• Gene Level
  • SNP level
    • Total
    • Nuclear
    • Significance
    • CLoser to a global scale
  • Session information

Last updated: 2018-10-24

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: d8c6f3c

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/genometrack_figs.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/ChromHmmOverlap/
        Untracked:  data/GM12878.chromHMM.bed
        Untracked:  data/GM12878.chromHMM.txt
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/PeaksUsed/
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/diff_iso_trans/
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/mol_pheno/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/39indQC.Rmd
        Modified:   analysis/PeakToGeneAssignment.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd d8c6f3c Briana Mittleman 2018-10-24 add ven diagrams
    Rmd 70a8d68 Briana Mittleman 2018-10-23 add anova pvalue to examples
    html 5649809 Briana Mittleman 2018-10-22 Build site.
    Rmd c8dbaf0 Briana Mittleman 2018-10-22 add apa prot rna overlap


I want to use this analysis to look at the genes with a APAQTL and a protein QTL. I am trying to understand how many of these are independent of RNA.

I will first look at genes with significant QTLs in both phenotypes. I can use the pipeline I created in https://brimittleman.github.io/threeprimeseq/swarmPlots_QTLs.html to vizualize these snps.

library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(data.table)

Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':

    between, first, last
The following object is masked from 'package:purrr':

    transpose
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave
library(ggpubr)
Loading required package: magrittr

Attaching package: 'magrittr'
The following object is masked from 'package:purrr':

    set_names
The following object is masked from 'package:tidyr':

    extract

Attaching package: 'ggpubr'
The following object is masked from 'package:cowplot':

    get_legend
library(VennDiagram)
Loading required package: grid
Loading required package: futile.logger

Attaching package: 'VennDiagram'
The following object is masked from 'package:ggpubr':

    rotate
library(gridExtra)

Attaching package: 'gridExtra'
The following object is masked from 'package:dplyr':

    combine

Gene Names:

geneNames=read.table("../data/ensemble_to_genename.txt", stringsAsFactors = F, header = T, sep="\t")

Significant APA QTLS:

nuclearAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt", stringsAsFactors = F, header = T) %>% separate(pid, into=c("chr", "start", "end", "id"), sep=":") %>% separate(id, into=c("Gene.name", "strand", "peaknum"), sep="_") %>% dplyr::filter(-log10(bh)>1)
totalAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt", stringsAsFactors = F, header=T)  %>% separate(pid, into=c("chr", "start", "end", "id"), sep=":") %>% separate(id, into=c("Gene.name", "strand", "peaknum"), sep="_") %>% dplyr::filter(-log10(bh)>1)

Significant Protien QTLs

protQTL=read.table("../data/other_qtls/fastqtl_qqnorm_prot.fixed.perm.out", col.names = c("Gene.stable.ID", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval"),stringsAsFactors=F) %>% inner_join(geneNames, by="Gene.stable.ID") %>% dplyr::select("Gene.name", "nvar", "shape1", "shape2", "dummy", "sid", "dist", "npval", "slope", "ppval", "bpval")

protQTL$bh=p.adjust(protQTL$bpval, method="fdr")
protQTL_sig= protQTL %>% dplyr::filter(-log10(bh)>1)

Gene Level

Overlap the QTLs by gene name:

genesBothTot=protQTL_sig %>%  inner_join(totalAPA, by=c("Gene.name"))
genesBotNuc=protQTL_sig %>%  inner_join(nuclearAPA, by=c("Gene.name"))

These are the genes that have a significant QTL in both.They are not the same snp. This may be because I am using the permuted snps. I will use the APA snp to make the plot.

plotQTL_func= function(SNP, peak, gene){
  apaN_file=read.table(paste("../data/apaExamp/qtlSNP_PeakAPANuclear.", SNP, peak, ".txt", sep = "" ), header=T)
  apaT_file=read.table(paste("../data/apaExamp/qtlSNP_PeakAPATotal.", SNP, peak, ".txt", sep = "" ), header=T)
  su30_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_4su_30_", SNP, gene, ".txt", sep=""), header = T)
  su60_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_4su_60_", SNP, gene, ".txt", sep=""), header=T)
  RNA_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_RNAseq_", SNP, gene, ".txt", sep=""),header=T)
  RNAg_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_RNAseqGeuvadis_", SNP, gene, ".txt", sep=""), header = T)
  ribo_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_ribo_", SNP, gene, ".txt", sep=""),header=T)
  prot_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_prot.", SNP, gene, ".txt", sep=""), header=T)

  
  ggplot_func= function(file, molPhen,GENE,allOverlap_T){
    file = file %>% mutate(genotype=Allele1 + Allele2)
    file$genotype= as.factor(as.character(file$genotype))
    plot=ggplot(file, aes(y=Pheno, x=genotype, by=genotype, fill=genotype)) + geom_boxplot(width=.25) + geom_jitter() + labs(y="Phenotpye",title=paste(molPhen, GENE, sep=": ")) + scale_fill_brewer(palette="Paired") + stat_compare_means(method = "anova",  label.y.npc = "top")
    return(plot)
  }

  
  apaNplot=ggplot_func(apaN_file, "Apa Nuclear", gene)
  apaTplot=ggplot_func(apaT_file, "Apa Total", gene)
  su30plot=ggplot_func(su30_file, "4su30",gene)
  su60plot=ggplot_func(su60_file, "4su60",gene)
  RNAplot=ggplot_func(RNA_file, "RNA",gene)
  RNAgPlot=ggplot_func(RNAg_file, "RNAg",gene)
  riboPlot= ggplot_func(ribo_file, "Ribo",gene)
  protplot=ggplot_func(prot_file, "Protein",gene)
  
  full_plot= plot_grid(apaNplot,apaTplot, RNAplot, protplot,nrow=2)
  return (full_plot)
}

Total:

  • MRPL43 peak44585 10:102740271
grep MRPL43 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000055950


python createQTLsnpAPAPhenTable.py 10 10:102740271  peak44585 Total
python createQTLsnpAPAPhenTable.py 10 10:102740271  peak44585  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "10" "10:102740271" "ENSG00000055950"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*10:102740271* .
plotQTL_func(SNP="10:102740271", peak="peak44585", gene="ENSG00000055950")

Expand here to see past versions of unnamed-chunk-8-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

Nuclear:

  • SWAP70 peak49384 11:9732917
grep SWAP70 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000133789


python createQTLsnpAPAPhenTable.py 11 11:9732917  peak49384 Total
python createQTLsnpAPAPhenTable.py 11 11:9732917  peak49384  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "11" "11:9732917" "ENSG00000133789"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*11:9732917* .
plotQTL_func(SNP="11:9732917", peak="peak49384", gene="ENSG00000133789")

Expand here to see past versions of unnamed-chunk-10-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

  • DHRS7B peak132739 17:21102458
grep DHRS7B /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000109016


python createQTLsnpAPAPhenTable.py 17 17:21102458  peak132739 Total
python createQTLsnpAPAPhenTable.py 17 17:21102458  peak132739  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "17" "17:21102458" "ENSG00000109016"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*17:21102458* .
plotQTL_func(SNP="17:21102458", peak="peak132739", gene="ENSG00000109016")

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

  • UBA6 peak240167 4:68502794
grep UBA6 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000033178


python createQTLsnpAPAPhenTable.py 4 4:68502794  peak240167 Total
python createQTLsnpAPAPhenTable.py 4 4:68502794  peak240167  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "4" "4:68502794" "ENSG00000033178"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*4:68502794* .
plotQTL_func(SNP="4:68502794", peak="peak240167", gene="ENSG00000033178")

Expand here to see past versions of unnamed-chunk-14-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

This is not the most effective way to do this because I am overlapping by gene then looking at the effect of the apaQTL snp. I want a method that will look directly at the effect of one snp. I can use the overlap files I created based on the APA qtls in other phenotypes. I can overlap the phenotypes and look for snps that have low pvalues in APA and protien.

SNP level

Total

I want the overlap where I started in APA qtls and found the snp in the mol file. I am starting with the total.

totAPAinsu30=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPval4su30.txt", header = T, stringsAsFactors = F)
totAPAinsu60=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPval4su60.txt", header = T, stringsAsFactors = F)
totAPAinRNA=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalRNA.txt", header = T, stringsAsFactors = F)
totAPAinRNAg=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalRNAg.txt", header = T, stringsAsFactors = F)
totAPAinRibo=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalribo.txt", header = T, stringsAsFactors = F)
totAPAinProt=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalProtein.txt", header = T, stringsAsFactors = F)


allOverlap_T=totAPAinsu30 %>%  full_join(totAPAinsu60, by=c("Gene.name", "sid")) %>%  full_join(totAPAinRNA, by=c("Gene.name", "sid")) %>%  full_join(totAPAinRNAg, by=c("Gene.name", "sid"))  %>%  full_join(totAPAinRibo, by=c("Gene.name", "sid"))  %>%  full_join(totAPAinProt, by=c("Gene.name", "sid")) 

colnames(allOverlap_T)=c("Gene.name", "sid", "su30", "su60", "RNA", "RNAg", "ribo", "prot")
plot(sort(allOverlap_T$prot))

Expand here to see past versions of unnamed-chunk-16-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

plot(allOverlap_T$RNA ~ allOverlap_T$prot)

Expand here to see past versions of unnamed-chunk-16-2.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

I want to make a ggplot of these where I color them by RNA pvalue:

allOverlap_T_lowP=allOverlap_T %>% dplyr::filter(prot<.05)
ggplot(allOverlap_T_lowP, aes(x=RNA, y=prot)) + geom_point()+ geom_text(aes(label=Gene.name),hjust=0, vjust=0) + geom_vline(xintercept = .05, col="red")

Expand here to see past versions of unnamed-chunk-17-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

ggplot(allOverlap_T_lowP, aes(x=RNAg, y=prot)) + geom_point()+ geom_text(aes(label=Gene.name),hjust=0, vjust=0) + geom_vline(xintercept = .05, col="red")

Expand here to see past versions of unnamed-chunk-18-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

I can use these to look for examples of SNPs that are significant in prot but not in RNA.

Look at some of these:

Total RNA:
* SACM1L
* EBI3
* FBXL18
* PSMF1
* COX17

Total RNAg:
* EBI3
* FBXL18
* APBB1IP * PSMF1

Look at some examples of genes that come up in both.

EBI3 peak152751 19:4236475

Expressed in B lymphocytes in response to EB virus.

grep EBI3 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000105246


python createQTLsnpAPAPhenTable.py 19 19:4236475  peak152751 Total
python createQTLsnpAPAPhenTable.py 19 19:4236475  peak152751  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "19" "19:4236475" "ENSG00000105246"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*19:4236475* .
plotQTL_func(SNP="19:4236475", peak="peak152751", gene="ENSG00000105246")

Expand here to see past versions of unnamed-chunk-20-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

FBXL18 peak291746 7:5524129

“The protein encoded by this gene is a member of a family of proteins that contain an approximately 40-amino acid F-box motif. This motif is important for interaction with SKP1 and for targeting some proteins for degradation.” genecards.org

grep FBXL18 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000155034


python createQTLsnpAPAPhenTable.py 7 7:5524129  peak291746 Total
python createQTLsnpAPAPhenTable.py 7 7:5524129  peak291746  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "7" "7:5524129" "ENSG00000155034"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*7:5524129* .
plotQTL_func(SNP="7:5524129", peak="peak291746", gene="ENSG00000155034")
Warning: Removed 4 rows containing non-finite values (stat_boxplot).
Warning: Removed 4 rows containing non-finite values (stat_compare_means).
Warning: Removed 4 rows containing missing values (geom_point).

Expand here to see past versions of unnamed-chunk-22-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

  • PSMF1 peak193648 20:1131308

This gene codes the 26S proteasome.

grep PSMF1 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000125818


python createQTLsnpAPAPhenTable.py 20 20:1131308   peak193648 Total
python createQTLsnpAPAPhenTable.py 20 20:1131308   peak193648  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "20" "20:1131308" "ENSG00000125818"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*20:1131308* .
plotQTL_func(SNP="20:1131308", peak="peak193648", gene="ENSG00000125818")
Warning: Removed 2 rows containing non-finite values (stat_boxplot).
Warning: Removed 2 rows containing non-finite values (stat_compare_means).
Warning: Removed 2 rows containing missing values (geom_point).

Expand here to see past versions of unnamed-chunk-24-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

I want to know the number of these that are <.05 in protien and above .1 in RNA

allOverlap_T_lowP_highRNA=allOverlap_T %>% dplyr::filter(prot<.05) %>% dplyr::filter(RNA>.05)
allOverlap_T_lowP_highRNAg=allOverlap_T %>% dplyr::filter(prot<.05) %>% dplyr::filter(RNAg>.05)

8 snps with < .05 for protein. Of those 6 have RNA pvalues greater than .05

6/8
[1] 0.75

Nuclear

nucAPAinsu30=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPval4su30.txt", header = T, stringsAsFactors = F)
nucAPAinsu60=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPval4su60.txt", header = T, stringsAsFactors = F)
nucAPAinRNA=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalRNA.txt", header = T, stringsAsFactors = F)
nucAPAinRNAg=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalRNAg.txt", header = T, stringsAsFactors = F)
nucAPAinRibo=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalribo.txt", header = T, stringsAsFactors = F)
nucAPAinProt=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalProtein.txt", header = T, stringsAsFactors = F)


allOverlap_N=nucAPAinsu30 %>%  full_join(nucAPAinsu60, by=c("Gene.name", "sid")) %>%  full_join(nucAPAinRNA, by=c("Gene.name", "sid")) %>%  full_join(nucAPAinRNAg, by=c("Gene.name", "sid"))  %>%  full_join(nucAPAinRibo, by=c("Gene.name", "sid"))  %>%  full_join(nucAPAinProt, by=c("Gene.name", "sid")) 

colnames(allOverlap_N)=c("Gene.name", "sid", "su30", "su60", "RNA", "RNAg", "ribo", "prot")
#subset by prot < .05  

allOverlap_N_lowP=allOverlap_N %>% dplyr::filter(prot<.05)
ggplot(allOverlap_N_lowP, aes(x=RNA, y=prot)) + geom_point()+ geom_text(aes(label=Gene.name),hjust=0, vjust=0)+ geom_vline(xintercept = .05, col="red")

Expand here to see past versions of unnamed-chunk-28-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

ggplot(allOverlap_N_lowP, aes(x=RNAg, y=prot)) + geom_point()+ geom_text(aes(label=Gene.name),hjust=0, vjust=0)+ geom_vline(xintercept = .05, col="red")

Expand here to see past versions of unnamed-chunk-29-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

allOverlap_N_lowP_highRNA=allOverlap_N %>% dplyr::filter(prot<.05) %>% dplyr::filter(RNA>.05)
allOverlap_N_lowP_highRNAg=allOverlap_N %>% dplyr::filter(prot<.05) %>% dplyr::filter(RNAg>.05)

39 snps with < .05 for protein. Of those 28 have RNA pvalues greater than .05

28/39
[1] 0.7179487
inBothN= allOverlap_N_lowP_highRNAg %>%  inner_join(allOverlap_N_lowP_highRNA, by=c("Gene.name", "sid", "su30", "su60", "RNA", "RNAg", "ribo", "prot")) %>% arrange(desc(RNA))
inBothN$Gene.name[1:5]
[1] "MSMO1"  "LYAR"   "CD2BP2" "KDM2A"  "RINT1" 
  • MSMO1 4:166260601 peak249109

contains metal binding motifs, known alternative splice isoforms

grep MSMO1 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000052802


python createQTLsnpAPAPhenTable.py 4 4:166260601  peak249109 Total
python createQTLsnpAPAPhenTable.py 4 4:166260601  peak249109  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "4" "4:166260601" "ENSG00000052802"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*4:166260601* .
plotQTL_func(SNP="4:166260601", peak="peak249109", gene="ENSG00000052802")
Warning: Removed 3 rows containing non-finite values (stat_boxplot).
Warning: Removed 3 rows containing non-finite values (stat_compare_means).
Warning: Removed 3 rows containing missing values (geom_point).

Expand here to see past versions of unnamed-chunk-35-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

  • LYAR peak235215 4:4196045

involved in processing pre-rRNA

grep LYAR /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000145220


python createQTLsnpAPAPhenTable.py 4 4:4196045  peak235215 Total
python createQTLsnpAPAPhenTable.py 4 4:4196045  peak235215  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "4" "4:4196045" "ENSG00000145220"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*4:4196045* .
plotQTL_func(SNP="4:4196045", peak="peak235215", gene="ENSG00000145220")

Expand here to see past versions of unnamed-chunk-37-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

CD2BP2 peak122237 16:29898001

From genecards: “in the cytoplasm, the encoded protein binds the cytoplasmic tail of human surface antigen CD2 via its C-terminal GYF domain, and regulate CD2-triggered T lymphocyte activation. In the nucleus, this protein is a component of the U5 small nuclear ribonucleoprotein complex and is involved in RNA splicing.”

grep CD2BP2 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000169217


python createQTLsnpAPAPhenTable.py 16 16:29898001 peak122237 Total
python createQTLsnpAPAPhenTable.py 16 16:29898001 peak122237  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "16" "16:29898001" "ENSG00000169217"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*16:29898001* .
plotQTL_func(SNP="16:29898001", peak="peak122237", gene="ENSG00000169217")
Warning: Removed 5 rows containing non-finite values (stat_boxplot).
Warning: Removed 5 rows containing non-finite values (stat_compare_means).
Warning: Removed 5 rows containing missing values (geom_point).

Expand here to see past versions of unnamed-chunk-39-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

KDM2A peak55622 11:66851583

grep KDM2A /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000173120


python createQTLsnpAPAPhenTable.py 11 11:66851583 peak55622 Total
python createQTLsnpAPAPhenTable.py 11 11:66851583 peak55622  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "11" "11:66851583" "ENSG00000173120"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*11:66851583* .
plotQTL_func(SNP="11:66851583", peak="peak55622", gene="ENSG00000173120")
Warning: Removed 8 rows containing non-finite values (stat_boxplot).
Warning: Removed 8 rows containing non-finite values (stat_compare_means).
Warning: Removed 8 rows containing missing values (geom_point).

Expand here to see past versions of unnamed-chunk-41-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

RINT1 peak303436 7:105155320

Interacts with double strand break repair protiens, regulates cell cycle and telomere length

grep RINT1 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ENSG00000135249


python createQTLsnpAPAPhenTable.py 7 7:105155320 peak303436 Total
python createQTLsnpAPAPhenTable.py 7 7:105155320 peak303436  Nuclear

sbatch run_createQTLsnpMolPhenTable.sh "7" "7:105155320" "ENSG00000135249"

#into apaExamp
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*7:105155320* .
plotQTL_func(SNP="7:105155320", peak="peak303436", gene="ENSG00000135249")
Warning: Removed 2 rows containing non-finite values (stat_boxplot).
Warning: Removed 2 rows containing non-finite values (stat_compare_means).
Warning: Removed 2 rows containing missing values (geom_point).

Expand here to see past versions of unnamed-chunk-43-1.png:
Version Author Date
5649809 Briana Mittleman 2018-10-22

Significance

In the next step I need to add significance to the boxplots and think more about the significance cutoffs.

Maybe I can compare 2 other phenotypes for <.05 and >.05 to see if the percentage is less than what I see for RNA and protein.

sigProt=allOverlap_N_lowP %>% nrow()
paste("Sig Prot", sigProt, sep=" ")
[1] "Sig Prot 39"
allOverlap_N_lowP_higrna=allOverlap_N %>% dplyr::filter(prot<.05) %>% dplyr::filter(RNA>.05) %>%nrow()
paste("Sig Prot not RNA", allOverlap_N_lowP_higrna, sep=" ")
[1] "Sig Prot not RNA 28"
allOverlap_N_lowP_higribo=allOverlap_N %>% dplyr::filter(prot<.05) %>% dplyr::filter(ribo>.05) %>%nrow()
paste("Sig Prot not ribo", allOverlap_N_lowP_higribo, sep=" ")
[1] "Sig Prot not ribo 23"
allOverlap_N_lowP_higsu30=allOverlap_N %>% dplyr::filter(prot<.05) %>% dplyr::filter(su30>.05) %>% nrow()
paste("Sig Prot not 4su30", allOverlap_N_lowP_higsu30, sep=" ")
[1] "Sig Prot not 4su30 31"
allOverlap_N_lowP_higsu60=allOverlap_N %>% dplyr::filter(prot<.05) %>% dplyr::filter(su60>.05) %>% nrow()
paste("Sig Prot not 4su60", allOverlap_N_lowP_higsu60, sep=" ")
[1] "Sig Prot not 4su60 27"
sigProtT=allOverlap_T_lowP %>% nrow()
paste("Sig Prot", sigProtT, sep=" ")
[1] "Sig Prot 8"
allOverlap_T_lowP_higrna=allOverlap_T %>% dplyr::filter(prot<.05) %>% dplyr::filter(RNA>.05) %>%nrow()
paste("Sig Prot not RNA", allOverlap_T_lowP_higrna, sep=" ")
[1] "Sig Prot not RNA 6"
allOverlap_T_lowP_higribo=allOverlap_T %>% dplyr::filter(prot<.05) %>% dplyr::filter(ribo>.05) %>%nrow()
paste("Sig Prot not ribo", allOverlap_T_lowP_higribo, sep=" ")
[1] "Sig Prot not ribo 5"
allOverlap_T_lowP_higsu30=allOverlap_T %>% dplyr::filter(prot<.05) %>% dplyr::filter(su30>.05) %>% nrow()
paste("Sig Prot not 4su30", allOverlap_T_lowP_higsu30, sep=" ")
[1] "Sig Prot not 4su30 6"
allOverlap_T_lowP_higsu60=allOverlap_T %>% dplyr::filter(prot<.05) %>% dplyr::filter(su60>.05) %>% nrow()
paste("Sig Prot not 4su60", allOverlap_T_lowP_higsu60, sep=" ")
[1] "Sig Prot not 4su60 5"

CLoser to a global scale

In order to think about this more broadly I am going to plot overlaps:

Given all of these are APA qtls, how many are significant in:

  • protein
  • RNA and protein
  • RNA but not protein
  • Not in RNA or Protein

Do this first for total:

p_N=allOverlap_N %>% filter(prot<.05) %>% nrow()
RP_N=allOverlap_N %>% filter(prot<.05 & RNA <.05) %>% nrow()
RnotP_N=allOverlap_N %>% filter(prot>.05 & RNA <.05) %>% nrow()
notRnotP_N=allOverlap_N %>% filter(prot>.05 & RNA >.05) %>% nrow()
notRP_N= allOverlap_N %>% filter(prot<.05 & RNA >.05) %>% nrow()


overlapNames=c("Protein", "RNAandProtein", "RNAnotProt", "Neither", "ProteinnotRNA")
NucRPoverlap=c(p_N/nrow(allOverlap_N),RP_N/nrow(allOverlap_N), RnotP_N/nrow(allOverlap_N), notRnotP_N/nrow(allOverlap_N),notRP_N/nrow(allOverlap_N) )


NucOverlapDF=data.frame(overlapNames,NucRPoverlap)
ggplot(NucOverlapDF, aes(x=overlapNames, y=NucRPoverlap)) + geom_bar(stat="identity")

DO the same for total:

p_T=allOverlap_T %>% filter(prot<.05) %>% nrow()
RP_T=allOverlap_T %>% filter(prot<.05 & RNA <.05) %>% nrow()
RnotP_T=allOverlap_T %>% filter(prot>.05 & RNA <.05) %>% nrow()
notRnotP_T=allOverlap_T %>% filter(prot>.05 & RNA >.05) %>% nrow()
notRP_T= allOverlap_T %>% filter(prot<.05 & RNA >.05) %>% nrow()

TotRPoverlap=c(p_T/nrow(allOverlap_T),RP_T/nrow(allOverlap_T), RnotP_T/nrow(allOverlap_T), notRnotP_T/nrow(allOverlap_T),notRP_T/nrow(allOverlap_T))
TotOverlapDF=data.frame(overlapNames,TotRPoverlap)
ggplot(TotOverlapDF, aes(x=overlapNames, y=TotRPoverlap)) + geom_bar(stat="identity")

allOverlapDF=TotOverlapDF %>% full_join(NucOverlapDF, by="overlapNames")

allOverlapDF_melt=melt(allOverlapDF, id.vars="overlapNames")

ggplot(allOverlapDF_melt, aes(x=overlapNames, y=value, by=variable, fill=variable)) + geom_bar(stat="identity", position="dodge") + scale_fill_manual(values=c("darkviolet", "deepskyblue3")) + labs(y="Proportion of APA QTLs", x="Category")

oT=overlapplotT=draw.pairwise.venn(area1=.08, area2=.07, cross.area = .02, category = c("Protein", "RNA"),lty = rep("solid", 2), fill = c("Blue", "Orange"), alpha = rep(0.5, 2), cat.pos = c(0, 0), cat.dist = rep(0.025, 2), euler.d = T, scaled=T)

png("../output/plots/overlapProtRNAvenT.png") 
grid.arrange(gTree(children=oT), top="Total: Protein and RNA QTL overlap", bottom="Neither=.37")

dev.off()
quartz_off_screen 
                2 
oN=overlapplotN=draw.pairwise.venn(area1=.056, area2=.096, cross.area = .016, category = c("Protein", "RNA"),lty = rep("solid", 2), fill = c("Blue", "Orange"), alpha = rep(0.5, 2), cat.pos = c(0, 0), cat.dist = rep(0.025, 2), euler.d = T, scaled=T)

png("../output/plots/overlapProtRNAvenN.png") 

grid.arrange(gTree(children=oN), top="Nuclear:Protein and RNA QTL overlap", bottom="Neither=.38")
dev.off()
quartz_off_screen 
                2 

This doesnt look statistically significant but it does look like the total fraction has more pQTLs that are not eQTLs and in the nuclear you get the opposite effect.

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] bindrcpp_0.2.2      gridExtra_2.3       VennDiagram_1.6.20 
 [4] futile.logger_1.4.3 ggpubr_0.1.8        magrittr_1.5       
 [7] cowplot_0.9.3       data.table_1.11.8   forcats_0.3.0      
[10] stringr_1.3.1       dplyr_0.7.6         purrr_0.2.5        
[13] readr_1.1.1         tidyr_0.8.1         tibble_1.4.2       
[16] ggplot2_3.0.0       tidyverse_1.2.1     workflowr_1.1.1    

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4     reshape2_1.4.3       haven_1.1.2         
 [4] lattice_0.20-35      colorspace_1.3-2     htmltools_0.3.6     
 [7] yaml_2.2.0           rlang_0.2.2          R.oo_1.22.0         
[10] pillar_1.3.0         glue_1.3.0           withr_2.1.2         
[13] R.utils_2.7.0        RColorBrewer_1.1-2   lambda.r_1.2.3      
[16] modelr_0.1.2         readxl_1.1.0         bindr_0.1.1         
[19] plyr_1.8.4           munsell_0.5.0        gtable_0.2.0        
[22] cellranger_1.1.0     rvest_0.3.2          R.methodsS3_1.7.1   
[25] evaluate_0.11        labeling_0.3         knitr_1.20          
[28] broom_0.5.0          Rcpp_0.12.19         formatR_1.5         
[31] scales_1.0.0         backports_1.1.2      jsonlite_1.5        
[34] hms_0.4.2            digest_0.6.17        stringi_1.2.4       
[37] rprojroot_1.3-2      cli_1.0.1            tools_3.5.1         
[40] lazyeval_0.2.1       futile.options_1.0.1 crayon_1.3.4        
[43] whisker_0.3-2        pkgconfig_2.0.2      xml2_1.2.0          
[46] lubridate_1.7.4      assertthat_0.2.0     rmarkdown_1.10      
[49] httr_1.3.1           rstudioapi_0.8       R6_2.3.0            
[52] nlme_3.1-137         git2r_0.23.0         compiler_3.5.1      



This reproducible R Markdown analysis was created with workflowr 1.1.1