• Map Stats
  • Genes with multiple peaks
  • Session information

Last updated: 2018-12-05

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: e230640

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/DirectionapaQTL.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/ChromHmmOverlap/
        Untracked:  data/GM12878.chromHMM.bed
        Untracked:  data/GM12878.chromHMM.txt
        Untracked:  data/LocusZoom/
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/PeakCounts/
        Untracked:  data/PeaksUsed/
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/diff_iso_trans/
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/example_gene_peakQuant/
        Untracked:  data/explainProtVar/
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/mol_pheno/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/pQTL_otherphen/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/perm_QTL_trans_filt/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/apaQTLoverlapGWAS.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explainpQTLs.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/flash2mash.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd e230640 Briana Mittleman 2018-12-05 add code to save relevant figures
    html bbd632b Briana Mittleman 2018-09-25 Build site.
    Rmd 66570c5 Briana Mittleman 2018-09-25 PAS per gene
    html d3bb287 Briana Mittleman 2018-09-24 Build site.
    Rmd f7934ce Briana Mittleman 2018-09-24 wflow_publish(c(“index.Rmd”, “39indQC.Rmd”))


I will use this to look at the map stats and peak stats for the full set of 39 ind.

library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ──────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave
library(tximport)

Map Stats

mapstats= read.csv("../data/comb_map_stats_39ind.csv", header = T, stringsAsFactors = F)
mapstats$line=as.factor(mapstats$line)
mapstats$fraction=as.factor(mapstats$fraction)
map_melt=melt(mapstats, id.vars=c("line", "fraction"), measure.vars = c("comb_reads", "comb_mapped", "comb_prop_mapped"))

prop_mapped= map_melt %>% filter(variable=="comb_prop_mapped")
mapped_reads= map_melt %>% filter(variable=="comb_mapped")


mapplot_prop=ggplot(prop_mapped, aes(y=value, x=line, fill=fraction)) + geom_bar(stat="identity",position="dodge") + labs( title="Proportion of reads mapped") + ylab("Proportion mapped")


mapplot_mapped=ggplot(mapped_reads, aes(y=value, x=line, fill=fraction)) + geom_bar(stat="identity",position="dodge") + labs( title="Number of Mapped reads") + ylab("Mapped")

plot_grid(mapplot_prop, mapplot_mapped)

Expand here to see past versions of unnamed-chunk-2-1.png:
Version Author Date
d3bb287 Briana Mittleman 2018-09-24

Plot boxplots for total vs nuclear.

box_mapprop=ggplot(prop_mapped, aes(y=value, x=fraction, fill=fraction)) + geom_boxplot(width=.3) + geom_jitter(position = position_jitter(.3)) + labs( title="Map Proportion") + ylab("Mapped Proportion") + scale_fill_manual(values=c("deepskyblue3","darkviolet"))

box_map=ggplot(mapped_reads, aes(y=value, x=fraction, fill=fraction)) + geom_boxplot(width=.3) + geom_jitter(position = position_jitter(.3)) + labs( title="Number of Mapped reads") + ylab("Mapped") + scale_fill_manual(values=c("deepskyblue3","darkviolet"))


bothmapplots=plot_grid(box_map, box_mapprop)
bothmapplots

Expand here to see past versions of unnamed-chunk-3-1.png:
Version Author Date
d3bb287 Briana Mittleman 2018-09-24

ggsave("../output/plots/MapBoxplots.png",bothmapplots)
Saving 7 x 5 in image

Genes with multiple peaks

This is similar to the analysis I ran in dataprocfigures.Rmd. I start by overlappping the refseq genes with my peaks. With the script refseq_countdistinct.sh.

namesPeak=c("Chr", "Start", "End", "Name", "Score", "Strand", "numPeaks")
Opeakpergene=read.table("../data/peakPerRefSeqGene/filtered_APApeaks_perRefseqGene_oppStrand.txt", stringsAsFactors = F, header = F, col.names = namesPeak) %>% mutate(onePeak=ifelse(numPeaks==1, 1, 0 )) %>%  mutate(multPeaks=ifelse(numPeaks > 1, 1, 0 ))

Ogenes1peak=sum(Opeakpergene$onePeak)/nrow(Opeakpergene) 
OgenesMultpeak=sum(Opeakpergene$multPeaks)/nrow(Opeakpergene)
Ogenes0peak= 1- Ogenes1peak - OgenesMultpeak


OperPeak= c(round(Ogenes0peak,digits = 3), round(Ogenes1peak,digits = 3),round(OgenesMultpeak, digits = 3))
Category=c("Zero", "One", "Multiple")
OperPeakdf=as.data.frame(cbind(Category,OperPeak))

OperPeakdf$OperPeak=as.numeric(as.character(OperPeakdf$OperPeak))

Olab1=paste("Genes =", Ogenes0peak*nrow(Opeakpergene), sep=" ")
Olab2=paste("Genes =", sum(Opeakpergene$onePeak), sep=" ")
Olab3=paste("Genes =", sum(Opeakpergene$multPeaks), sep=" ")

Ogenepeakplot=ggplot(OperPeakdf, aes(x="", y=OperPeak, by=Category, fill=Category)) + geom_bar(stat="identity")+ labs(title="Characterize Refseq genes by number of PAS- Oppstrand", y="Proportion of Protein Coding gene", x="")+ scale_fill_brewer(palette="Paired") + coord_cartesian(ylim=c(0,1)) + annotate("text", x="", y= .2, label=Olab1) + annotate("text", x="", y= .4, label=Olab2) + annotate("text", x="", y= .9, label=Olab3)
Ogenepeakplot

Expand here to see past versions of unnamed-chunk-4-1.png:
Version Author Date
bbd632b Briana Mittleman 2018-09-25

I will now repull in the RNA seq data for one of my lines to look at the expression levels of the genes with at least 1 called peak.

tx2gene=read.table("../data/RNAkalisto/ncbiRefSeq.txn2gene.txt" ,header= F, sep="\t", stringsAsFactors = F)

txi.kallisto.tsv <- tximport("../data/RNAkalisto/abundance.tsv", type = "kallisto", tx2gene = tx2gene)
Note: importing `abundance.h5` is typically faster than `abundance.tsv`
reading in files with read_tsv
1 
removing duplicated transcript rows from tx2gene
transcripts missing from tx2gene: 99
summarizing abundance
summarizing counts
summarizing length
txi.kallisto.tsv$abundance= as.data.frame(txi.kallisto.tsv$abundance) %>% rownames_to_column(var="Name")
colnames(txi.kallisto.tsv$abundance)= c("Name", "TPM")
#genes with >0 TPM and at least 1 peak
refPeakandRNA_withO_TPM=Opeakpergene %>% inner_join(txi.kallisto.tsv$abundance, by="Name") %>% filter(TPM>0, numPeaks>0)

#genes with >0  TPM and 0 peak
refPeakandRNA_noPeakw_withO_TPM=Opeakpergene %>% inner_join(txi.kallisto.tsv$abundance, by="Name") %>% filter(TPM >0, numPeaks==0) 

#plot
plot(sort(log10(refPeakandRNA_withO_TPM$TPM), decreasing = T), main="Distribution of RNA expression 18486", ylab="log10 TPM", xlab="Refseq Gene")
points(sort(log10(refPeakandRNA_noPeakw_withO_TPM$TPM), decreasing = T), col="Red")
legend("topright", legend=c("Genes wth Peak", "Genes without Peak"), col=c("black", "red"),pch=19)

Expand here to see past versions of unnamed-chunk-5-1.png:
Version Author Date
bbd632b Briana Mittleman 2018-09-25

Plot this as distributions.

comp_RNAtpm=ggplot(refPeakandRNA_withO_TPM, aes(x=log10(TPM))) + geom_histogram(binwidth=.5, alpha=.5) +geom_histogram(data = refPeakandRNA_noPeakw_withO_TPM, aes(x=log10(TPM)), fill="Red", alpha=.5, binwidth=.5) + labs(title="Comparing RNA expression for genes with a PAS vs no PAS") + annotate("text", x=-8, y=3000, col="Red", label="Genes without PAS") + annotate("text", x=-8.1, y=2700, col="Black", label="Genes with PAS") + geom_rect(linetype=1, xmin=-10, xmax=-6, ymin=2500, ymax=3200, color="Black", alpha=0)
comp_RNAtpm

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
bbd632b Briana Mittleman 2018-09-25

ggsave("../output/plots/QC_plots/TPMcoverage4GenesbyPAS.png",comp_RNAtpm)
Saving 7 x 5 in image

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2  tximport_1.8.0  cowplot_0.9.3   reshape2_1.4.3 
 [5] workflowr_1.1.1 forcats_0.3.0   stringr_1.3.1   dplyr_0.7.6    
 [9] purrr_0.2.5     readr_1.1.1     tidyr_0.8.1     tibble_1.4.2   
[13] ggplot2_3.0.0   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4   haven_1.1.2        lattice_0.20-35   
 [4] colorspace_1.3-2   htmltools_0.3.6    yaml_2.2.0        
 [7] rlang_0.2.2        R.oo_1.22.0        pillar_1.3.0      
[10] glue_1.3.0         withr_2.1.2        R.utils_2.7.0     
[13] RColorBrewer_1.1-2 modelr_0.1.2       readxl_1.1.0      
[16] bindr_0.1.1        plyr_1.8.4         munsell_0.5.0     
[19] gtable_0.2.0       cellranger_1.1.0   rvest_0.3.2       
[22] R.methodsS3_1.7.1  evaluate_0.11      labeling_0.3      
[25] knitr_1.20         broom_0.5.0        Rcpp_0.12.19      
[28] scales_1.0.0       backports_1.1.2    jsonlite_1.5      
[31] hms_0.4.2          digest_0.6.17      stringi_1.2.4     
[34] grid_3.5.1         rprojroot_1.3-2    cli_1.0.1         
[37] tools_3.5.1        magrittr_1.5       lazyeval_0.2.1    
[40] crayon_1.3.4       whisker_0.3-2      pkgconfig_2.0.2   
[43] xml2_1.2.0         lubridate_1.7.4    assertthat_0.2.0  
[46] rmarkdown_1.10     httr_1.3.1         rstudioapi_0.8    
[49] R6_2.3.0           nlme_3.1-137       git2r_0.23.0      
[52] compiler_3.5.1    



This reproducible R Markdown analysis was created with workflowr 1.1.1