• Session information

Last updated: 2018-09-26

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 1c62f0b

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  analysis/callMolQTLS.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 1c62f0b Briana Mittleman 2018-09-26 add distribution of distance
    html cd3bdf8 Briana Mittleman 2018-09-26 Build site.
    Rmd 529ace6 Briana Mittleman 2018-09-26 add QTL res
    html b1bcf99 Briana Mittleman 2018-09-25 Build site.
    Rmd f4e1942 Briana Mittleman 2018-09-25 initiate all ind QTL analysis


library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started

I am using the code from peakOverlap_oppstrand.Rmd analysis to call QTLs on the full set of individuals. (still missing 4 due to genotype issues- Remove 18500, 19092 and 19193, 18497 - at 35).

Scripts:
* APAqtl_nominal_oppstrand.sh

  • APAqtl_perm_Opp.sh
cat /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total* > /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_permRes.txt

cat /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear* > /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_permRes.txt

Write a script to ad the BH correction of the permuted QTL pvalues. I will write the plots to

APAqtlpermCorrectQQplot.R

library(dplyr)


##total results
tot.perm= read.table("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_permRes.txt",head=F, stringsAsFactors=F, col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))

#BH correction
tot.perm$bh=p.adjust(tot.perm$bpval, method="fdr")

#plot qqplot
pdf("/project2/gilad/briana/threeprimeseq/output/plots/qqplot_total_APAperm.pdf") 
qqplot_total= qqplot(-log10(runif(nrow(tot.perm))), -log10(tot.perm$bpval),ylab="-log10 Total permuted pvalue", xlab="Uniform expectation", main="Total permuted pvalues for all snps")
abline(0,1)
dev.off()

#write df with BH  

write.table(tot.perm, file = "/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_permResBH.txt", col.names = T, row.names = F, quote = F)

##nuclear results  


nuc.perm= read.table("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_permRes.txt",head=F, stringsAsFactors=F, col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
nuc.perm$bh=p.adjust(nuc.perm$bpval, method="fdr")


#plot qqplot
pdf("/project2/gilad/briana/threeprimeseq/output/plots/qqplot_nuclear_APAperm.pdf") 
qqplot(-log10(runif(nrow(nuc.perm))), -log10(nuc.perm$bpval),ylab="-log10 Nuclear permuted pvalue", xlab="Uniform expectation", main="Nuclear permuted pvalues for all snps")
abline(0,1)
dev.off()

# write df with BH
write.table(nuc.perm, file = "/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_permResBH.txt", col.names = T, row.names = F, quote = F)

Write a script to run this:

run_APAqtlpermCorrectQQplot.sh

#!/bin/bash


#SBATCH --job-name=run_APAqtlpermCorrectQQplot
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_APAqtlpermCorrectQQplot.out
#SBATCH --error=run_APAqtlpermCorrectQQplot.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


Rscript APAqtlpermCorrectQQplot.R

Total results

tot_permBH=read.table("../data/perm_QTL_opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_permResBH.txt", header=T, stringsAsFactors = F)

Check to quality of the tests:

plot(tot_permBH$ppval, tot_permBH$bpval, xlab="Direct method", ylab="Beta approximation", main="Total Check plot")
abline(0, 1, col="red")

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
cd3bdf8 Briana Mittleman 2018-09-26

plot(-log10(tot_permBH$bh), main="Total BH corrected pval")
abline(h=1,col="Red")

Expand here to see past versions of unnamed-chunk-7-1.png:
Version Author Date
cd3bdf8 Briana Mittleman 2018-09-26

I am going to look how many variants pass the 10% FDR.

tot_qtl_10= tot_permBH %>% filter(-log10(bh) > 1)
nrow(tot_qtl_10)
[1] 1468

This is not accounting for the same peak in multiple genes. I want to look at the number of unique snps that are significant.

tot_qtl_10uniq= tot_permBH %>% filter(-log10(bh) > 1)  %>% summarise(n_distinct(sid)) 
tot_qtl_10uniq
  n_distinct(sid)
1             568

Nuclear results

nuc_permBH=read.table("../data/perm_QTL_opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_permResBH.txt", header=T, stringsAsFactors = F)

Check to quality of the tests:

plot(nuc_permBH$ppval, nuc_permBH$bpval, xlab="Direct method", ylab="Beta approximation", main="Nuclear Check plot")
abline(0, 1, col="red")

Expand here to see past versions of unnamed-chunk-11-1.png:
Version Author Date
cd3bdf8 Briana Mittleman 2018-09-26

plot(-log10(nuc_permBH$bh), main="Nuclear BH corrected pval")
abline(h=1,col="Red")

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
cd3bdf8 Briana Mittleman 2018-09-26

I am going to look how many variants pass the 10% FDR.

nuc_qtl_10= nuc_permBH %>% filter(-log10(bh) > 1)
nrow(nuc_qtl_10)
[1] 7025

This is not accounting for the same peak in multiple genes. I want to look at the number of unique snps that are significant.

nuc_qtl_10uniq= nuc_permBH %>% filter(-log10(bh) > 1)  %>% summarise(n_distinct(sid)) 
nuc_qtl_10uniq
  n_distinct(sid)
1            2736

Compare number of sig QTLs by FDR cuttoff

nQTL_tot=c()
FDR=seq(.05, .5, .01)
for (i in FDR){
  x=tot_permBH %>% filter(bh < i ) %>% nrow()
  nQTL_tot=c(nQTL_tot, x)
}

FDR=seq(.05, .5, .01)
nQTL_nuc=c()
for (i in FDR){
  x=nuc_permBH %>% filter(bh < i ) %>% nrow()
  nQTL_nuc=c(nQTL_nuc, x)
}

nQTL=as.data.frame(cbind(FDR, Total=nQTL_tot, Nuclear=nQTL_nuc))
nQTL_long=melt(nQTL, id.vars = "FDR")

ggplot(nQTL_long, aes(x=FDR, y=value, by=variable, col=variable)) + geom_line(size=1.5) + labs(y="Number of Significant QTLs", title="APAqtls detected by FDR cuttoff", color="Fraction")

Expand here to see past versions of unnamed-chunk-15-1.png:
Version Author Date
cd3bdf8 Briana Mittleman 2018-09-26

Explore QTLs

Look at distribution of SNP to peak in each fraction:

ggplot(nuc_qtl_10, aes(x=log10(abs(dist) + 1)) )+ geom_histogram(binwidth=.15, alpha=.5 ) + geom_histogram(data=tot_qtl_10, aes(x=log10(abs(dist) + 1)),fill="Red", alpha=.5,binwidth=.15)  +  annotate("text", x=1, y=950, col="Red", label="Total") + annotate("text", x=1, y=900, col="Black", label="Nuclear") + geom_rect(linetype=1, xmin=.5, xmax=1.5, ymin=850, ymax=1000, color="Black", alpha=0)

ggplot(nuc_qtl_10, aes(x=log10(abs(dist) + 1)) )+ geom_density( alpha=.25 ,fill="Black") + geom_density(data=tot_qtl_10, aes(x=log10(abs(dist) + 1)),fill="Red", alpha=.25)  + annotate("text", x=1, y=.77, col="Red", label="Total") + annotate("text", x=1, y=.72, col="Black", label="Nuclear") + geom_rect(linetype=1, xmin=.5, xmax=1.5, ymin=.69, ymax=.8, color="Black", alpha=0)

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2  workflowr_1.1.1 reshape2_1.4.3  forcats_0.3.0  
 [5] stringr_1.3.1   dplyr_0.7.6     purrr_0.2.5     readr_1.1.1    
 [9] tidyr_0.8.1     tibble_1.4.2    ggplot2_3.0.0   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  haven_1.1.2       lattice_0.20-35  
 [4] colorspace_1.3-2  htmltools_0.3.6   yaml_2.2.0       
 [7] rlang_0.2.2       R.oo_1.22.0       pillar_1.3.0     
[10] glue_1.3.0        withr_2.1.2       R.utils_2.7.0    
[13] modelr_0.1.2      readxl_1.1.0      bindr_0.1.1      
[16] plyr_1.8.4        munsell_0.5.0     gtable_0.2.0     
[19] cellranger_1.1.0  rvest_0.3.2       R.methodsS3_1.7.1
[22] evaluate_0.11     labeling_0.3      knitr_1.20       
[25] broom_0.5.0       Rcpp_0.12.18      scales_1.0.0     
[28] backports_1.1.2   jsonlite_1.5      hms_0.4.2        
[31] digest_0.6.16     stringi_1.2.4     grid_3.5.1       
[34] rprojroot_1.3-2   cli_1.0.0         tools_3.5.1      
[37] magrittr_1.5      lazyeval_0.2.1    crayon_1.3.4     
[40] whisker_0.3-2     pkgconfig_2.0.2   xml2_1.2.0       
[43] lubridate_1.7.4   assertthat_0.2.0  rmarkdown_1.10   
[46] httr_1.3.1        rstudioapi_0.7    R6_2.2.2         
[49] nlme_3.1-137      git2r_0.23.0      compiler_3.5.1   



This reproducible R Markdown analysis was created with workflowr 1.1.1