Last updated: 2018-10-09
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/genometrack_figs.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/NuclearApaQTLs.txt
Untracked: data/RNAkalisto/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/apaExamp/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/ensemble_to_genename.txt
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/mol_overlap/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/other_qtls/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/39indQC.Rmd
Modified: analysis/PeakToGeneAssignment.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. In the OverlapMolQTL analysis I looked at significant molecular QTLs and asked if they are also significant snp:gene pairs in the ApaQTLs. In this analysis, I will look at the significant ApaQTLs and ask if the snp:gene pairs are significant in the other molecular phenotypes. I expect enrichment of low pvalues in protQTLs but less in RNA.
I am going to complete this analysis first for the totalAPA QTLs.
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(reshape2)
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.3.1
✔ readr 1.1.1 ✔ forcats 0.3.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(VennDiagram)
Loading required package: grid
Loading required package: futile.logger
library(data.table)
Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':
between, first, last
The following object is masked from 'package:purrr':
transpose
The following objects are masked from 'package:reshape2':
dcast, melt
library(qvalue)
set.seed(327)
sigTotAPAinMolPheno.R
#!/bin/rscripts
#this script creates takes in the permuted APAQTL results for the total fraction and nominal pvalues from the molecular phenotpye molecular phenotype
library(dplyr)
library(tidyr)
library(ggplot2)
library(readr)
library(optparse)
geneNames=read.table("/project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt", sep="\t", header=T, stringsAsFactors = F)
tot_perm=read.table("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt", header = T,stringsAsFactors=F)
sigSNPgene=tot_perm %>% filter(-log10(bh)>1) %>% separate(pid, into=c("chr", "start", "end", "id"), sep=":") %>% separate(id, into=c("Gene.name", "strand", "peaknum"), sep="_") %>% dplyr::select(Gene.name, sid, bh) %>% group_by(Gene.name) %>% top_n(-1, bh) %>% ungroup() %>% dplyr::select(Gene.name, sid)
option_list = list(
make_option(c("-M", "--molNom"), action="store", default=NA, type='character', help="molecular Nom results"),
make_option(c("-O", "--output"), action="store", default=NA, type='character', help="output file for total APA sig snps in mol qtl")
)
opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)
if (opt$molNom == "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out") {
in_file=read.table(opt$molNom, col.names = c("Gene.stable.ID", "sid", "dist", "pval", "slope"),stringsAsFactors=F)
file_newNames=in_file %>% inner_join(geneNames, by="Gene.stable.ID") %>% dplyr::select("Gene.name", "sid", "pval")
} else {
in_file=read.table(opt$molNom, col.names = c("pid", "sid", "dist", "pval", "slope"),stringsAsFactors=F)
file_newNames=in_file %>% separate(pid, into=c("Gene.stable.ID", "ver"), sep ="[.]") %>% inner_join(geneNames, by="Gene.stable.ID") %>% dplyr::select("Gene.name", "sid", "pval")
}
overlap= file_newNames %>% semi_join(sigSNPgene, by=c("Gene.name", "sid"))
write.table(overlap, file=opt$output, quote=F, col.names = T, row.names = F)
Run this first on the rnaQTLs.
run_sigTotAPAinMolPhenoRNA.sh
#!/bin/bash
#SBATCH --job-name=run_sigTotAPAinMolPhenoRNA
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoRNA.out
#SBATCH --error=run_sigTotAPAinMolPhenoRNA.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END
module load R
Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseq_phase2.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalRNA.txt"
run_sigTotAPAinMolPhenoProt.sh
#!/bin/bash
#SBATCH --job-name=run_sigTotAPAinMolPhenoProt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoProt.out
#SBATCH --error=run_sigTotAPAinMolPhenoProt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END
module load R
Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalProtein.txt"
run_sigTotAPAinMolPhenoProt.sh
#!/bin/bash
#SBATCH --job-name=run_sigTotAPAinMolPhenoProt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoProt.out
#SBATCH --error=run_sigTotAPAinMolPhenoProt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END
module load R
Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalProtein.txt"
run_sigTotAPAinMolPhenoRNAg.sh
#!/bin/bash
#SBATCH --job-name=run_sigTotAPAinMolPhenoRNAg
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoRNAg.out
#SBATCH --error=run_sigTotAPAinMolPhenoRNAg.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END
module load R
Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseqGeuvadis.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalRNAg.txt"
run_sigTotAPAinMolPhenoRibo.sh
#!/bin/bash
#SBATCH --job-name=run_sigTotAPAinMolPhenoRibo
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoRibo.out
#SBATCH --error=run_sigTotAPAinMolPhenoRibo.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END
module load R
Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_ribo_phase2.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalribo.txt"
run_sigTotAPAinMolPheno4su.sh
#!/bin/bash
#SBATCH --job-name=run_sigTotAPAinMolPheno4su
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPheno4su.out
#SBATCH --error=run_sigTotAPAinMolPheno4su.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END
module load R
Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_4su30.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPval4su30.txt"
Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_4su60.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPval4su60.txt"
sigNucAPAinMolPheno.R
#!/bin/rscripts
#this script creates takes in the permuted APAQTL results for the total fraction and nominal pvalues from the molecular phenotpye molecular phenotype
library(dplyr)
library(tidyr)
library(ggplot2)
library(readr)
library(optparse)
geneNames=read.table("/project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt", sep="\t", header=T, stringsAsFactors = F)
nuc_perm=read.table("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt", header = T,stringsAsFactors=F)
sigSNPgene=nuc_perm %>% filter(-log10(bh)>1) %>% separate(pid, into=c("chr", "start", "end", "id"), sep=":") %>% separate(id, into=c("Gene.name", "strand", "peaknum"), sep="_") %>% dplyr::select(Gene.name, sid, bh) %>% group_by(Gene.name) %>% top_n(-1, bh) %>% ungroup() %>% dplyr::select(Gene.name, sid)
option_list = list(
make_option(c("-M", "--molNom"), action="store", default=NA, type='character', help="molecular Nom results"),
make_option(c("-O", "--output"), action="store", default=NA, type='character', help="output file for total APA sig snps in mol qtl")
)
opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)
if (opt$molNom == "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out") {
in_file=read.table(opt$molNom, col.names = c("Gene.stable.ID", "sid", "dist", "pval", "slope"),stringsAsFactors=F)
file_newNames=in_file %>% inner_join(geneNames, by="Gene.stable.ID") %>% dplyr::select("Gene.name", "sid", "pval")
} else {
in_file=read.table(opt$molNom, col.names = c("pid", "sid", "dist", "pval", "slope"),stringsAsFactors=F)
file_newNames=in_file %>% separate(pid, into=c("Gene.stable.ID", "ver"), sep ="[.]") %>% inner_join(geneNames, by="Gene.stable.ID") %>% dplyr::select("Gene.name", "sid", "pval")
}
overlap= file_newNames %>% semi_join(sigSNPgene, by=c("Gene.name", "sid"))
write.table(overlap, file=opt$output, quote=F, col.names = T, row.names = F)
1 bash script for all of the phenotypes
run_sigNucAPAinMolPheno.sh
#!/bin/bash
#SBATCH --job-name=run_sigNucAPAinMolPheno
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigNucAPAinMolPheno.out
#SBATCH --error=run_sigNucAPAinMolPheno.err
#SBATCH --partition=broadwl
#SBATCH --mem=32G
#SBATCH --mail-type=END
module load R
Rscript sigNucAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseq_phase2.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPvalRNA.txt"
Rscript sigNucAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPvalProtein.txt"
Rscript sigNucAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseqGeuvadis.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPvalRNAg.txt"
Rscript sigNucAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_ribo_phase2.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPvalribo.txt"
Rscript sigNucAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_4su30.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPval4su30.txt"
Rscript sigNucAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_4su60.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPval4su60.txt"
I will next estimate sharing with pi_1 and create histograms of the resulting pvalues.
totAPAinProt=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalProtein.txt", header = T, stringsAsFactors = F)
qval_prot=pi0est(totAPAinProt$pval, pi0.method = "bootstrap")
totAPAinRNA=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalRNA.txt", header = T, stringsAsFactors = F)
qval_RNA=pi0est(totAPAinRNA$pval, pi0.method = "bootstrap")
totAPAinRNAg=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalRNAg.txt", header = T, stringsAsFactors = F)
qval_RNAg=pi0est(totAPAinRNAg$pval, pi0.method = "bootstrap")
*Ribo
totAPAinRibo=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalribo.txt", header = T, stringsAsFactors = F)
qval_Ribo=pi0est(totAPAinRibo$pval, pi0.method = "bootstrap")
totAPAinsu30=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPval4su30.txt", header = T, stringsAsFactors = F)
qval_su30=pi0est(totAPAinsu30$pval, pi0.method = "bootstrap")
totAPAinsu60=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPval4su60.txt", header = T, stringsAsFactors = F)
qval_su60=pi0est(totAPAinsu60$pval, pi0.method = "bootstrap")
All plots:
par(mfrow=c(2,3))
hist(totAPAinsu30$pval, xlab="4su30 Pvalue", main="Significant Total APA QTLs \n 4su30")
text(.6,15, paste("pi_1=", round((1-qval_su30$pi0), digit=3), sep=" "))
hist(totAPAinsu60$pval, xlab="4su60 Pvalue", main="Significant Total APA QTLs \n 4su60")
text(.6,15, paste("pi_1=", round((1-qval_su60$pi0), digit=3), sep=" "))
hist(totAPAinRNA$pval, xlab="RNAPvalue", main="Significant Total APA QTLs \n RNA")
text(.6,18, paste("pi_1=", round((1-qval_RNA$pi0), digit=3), sep=" "))
hist(totAPAinRNAg$pval, xlab="RNA Guevadis Pvalue", main="Significant Total APA QTLs \n RNA Geuvadis")
text(.6,18, paste("pi_1=", round((1-qval_RNAg$pi0), digit=3), sep=" "))
hist(totAPAinRibo$pval, xlab="Ribo (Translation) Pvalue", main="Significant Total APA QTLs \n Ribo")
text(.6,15, paste("pi_1=", round((1-qval_Ribo$pi0), digit=3), sep=" "))
hist(totAPAinProt$pval, xlab="Protein Pvalue", main="Significant Total APA QTLs \n Protein")
text(.6,10, paste("pi_1=", round((1-qval_prot$pi0), digit=3), sep=" "))
I will next estimate sharing with pi_1 and create histograms of the resulting pvalues.
NucAPAinProt=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalProtein.txt", header = T, stringsAsFactors = F)
qval_protN=pi0est(NucAPAinProt$pval, pi0.method = "bootstrap")
NucAPAinRNA=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalRNA.txt", header = T, stringsAsFactors = F)
qval_RNAN=pi0est(NucAPAinRNA$pval, pi0.method = "bootstrap")
NucAPAinRNAg=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalRNAg.txt", header = T, stringsAsFactors = F)
qval_RNAgN=pi0est(NucAPAinRNAg$pval, pi0.method = "bootstrap")
*Ribo
NucAPAinRibo=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalribo.txt", header = T, stringsAsFactors = F)
qval_RiboN=pi0est(NucAPAinRibo$pval, pi0.method = "bootstrap")
NucAPAinsu30=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPval4su30.txt", header = T, stringsAsFactors = F)
qval_su30N=pi0est(NucAPAinsu30$pval, pi0.method = "bootstrap")
NucAPAinsu60=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPval4su60.txt", header = T, stringsAsFactors = F)
qval_su60N=pi0est(NucAPAinsu60$pval, pi0.method = "bootstrap")
All plots:
par(mfrow=c(2,3))
hist(NucAPAinsu30$pval, xlab="4su30 Pvalue", main="Significant nuclear APA QTLs \n 4su30")
text(.6,80, paste("pi_1=", round((1-qval_su30N$pi0), digit=3), sep=" "))
hist(NucAPAinsu60$pval,xlab="4su60 Pvalue",main="Significant nuclear APA QTLs \n 4su60")
text(.6,90, paste("pi_1=", round((1-qval_su60N$pi0), digit=3), sep=" "))
hist(NucAPAinRNA$pval, xlab="RNA Pvalue",main="Significant nuclear APA QTLs \n RNA")
text(.6,100, paste("pi_1=", round((1-qval_RNAN$pi0), digit=3), sep=" "))
hist(NucAPAinRNAg$pval, xlab="RNA Guevadis Pvalue",main="Significant nuclear APA QTLs \n RNA Geuvadis")
text(.6,100, paste("pi_1=", round((1-qval_RNAgN$pi0), digit=3), sep=" "))
hist(NucAPAinRibo$pval, xlab="Ribo (translation) Pvalue",main="Significant nuclear APA QTLs \n Ribo")
text(.6,100, paste("pi_1=", round((1-qval_RiboN$pi0), digit=3), sep=" "))
hist(NucAPAinProt$pval, xlab="Protein Pvalue", main="Significant nuclear APA QTLs \n Protein")
text(.6,40, paste("pi_1=", round((1-qval_protN$pi0), digit=3), sep=" "))
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] qvalue_2.12.0 data.table_1.11.8 VennDiagram_1.6.20
[4] futile.logger_1.4.3 forcats_0.3.0 stringr_1.3.1
[7] dplyr_0.7.6 purrr_0.2.5 readr_1.1.1
[10] tidyr_0.8.1 tibble_1.4.2 ggplot2_3.0.0
[13] tidyverse_1.2.1 reshape2_1.4.3 workflowr_1.1.1
loaded via a namespace (and not attached):
[1] tidyselect_0.2.4 splines_3.5.1 haven_1.1.2
[4] lattice_0.20-35 colorspace_1.3-2 htmltools_0.3.6
[7] yaml_2.2.0 rlang_0.2.2 R.oo_1.22.0
[10] pillar_1.3.0 glue_1.3.0 withr_2.1.2
[13] R.utils_2.7.0 lambda.r_1.2.3 modelr_0.1.2
[16] readxl_1.1.0 bindrcpp_0.2.2 bindr_0.1.1
[19] plyr_1.8.4 munsell_0.5.0 gtable_0.2.0
[22] cellranger_1.1.0 rvest_0.3.2 R.methodsS3_1.7.1
[25] evaluate_0.11 knitr_1.20 broom_0.5.0
[28] Rcpp_0.12.19 formatR_1.5 backports_1.1.2
[31] scales_1.0.0 jsonlite_1.5 hms_0.4.2
[34] digest_0.6.17 stringi_1.2.4 rprojroot_1.3-2
[37] cli_1.0.1 tools_3.5.1 magrittr_1.5
[40] lazyeval_0.2.1 futile.options_1.0.1 crayon_1.3.4
[43] whisker_0.3-2 pkgconfig_2.0.2 xml2_1.2.0
[46] lubridate_1.7.4 assertthat_0.2.0 rmarkdown_1.10
[49] httr_1.3.1 rstudioapi_0.8 R6_2.3.0
[52] nlme_3.1-137 git2r_0.23.0 compiler_3.5.1
This reproducible R Markdown analysis was created with workflowr 1.1.1