Last updated: 2019-01-25
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/DirectionapaQTL.Rmd
Untracked: analysis/EvaleQTLs.Rmd
Untracked: analysis/YL_QTL_test.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: code/PeaksToCoverPerReads.py
Untracked: code/strober_pc_pve_heatmap_func.R
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/ChromHmmOverlap/
Untracked: data/GM12878.chromHMM.bed
Untracked: data/GM12878.chromHMM.txt
Untracked: data/LianoglouLCL/
Untracked: data/LocusZoom/
Untracked: data/NuclearApaQTLs.txt
Untracked: data/PeakCounts/
Untracked: data/PeakCounts_noMP_5perc/
Untracked: data/PeakUsage/
Untracked: data/PeakUsage_noMP/
Untracked: data/PeaksUsed/
Untracked: data/PeaksUsed_noMP_5percCov/
Untracked: data/RNAkalisto/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/UnderstandPeaksQC/
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/YL_QTL_test/
Untracked: data/apaExamp/
Untracked: data/apaQTL_examp_noMP/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/diff_iso_proc/
Untracked: data/diff_iso_trans/
Untracked: data/ensemble_to_genename.txt
Untracked: data/example_gene_peakQuant/
Untracked: data/explainProtVar/
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/molPheno_noMP/
Untracked: data/mol_overlap/
Untracked: data/mol_pheno/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/nuc_10up/
Untracked: data/other_qtls/
Untracked: data/pQTL_otherphen/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/perm_QTL_trans_filt/
Untracked: data/perm_QTL_trans_noMP_5percov/
Untracked: data/protAndAPAAndExplmRes.Rda
Untracked: data/protAndAPAlmRes.Rda
Untracked: data/protAndExpressionlmRes.Rda
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: data/threePrimeSeqMetaData.csv
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/CompareLianoglouData.Rmd
Modified: analysis/apaQTLoverlapGWAS.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/coloc_apaQTLs_protQTLs.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explainpQTLs.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/flash2mash.Rmd
Modified: analysis/mispriming_approach.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlapMolQTL.opposite.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/peakQCPPlots.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: analysis/understandPeaks.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. There are a few things about the data I need to understand before I can run ash. First I need to find the genes that overlap with protein and RNA. Then I need to pick those with 1 dominant peak.
set.seed(1)
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.3.1
✔ readr 1.1.1 ✔ forcats 0.3.0
── Conflicts ───────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
library(cowplot)
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
Upload data:
I want the filtered peak counts. I need to filter the counts file for the total fraction based on the filtered peaks.
Total counts: /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.fc
okPeaks: /project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.pheno.5percPeaks.txt
filterTotalCounts_noMP_5percCov.py
totalokPeaks5perc_file="/project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.pheno.5percPeaks.txt"
countFile=open("/project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.fc","r")
outFile=open("/project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_5percCov_fixed.fc", "w")
allPeakOk={}
for ln in open(totalokPeaks5perc_file,"r"):
peakname=ln.split()[5]
peaknum=peakname[4:]
if peaknum not in allPeakOk.keys():
allPeakOk[peaknum]=""
for i,ln in enumerate(countFile):
if i==1:
outFile.write(ln)
if i>1:
ID=ln.split()[0]
peak=ID.split(":")[0]
peaknum=peak[4:]
if peaknum in allPeakOk.keys():
outFile.write(ln)
outFile.close()
total_Cov=read.table("../data/PeakCounts_noMP_5perc/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_5percCov_fixed.fc", stringsAsFactors = F,header = T) %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "Name"), sep=":")
total_genes=total_Cov %>% select(Name) %>% arrange(Name) %>% unique()
Gene names:
geneNames=read.table("../data/ensemble_to_genename.txt",sep="\t", header=T, stringsAsFactors = F, col.names=c("ID", "Name", "Source"))
prot=read.table("../data/mol_pheno/fastqtl_qqnorm_prot.fixed.noChr.txt",header=T,stringsAsFactors = F) %>% inner_join(geneNames, by="ID")
Keep the protein genes in APA:
prot_inAPA=prot %>% semi_join(total_genes, by="Name")
This shows we have 4209 genes with data for both. Now I can back filter the total peaks for the genes in prot_inAPA
total_Cov_wProt= total_Cov %>% semi_join(prot_inAPA,by="Name")
Need to give Stephens lab: unadjusted R-squared, and n and p for each protein, where p is the number of apa s that you are using in the regression and n is the number of samples?
To do this I need to get the overlapping individuals:
protInd=colnames(prot)[5:(dim(prot)[2]-2)]
ApaInd=c()
for (i in colnames(total_Cov)[12:ncol(total_Cov)]){
num=substr(i,2,6)
name=paste("NA", num, sep="")
ApaInd=c(ApaInd, name)
}
IndBoth=intersect(protInd,ApaInd)
length(IndBoth)
[1] 29
I have 29 individuals in common for these.
I need to make a matrix for each gene. It will have a row for each commmon individual. A column for the protein, and a column for each assocaited peaks. After I have this I will be able to get the R2 value.
First create a function.
get_R2=function(gene, Cov=total_Cov, prot=prot_inAPA, apaName=ApaInd){
gene_un= enexpr(gene)
#deal with APA
genePeaks=total_Cov %>% filter(Name==!!gene_un)
n=nrow(genePeaks)
drop_col=c('chr','Chr', 'start','end','strand','Name', 'Start','End','Strand','Length')
genePeaks_sm= genePeaks %>% select(-one_of(drop_col))
colnames(genePeaks_sm)=c("peak", ApaInd)
genePeakM=genePeaks_sm %>% column_to_rownames(var="peak") %>% t()
genePeakDF=as.data.frame(genePeakM) %>% rownames_to_column(var="Ind")
#deal with prot
drop_col_prot= c("Chr", "start", "end", "ID", "Name", "Source")
geneProt=prot %>% filter(Name==!!gene_un) %>% select(-one_of(drop_col_prot)) %>% t()
colnames(geneProt)="prot"
#print(dim(geneProt))
geneProt_df=as.data.frame(geneProt) %>% rownames_to_column(var="Ind") %>% drop_na(prot)
#print(geneProt_df)
both=geneProt_df %>% inner_join(genePeakDF,by="Ind")
num=seq(1,n)
base="summary(lm(both$prot~"
for (i in 3:dim(both)[2]){
base=paste(base, "+both[,",i,"]",sep="")
}
code=paste(base, "))$r.squared", sep="")
r2=eval(parse(text=code))
final=c(gene, r2,nrow(both),n)
return(final)
}
Run this on all genes:
final_matrix=matrix(c("gene","r2","n","p"),1,4)
for (i in prot_inAPA$Name){
final_matrix= rbind(final_matrix,get_R2(i))
}
Make this a dataframe:
final_df=as.data.frame(final_matrix)
colnames(final_df)=as.character(unlist(final_df[1,]))
final_df <- final_df[-1 ,]
save(final_df,file="../data/protAndAPAlmRes.Rda")
When the stephens lab ran ASH on this, all R2 shrunk to zero. ##Protein and expression
I want to look at the the protein ~ expression model. This is easier because there is always only 1 expression level per gene.
rna=read.table("../data/mol_pheno/fastqtl_qqnorm_RNAseq_phase2.fixed.noChr.txt",header=T,stringsAsFactors = F) %>% separate(ID, into=c("ID", "ver"), sep ="[.]") %>% inner_join(geneNames, by="ID")
I want to filter this by genes we have proteinn for.
rnaandProt= rna %>% semi_join(prot, by="Name")
These are the gene I want to run the analsis on. I will make a similar function to run the linear model.
get_R2_Protexp=function(gene, exp=rnaandProt, protein=prot){
#gene_un= enexpr(gene)
exp_gene=exp %>% filter(Name ==gene)
#print(exp_gene)
drop_col_exp= c("Chr", "start", "end", "ID", "ver", "Name", "Source")
exp_gene_sm= exp_gene %>% select(-one_of(drop_col_exp)) %>% t()
colnames(exp_gene_sm)="Expression"
exp_gene_df=as.data.frame(exp_gene_sm) %>% rownames_to_column(var="Ind")
#print(exp_gene_df)
drop_col_p= c("Chr", "start", "end", "ID", "Name", "Source")
prot_gene= protein %>% filter(Name ==gene)%>% select(-one_of(drop_col_p)) %>% t()
colnames(prot_gene)= "Protein"
prot_gene_df= as.data.frame(prot_gene) %>% rownames_to_column(var="Ind") %>% drop_na(Protein)
#print(prot_gene_df)
both=prot_gene_df %>% inner_join(exp_gene_df, by="Ind")
#print(both)
r2=summary(lm(both$Protein ~both$Expression))$r.squared
#print(r2)
final=c(gene, r2, nrow(both))
}
test=get_R2_Protexp(gene="ISG15")
Run on all genes in rnaandProt
final_matrix_protExp=matrix(c("gene","r2","n"),1,3)
for (i in rnaandProt$Name){
final_matrix_protExp= rbind(final_matrix_protExp,get_R2_Protexp(i))
}
Fix as df and save
final_df_protExp=as.data.frame(final_matrix_protExp)
colnames(final_df_protExp)=as.character(unlist(final_df_protExp[1,]))
final_df_protExp <- final_df_protExp[-1 ,]
save(final_df_protExp,file="../data/protAndExpressionlmRes.Rda")
I need to subset the protein for genes in apa and expr.
prot_inAPAandExp=prot %>% semi_join(total_genes, by="Name") %>% semi_join(rna,by="Name")
get_R2_full=function(gene, Cov=total_Cov, prot=prot_inAPAandExp, apaName=ApaInd,exp=rna){
gene_un= enexpr(gene)
#deal with APA
genePeaks=total_Cov %>% filter(Name==!!gene_un)
n=nrow(genePeaks)
drop_col=c('chr','Chr', 'start','end','strand','Name', 'Start','End','Strand','Length')
genePeaks_sm= genePeaks %>% select(-one_of(drop_col))
colnames(genePeaks_sm)=c("peak", ApaInd)
genePeakM=genePeaks_sm %>% column_to_rownames(var="peak") %>% t()
genePeakDF=as.data.frame(genePeakM) %>% rownames_to_column(var="Ind")
#deal with prot
drop_col_prot= c("Chr", "start", "end", "ID", "Name", "Source")
geneProt=prot %>% filter(Name==!!gene_un) %>% select(-one_of(drop_col_prot)) %>% t()
colnames(geneProt)="prot"
#print(dim(geneProt))
geneProt_df=as.data.frame(geneProt) %>% rownames_to_column(var="Ind") %>% drop_na(prot)
#print(geneProt_df)
#deal with expr
exp_gene=exp %>% filter(Name ==gene)
drop_col_exp= c("Chr", "start", "end", "ID", "ver", "Name", "Source")
exp_gene_sm= exp_gene %>% select(-one_of(drop_col_exp)) %>% t()
colnames(exp_gene_sm)="Expression"
exp_gene_df=as.data.frame(exp_gene_sm) %>% rownames_to_column(var="Ind")
#make full model
both=geneProt_df %>% inner_join(exp_gene_df, by="Ind") %>% inner_join(genePeakDF,by="Ind")
num=seq(1,n)
base="summary(lm(both$prot~ both$Expression"
for (i in 4:dim(both)[2]){
base=paste(base, "+both[,",i,"]",sep="")
}
code=paste(base, "))$r.squared", sep="")
#print(code)
r2=eval(parse(text=code))
final=c(gene, r2,nrow(both),n)
return(final)
}
test_full=get_R2_full("ISG15")
Run this on all genes:
final_matrix_full=matrix(c("gene","r2","n","p"),1,4)
for (i in prot_inAPAandExp$Name){
final_matrix_full= rbind(final_matrix_full,get_R2_full(i))
}
Make this a dataframe:
final_df_full=as.data.frame(final_matrix_full)
colnames(final_df_full)=as.character(unlist(final_df_full[1,]))
final_df_full <- final_df_full[-1 ,]
save(final_df_full,file="../data/protAndAPAAndExplmRes.Rda")
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 cowplot_0.9.3 reshape2_1.4.3 forcats_0.3.0
[5] stringr_1.3.1 dplyr_0.7.6 purrr_0.2.5 readr_1.1.1
[9] tidyr_0.8.1 tibble_1.4.2 ggplot2_3.0.0 tidyverse_1.2.1
[13] workflowr_1.1.1
loaded via a namespace (and not attached):
[1] tidyselect_0.2.4 haven_1.1.2 lattice_0.20-35
[4] colorspace_1.3-2 htmltools_0.3.6 yaml_2.2.0
[7] rlang_0.2.2 R.oo_1.22.0 pillar_1.3.0
[10] glue_1.3.0 withr_2.1.2 R.utils_2.7.0
[13] modelr_0.1.2 readxl_1.1.0 bindr_0.1.1
[16] plyr_1.8.4 munsell_0.5.0 gtable_0.2.0
[19] cellranger_1.1.0 rvest_0.3.2 R.methodsS3_1.7.1
[22] evaluate_0.11 knitr_1.20 broom_0.5.0
[25] Rcpp_0.12.19 scales_1.0.0 backports_1.1.2
[28] jsonlite_1.5 hms_0.4.2 digest_0.6.17
[31] stringi_1.2.4 grid_3.5.1 rprojroot_1.3-2
[34] cli_1.0.1 tools_3.5.1 magrittr_1.5
[37] lazyeval_0.2.1 crayon_1.3.4 whisker_0.3-2
[40] pkgconfig_2.0.2 xml2_1.2.0 lubridate_1.7.4
[43] assertthat_0.2.0 rmarkdown_1.10 httr_1.3.1
[46] rstudioapi_0.8 R6_2.3.0 nlme_3.1-137
[49] git2r_0.23.0 compiler_3.5.1
This reproducible R Markdown analysis was created with workflowr 1.1.1