Last updated: 2018-09-26
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/callMolQTLS.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/NuclearApaQTLs.txt
Untracked: data/RNAkalisto/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nuc6up/
Untracked: data/other_qtls/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_opp/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/test.max2.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 1c62f0b | Briana Mittleman | 2018-09-26 | add distribution of distance |
html | cd3bdf8 | Briana Mittleman | 2018-09-26 | Build site. |
Rmd | 529ace6 | Briana Mittleman | 2018-09-26 | add QTL res |
html | b1bcf99 | Briana Mittleman | 2018-09-25 | Build site. |
Rmd | f4e1942 | Briana Mittleman | 2018-09-25 | initiate all ind QTL analysis |
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.3.1
✔ readr 1.1.1 ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
I am using the code from peakOverlap_oppstrand.Rmd analysis to call QTLs on the full set of individuals. (still missing 4 due to genotype issues- Remove 18500, 19092 and 19193, 18497 - at 35).
Scripts:
* APAqtl_nominal_oppstrand.sh
cat /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total* > /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_permRes.txt
cat /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear* > /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_permRes.txt
Write a script to ad the BH correction of the permuted QTL pvalues. I will write the plots to
APAqtlpermCorrectQQplot.R
library(dplyr)
##total results
tot.perm= read.table("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_permRes.txt",head=F, stringsAsFactors=F, col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
#BH correction
tot.perm$bh=p.adjust(tot.perm$bpval, method="fdr")
#plot qqplot
pdf("/project2/gilad/briana/threeprimeseq/output/plots/qqplot_total_APAperm.pdf")
qqplot_total= qqplot(-log10(runif(nrow(tot.perm))), -log10(tot.perm$bpval),ylab="-log10 Total permuted pvalue", xlab="Uniform expectation", main="Total permuted pvalues for all snps")
abline(0,1)
dev.off()
#write df with BH
write.table(tot.perm, file = "/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_permResBH.txt", col.names = T, row.names = F, quote = F)
##nuclear results
nuc.perm= read.table("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_permRes.txt",head=F, stringsAsFactors=F, col.names = c("pid", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"))
nuc.perm$bh=p.adjust(nuc.perm$bpval, method="fdr")
#plot qqplot
pdf("/project2/gilad/briana/threeprimeseq/output/plots/qqplot_nuclear_APAperm.pdf")
qqplot(-log10(runif(nrow(nuc.perm))), -log10(nuc.perm$bpval),ylab="-log10 Nuclear permuted pvalue", xlab="Uniform expectation", main="Nuclear permuted pvalues for all snps")
abline(0,1)
dev.off()
# write df with BH
write.table(nuc.perm, file = "/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_Opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_permResBH.txt", col.names = T, row.names = F, quote = F)
Write a script to run this:
run_APAqtlpermCorrectQQplot.sh
#!/bin/bash
#SBATCH --job-name=run_APAqtlpermCorrectQQplot
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_APAqtlpermCorrectQQplot.out
#SBATCH --error=run_APAqtlpermCorrectQQplot.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
Rscript APAqtlpermCorrectQQplot.R
tot_permBH=read.table("../data/perm_QTL_opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_permResBH.txt", header=T, stringsAsFactors = F)
Check to quality of the tests:
plot(tot_permBH$ppval, tot_permBH$bpval, xlab="Direct method", ylab="Beta approximation", main="Total Check plot")
abline(0, 1, col="red")
Version | Author | Date |
---|---|---|
cd3bdf8 | Briana Mittleman | 2018-09-26 |
plot(-log10(tot_permBH$bh), main="Total BH corrected pval")
abline(h=1,col="Red")
Version | Author | Date |
---|---|---|
cd3bdf8 | Briana Mittleman | 2018-09-26 |
I am going to look how many variants pass the 10% FDR.
tot_qtl_10= tot_permBH %>% filter(-log10(bh) > 1)
nrow(tot_qtl_10)
[1] 1468
This is not accounting for the same peak in multiple genes. I want to look at the number of unique snps that are significant.
tot_qtl_10uniq= tot_permBH %>% filter(-log10(bh) > 1) %>% summarise(n_distinct(sid))
tot_qtl_10uniq
n_distinct(sid)
1 568
nuc_permBH=read.table("../data/perm_QTL_opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_permResBH.txt", header=T, stringsAsFactors = F)
Check to quality of the tests:
plot(nuc_permBH$ppval, nuc_permBH$bpval, xlab="Direct method", ylab="Beta approximation", main="Nuclear Check plot")
abline(0, 1, col="red")
Version | Author | Date |
---|---|---|
cd3bdf8 | Briana Mittleman | 2018-09-26 |
plot(-log10(nuc_permBH$bh), main="Nuclear BH corrected pval")
abline(h=1,col="Red")
Version | Author | Date |
---|---|---|
cd3bdf8 | Briana Mittleman | 2018-09-26 |
I am going to look how many variants pass the 10% FDR.
nuc_qtl_10= nuc_permBH %>% filter(-log10(bh) > 1)
nrow(nuc_qtl_10)
[1] 7025
This is not accounting for the same peak in multiple genes. I want to look at the number of unique snps that are significant.
nuc_qtl_10uniq= nuc_permBH %>% filter(-log10(bh) > 1) %>% summarise(n_distinct(sid))
nuc_qtl_10uniq
n_distinct(sid)
1 2736
nQTL_tot=c()
FDR=seq(.05, .5, .01)
for (i in FDR){
x=tot_permBH %>% filter(bh < i ) %>% nrow()
nQTL_tot=c(nQTL_tot, x)
}
FDR=seq(.05, .5, .01)
nQTL_nuc=c()
for (i in FDR){
x=nuc_permBH %>% filter(bh < i ) %>% nrow()
nQTL_nuc=c(nQTL_nuc, x)
}
nQTL=as.data.frame(cbind(FDR, Total=nQTL_tot, Nuclear=nQTL_nuc))
nQTL_long=melt(nQTL, id.vars = "FDR")
ggplot(nQTL_long, aes(x=FDR, y=value, by=variable, col=variable)) + geom_line(size=1.5) + labs(y="Number of Significant QTLs", title="APAqtls detected by FDR cuttoff", color="Fraction")
Version | Author | Date |
---|---|---|
cd3bdf8 | Briana Mittleman | 2018-09-26 |
Look at distribution of SNP to peak in each fraction:
ggplot(nuc_qtl_10, aes(x=log10(abs(dist) + 1)) )+ geom_histogram(binwidth=.15, alpha=.5 ) + geom_histogram(data=tot_qtl_10, aes(x=log10(abs(dist) + 1)),fill="Red", alpha=.5,binwidth=.15) + annotate("text", x=1, y=950, col="Red", label="Total") + annotate("text", x=1, y=900, col="Black", label="Nuclear") + geom_rect(linetype=1, xmin=.5, xmax=1.5, ymin=850, ymax=1000, color="Black", alpha=0)
ggplot(nuc_qtl_10, aes(x=log10(abs(dist) + 1)) )+ geom_density( alpha=.25 ,fill="Black") + geom_density(data=tot_qtl_10, aes(x=log10(abs(dist) + 1)),fill="Red", alpha=.25) + annotate("text", x=1, y=.77, col="Red", label="Total") + annotate("text", x=1, y=.72, col="Black", label="Nuclear") + geom_rect(linetype=1, xmin=.5, xmax=1.5, ymin=.69, ymax=.8, color="Black", alpha=0)
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 workflowr_1.1.1 reshape2_1.4.3 forcats_0.3.0
[5] stringr_1.3.1 dplyr_0.7.6 purrr_0.2.5 readr_1.1.1
[9] tidyr_0.8.1 tibble_1.4.2 ggplot2_3.0.0 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] tidyselect_0.2.4 haven_1.1.2 lattice_0.20-35
[4] colorspace_1.3-2 htmltools_0.3.6 yaml_2.2.0
[7] rlang_0.2.2 R.oo_1.22.0 pillar_1.3.0
[10] glue_1.3.0 withr_2.1.2 R.utils_2.7.0
[13] modelr_0.1.2 readxl_1.1.0 bindr_0.1.1
[16] plyr_1.8.4 munsell_0.5.0 gtable_0.2.0
[19] cellranger_1.1.0 rvest_0.3.2 R.methodsS3_1.7.1
[22] evaluate_0.11 labeling_0.3 knitr_1.20
[25] broom_0.5.0 Rcpp_0.12.18 scales_1.0.0
[28] backports_1.1.2 jsonlite_1.5 hms_0.4.2
[31] digest_0.6.16 stringi_1.2.4 grid_3.5.1
[34] rprojroot_1.3-2 cli_1.0.0 tools_3.5.1
[37] magrittr_1.5 lazyeval_0.2.1 crayon_1.3.4
[40] whisker_0.3-2 pkgconfig_2.0.2 xml2_1.2.0
[43] lubridate_1.7.4 assertthat_0.2.0 rmarkdown_1.10
[46] httr_1.3.1 rstudioapi_0.7 R6_2.2.2
[49] nlme_3.1-137 git2r_0.23.0 compiler_3.5.1
This reproducible R Markdown analysis was created with workflowr 1.1.1