package 'purrr' was built under R version 3.5.2
Warning: package 'dplyr' was built under R version 3.5.2
Warning: package 'stringr' was built under R version 3.5.2
Warning: package 'forcats' was built under R version 3.5.2
── Conflicts ──────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(Biostrings)
Warning: package 'Biostrings' was built under R version 3.5.2
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:dplyr':

    combine, intersect, setdiff, union
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, basename, cbind,
    colMeans, colnames, colSums, dirname, do.call, duplicated,
    eval, evalq, Filter, Find, get, grep, grepl, intersect,
    is.unsorted, lapply, lengths, Map, mapply, match, mget, order,
    paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind,
    Reduce, rowMeans, rownames, rowSums, sapply, setdiff, sort,
    table, tapply, union, unique, unsplit, which, which.max,
    which.min
Loading required package: S4Vectors
Loading required package: stats4

Attaching package: 'S4Vectors'
The following objects are masked from 'package:dplyr':

    first, rename
The following object is masked from 'package:tidyr':

    expand
The following object is masked from 'package:base':

    expand.grid
Loading required package: IRanges

Attaching package: 'IRanges'
The following objects are masked from 'package:dplyr':

    collapse, desc, slice
The following object is masked from 'package:purrr':

    reduce
Loading required package: XVector

Attaching package: 'XVector'
The following object is masked from 'package:purrr':

    compact

Attaching package: 'Biostrings'
The following object is masked from 'package:base':

    strsplit
library(BSgenome)
Loading required package: GenomeInfoDb
Warning: package 'GenomeInfoDb' was built under R version 3.5.2
Loading required package: GenomicRanges
Loading required package: rtracklayer
Warning: package 'rtracklayer' was built under R version 3.5.2
library(genomation)
Loading required package: grid

Make location file

I need to get the coordinates for the regions I care about. I want to look at the peak and 150bp upstream. This is probably larger than I will need to look at but it will be good to have an inclusive look first.

I want to use the peak file and make a file that is the peak and upstream 150:

Upstream150Bases.py

#python  
def main(Fin, Fout):
  outBed=open(Fout, "w")
  chrom_lengths=open("/project2/gilad/briana/genome_anotation_data/chrom_lengths2.sort.bed","r")
  #make a dictionary with chrom lengths
  length_dic={}
  for i in chrom_lengths:
    chrom, start, end = i.split()
    length_dic[str(chrom)]=int(end)  

#write file 
  for ln in open(Fin):
    chrom, start, end, name, score, strand = ln.split()
    chrom=str(chrom)
    if strand=="+":
      start_new=int(start)-150
      if start_new <= 1:
        start_new = 0 
      end_new= int(end)
      if end_new == 0:
        end_new=1
      outBed.write("%s\t%d\t%d\t%s\t%s\t%s\n"%(chrom, start_new, end_new, name, score, strand))
    if strand == "-":
      start_new=int(start)
      end_new=int(end) + 150
      outBed.write("%s\t%d\t%d\t%s\t%s\t%s\n"%(chrom, start_new, end_new, name, score, strand))
  outBed.close()  

if __name__ == "__main__":
    import sys
    inFile = sys.argv[1]
    outFile=sys.argv[2] 
    main(inFile, outFile)

run_get150up.sh

#!/bin/bash

#SBATCH --job-name=run_get150up
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=run_get150upt.out
#SBATCH --error=run_get150up.err
#SBATCH --partition=broadwl
#SBATCH --mem=16G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env

python Upstream150Bases.py /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand.bed  /project2/gilad/briana/threeprimeseq/data/Signal_Loc/APAPeaks_5percCov_fixedStrand_peakand150up.bed 

Get subject (reads)

Input the regions:

Fix chromosomes:

PeakRegions=read.table("../data/Signal_Loc/APAPeaks_5percCov_fixedStrand_peakand150up.bed", header=F,col.names = c("chr","start", "end", "peak", "score", "strand")) %>% mutate(Chrom=paste("chr", chr, sep="")) %>% select(Chrom, start,end,peak,score,strand)
write.table(PeakRegions, file="../data/Signal_Loc/APAPeaks_5percCov_fixedStrand_peakand150up_fixedChr.bed", quote=F, col.names = F, row.names = F, sep="\t")
#convert to reads 

reads.GR= readGeneric(file="../data/Signal_Loc/APAPeaks_5percCov_fixedStrand_peakand150up_fixedChr.bed",chr =1, start = 2, end =3,  meta.cols =4, header=F, zero.based=TRUE,strand=6)

I need to overlap these positions with the genome

Make motifs

AATAAA= PWM("AATAAA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
ATTAAA= PWM("ATTAAA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
AGTAAA= PWM("AGTAAA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
TATAAA= PWM("TATAAA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
CATAAA= PWM("CATAAA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
GATAAA= PWM("GATAAA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
AATATA= PWM("AATATA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
AATACA= PWM("AATACA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
AATAGA= PWM("AATAGA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
AAAAAG= PWM("AAAAAG", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))
ACTAAA= PWM("ACTAAA", type = c("log2probratio", "prob"), prior.params = c(A=0.25, C=0.25, G=0.25, T=0.25))

find the mathes

genome.hg19 <- getBSgenome("BSgenome.Hsapiens.UCSC.hg19")

#matches <- matchPWM(pwm=AATAAA, subject = genome.hg19) %>% keepStandardChromosomes(., species= "Homo sapiens")


DNAstringSetPeaks=data.frame(seq=getSeq(genome.hg19, reads.GR))

x=DNAString(DNAstringSetPeaks[1,1])

hits <- matchPWM(AATAAA,x,with.score=T) 


start(hits)
[1] 215 219 255

Look over and make hits file for all

list_AATAAA_res=c()
for (i in 1:nrow(DNAstringSetPeaks)){
  x=DNAString(DNAstringSetPeaks[i,1])
  list_AATAAA_res=c(list_AATAAA_res,matchPWM(AATAAA,x,with.score=T))
}

Get out the start positions:

starts_AATAAA=c()
nsig=c()
last_oc_AATAAA=c()
for (i in list_AATAAA_res){
  nsig=c(nsig, length(start(i)))
  starts_AATAAA=c(starts_AATAAA, start(i))
  #print(length(start(i)))
  if (length(start(i)) != 0 ){
    last_oc_AATAAA=c(last_oc_AATAAA, max(start(i),na.rm =T))
  }
}

Histogram of results:

summary(starts_AATAAA)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    1.0    79.0   175.0   156.7   216.0  1612.0 
hist(starts_AATAAA,breaks=10000)

Version Author Date
4bf5d09 Briana Mittleman 2019-03-06
summary(nsig)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  0.000   1.000   3.000   3.857   5.000  74.000 
sum(nsig==0)
[1] 3584
sum(nsig==1)
[1] 8358
hist(nsig,breaks=100)

Version Author Date
4bf5d09 Briana Mittleman 2019-03-06

Look at the first occurence:

summary(last_oc_AATAAA)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    1.0   209.0   215.0   213.1   231.0  1612.0 
hist(last_oc_AATAAA,breaks=1000)

Version Author Date
4bf5d09 Briana Mittleman 2019-03-06
I want to get the closest occurance of the

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
 [1] grid      stats4    parallel  stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] BSgenome.Hsapiens.UCSC.hg19_1.4.0 genomation_1.14.0                
 [3] BSgenome_1.50.0                   rtracklayer_1.42.2               
 [5] GenomicRanges_1.34.0              GenomeInfoDb_1.18.2              
 [7] Biostrings_2.50.2                 XVector_0.22.0                   
 [9] IRanges_2.16.0                    S4Vectors_0.20.1                 
[11] BiocGenerics_0.28.0               forcats_0.4.0                    
[13] stringr_1.4.0                     dplyr_0.8.0.1                    
[15] purrr_0.3.1                       readr_1.3.1                      
[17] tidyr_0.8.3                       tibble_2.0.1                     
[19] ggplot2_3.1.0                     tidyverse_1.2.1                  
[21] workflowr_1.2.0                  

loaded via a namespace (and not attached):
 [1] nlme_3.1-137                bitops_1.0-6               
 [3] matrixStats_0.54.0          fs_1.2.6                   
 [5] lubridate_1.7.4             httr_1.4.0                 
 [7] rprojroot_1.3-2             tools_3.5.1                
 [9] backports_1.1.3             R6_2.4.0                   
[11] KernSmooth_2.23-15          lazyeval_0.2.1             
[13] colorspace_1.4-0            seqPattern_1.14.0          
[15] withr_2.1.2                 tidyselect_0.2.5           
[17] compiler_3.5.1              git2r_0.24.0               
[19] cli_1.0.1                   rvest_0.3.2                
[21] Biobase_2.42.0              xml2_1.2.0                 
[23] DelayedArray_0.8.0          scales_1.0.0               
[25] digest_0.6.18               Rsamtools_1.34.1           
[27] rmarkdown_1.11              pkgconfig_2.0.2            
[29] htmltools_0.3.6             plotrix_3.7-4              
[31] rlang_0.3.1                 readxl_1.3.0               
[33] rstudioapi_0.9.0            impute_1.56.0              
[35] generics_0.0.2              jsonlite_1.6               
[37] BiocParallel_1.16.6         RCurl_1.95-4.12            
[39] magrittr_1.5                GenomeInfoDbData_1.2.0     
[41] Matrix_1.2-15               Rcpp_1.0.0                 
[43] munsell_0.5.0               reticulate_1.11.1          
[45] stringi_1.3.1               whisker_0.3-2              
[47] yaml_2.2.0                  SummarizedExperiment_1.12.0
[49] zlibbioc_1.28.0             plyr_1.8.4                 
[51] crayon_1.3.4                lattice_0.20-38            
[53] haven_2.1.0                 hms_0.4.2                  
[55] knitr_1.21                  pillar_1.3.1               
[57] reshape2_1.4.3              XML_3.98-1.19              
[59] glue_1.3.0                  evaluate_0.13              
[61] data.table_1.12.0           modelr_0.1.4               
[63] cellranger_1.1.0            gtable_0.2.0               
[65] assertthat_0.2.0            xfun_0.5                   
[67] gridBase_0.4-7              broom_0.5.1                
[69] GenomicAlignments_1.18.1