• MolQTL pvalues for Total ApaQTLs
  • MolQTL pvalues for Nuclear ApaQTLs
  • Create Histograms
    • Total
  • Nuclear
  • Session information

Last updated: 2018-10-09

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 605aa2d

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/genometrack_figs.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/39indQC.Rmd
        Modified:   analysis/PeakToGeneAssignment.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 605aa2d Briana Mittleman 2018-10-09 plot results
    html 22aa087 Briana Mittleman 2018-10-08 Build site.
    Rmd 11f9dfa Briana Mittleman 2018-10-08 overlap molQTL opp dir


In the OverlapMolQTL analysis I looked at significant molecular QTLs and asked if they are also significant snp:gene pairs in the ApaQTLs. In this analysis, I will look at the significant ApaQTLs and ask if the snp:gene pairs are significant in the other molecular phenotypes. I expect enrichment of low pvalues in protQTLs but less in RNA.

I am going to complete this analysis first for the totalAPA QTLs.

library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(reshape2)
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(VennDiagram)
Loading required package: grid
Loading required package: futile.logger
library(data.table)

Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':

    between, first, last
The following object is masked from 'package:purrr':

    transpose
The following objects are masked from 'package:reshape2':

    dcast, melt
library(qvalue)
set.seed(327)

MolQTL pvalues for Total ApaQTLs

sigTotAPAinMolPheno.R

#!/bin/rscripts

#this script creates takes in the permuted APAQTL results for the total fraction and nominal pvalues from the molecular phenotpye  molecular phenotype 

library(dplyr)
library(tidyr)
library(ggplot2)
library(readr)
library(optparse)

geneNames=read.table("/project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt", sep="\t", header=T, stringsAsFactors = F)

tot_perm=read.table("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt", header = T,stringsAsFactors=F)

sigSNPgene=tot_perm %>% filter(-log10(bh)>1) %>% separate(pid, into=c("chr", "start", "end", "id"), sep=":") %>% separate(id, into=c("Gene.name", "strand", "peaknum"), sep="_") %>% dplyr::select(Gene.name, sid, bh) %>% group_by(Gene.name) %>% top_n(-1, bh) %>% ungroup() %>% dplyr::select(Gene.name, sid)

option_list = list(
    make_option(c("-M", "--molNom"), action="store", default=NA, type='character', help="molecular Nom results"),
    make_option(c("-O", "--output"), action="store", default=NA, type='character', help="output file for total APA sig snps in mol qtl")
)

opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)


if (opt$molNom == "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out") {
  in_file=read.table(opt$molNom, col.names = c("Gene.stable.ID", "sid", "dist", "pval", "slope"),stringsAsFactors=F)
  file_newNames=in_file %>%  inner_join(geneNames, by="Gene.stable.ID") %>% dplyr::select("Gene.name", "sid", "pval")
} else {
in_file=read.table(opt$molNom, col.names = c("pid", "sid", "dist", "pval", "slope"),stringsAsFactors=F)
file_newNames=in_file %>% separate(pid, into=c("Gene.stable.ID", "ver"), sep ="[.]") %>% inner_join(geneNames, by="Gene.stable.ID") %>% dplyr::select("Gene.name", "sid", "pval")
}

overlap= file_newNames %>% semi_join(sigSNPgene, by=c("Gene.name", "sid")) 

write.table(overlap, file=opt$output, quote=F, col.names = T, row.names = F)

Run this first on the rnaQTLs.

run_sigTotAPAinMolPhenoRNA.sh

#!/bin/bash


#SBATCH --job-name=run_sigTotAPAinMolPhenoRNA
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoRNA.out
#SBATCH --error=run_sigTotAPAinMolPhenoRNA.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END

module load R 

Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseq_phase2.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalRNA.txt" 

run_sigTotAPAinMolPhenoProt.sh

#!/bin/bash


#SBATCH --job-name=run_sigTotAPAinMolPhenoProt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoProt.out
#SBATCH --error=run_sigTotAPAinMolPhenoProt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END

module load R 

Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalProtein.txt" 

run_sigTotAPAinMolPhenoProt.sh

#!/bin/bash


#SBATCH --job-name=run_sigTotAPAinMolPhenoProt
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoProt.out
#SBATCH --error=run_sigTotAPAinMolPhenoProt.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END

module load R 

Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalProtein.txt" 

run_sigTotAPAinMolPhenoRNAg.sh

#!/bin/bash


#SBATCH --job-name=run_sigTotAPAinMolPhenoRNAg
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoRNAg.out
#SBATCH --error=run_sigTotAPAinMolPhenoRNAg.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END

module load R 

Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseqGeuvadis.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalRNAg.txt" 

run_sigTotAPAinMolPhenoRibo.sh

#!/bin/bash


#SBATCH --job-name=run_sigTotAPAinMolPhenoRibo
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPhenoRibo.out
#SBATCH --error=run_sigTotAPAinMolPhenoRibo.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END

module load R 

Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_ribo_phase2.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPvalribo.txt" 

run_sigTotAPAinMolPheno4su.sh

#!/bin/bash


#SBATCH --job-name=run_sigTotAPAinMolPheno4su
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigTotAPAinMolPheno4su.out
#SBATCH --error=run_sigTotAPAinMolPheno4su.err
#SBATCH --partition=bigmem2
#SBATCH --mem=64G
#SBATCH --mail-type=END

module load R 

Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_4su30.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPval4su30.txt" 

Rscript sigTotAPAinMolPheno.R --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_4su60.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molTotal/TotAPAqtlsPval4su60.txt" 

MolQTL pvalues for Nuclear ApaQTLs

sigNucAPAinMolPheno.R

#!/bin/rscripts

#this script creates takes in the permuted APAQTL results for the total fraction and nominal pvalues from the molecular phenotpye  molecular phenotype 

library(dplyr)
library(tidyr)
library(ggplot2)
library(readr)
library(optparse)

geneNames=read.table("/project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt", sep="\t", header=T, stringsAsFactors = F)

nuc_perm=read.table("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt", header = T,stringsAsFactors=F)

sigSNPgene=nuc_perm %>% filter(-log10(bh)>1) %>% separate(pid, into=c("chr", "start", "end", "id"), sep=":") %>% separate(id, into=c("Gene.name", "strand", "peaknum"), sep="_") %>% dplyr::select(Gene.name, sid, bh) %>% group_by(Gene.name) %>% top_n(-1, bh) %>% ungroup() %>% dplyr::select(Gene.name, sid)

option_list = list(
    make_option(c("-M", "--molNom"), action="store", default=NA, type='character', help="molecular Nom results"),
    make_option(c("-O", "--output"), action="store", default=NA, type='character', help="output file for total APA sig snps in mol qtl")
)

opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)


if (opt$molNom == "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out") {
  in_file=read.table(opt$molNom, col.names = c("Gene.stable.ID", "sid", "dist", "pval", "slope"),stringsAsFactors=F)
  file_newNames=in_file %>%  inner_join(geneNames, by="Gene.stable.ID") %>% dplyr::select("Gene.name", "sid", "pval")
} else {
in_file=read.table(opt$molNom, col.names = c("pid", "sid", "dist", "pval", "slope"),stringsAsFactors=F)
file_newNames=in_file %>% separate(pid, into=c("Gene.stable.ID", "ver"), sep ="[.]") %>% inner_join(geneNames, by="Gene.stable.ID") %>% dplyr::select("Gene.name", "sid", "pval")
}

overlap= file_newNames %>% semi_join(sigSNPgene, by=c("Gene.name", "sid")) 

write.table(overlap, file=opt$output, quote=F, col.names = T, row.names = F)

1 bash script for all of the phenotypes

run_sigNucAPAinMolPheno.sh

#!/bin/bash


#SBATCH --job-name=run_sigNucAPAinMolPheno
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_sigNucAPAinMolPheno.out
#SBATCH --error=run_sigNucAPAinMolPheno.err
#SBATCH --partition=broadwl
#SBATCH --mem=32G
#SBATCH --mail-type=END

module load R 


Rscript sigNucAPAinMolPheno.R  --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseq_phase2.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPvalRNA.txt" 


Rscript sigNucAPAinMolPheno.R  --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_prot.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPvalProtein.txt"  

Rscript sigNucAPAinMolPheno.R  --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseqGeuvadis.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPvalRNAg.txt" 


Rscript sigNucAPAinMolPheno.R  --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_ribo_phase2.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPvalribo.txt" 



Rscript sigNucAPAinMolPheno.R  --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_4su30.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPval4su30.txt" 

Rscript sigNucAPAinMolPheno.R  --molNom "/project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_4su60.fixed.nominal.out" --output "/project2/gilad/briana/threeprimeseq/data/molecular_overlap/APA2molNuclear/NucAPAqtlsPval4su60.txt" 

Create Histograms

Total

I will next estimate sharing with pi_1 and create histograms of the resulting pvalues.

  • Protein
totAPAinProt=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalProtein.txt", header = T, stringsAsFactors = F)
qval_prot=pi0est(totAPAinProt$pval, pi0.method = "bootstrap")
  • RNA
totAPAinRNA=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalRNA.txt", header = T, stringsAsFactors = F)
qval_RNA=pi0est(totAPAinRNA$pval, pi0.method = "bootstrap")
  • RNA Geuvadis
totAPAinRNAg=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalRNAg.txt", header = T, stringsAsFactors = F)
qval_RNAg=pi0est(totAPAinRNAg$pval, pi0.method = "bootstrap")

*Ribo

totAPAinRibo=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPvalribo.txt", header = T, stringsAsFactors = F)
qval_Ribo=pi0est(totAPAinRibo$pval, pi0.method = "bootstrap")
  • 4su30
totAPAinsu30=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPval4su30.txt", header = T, stringsAsFactors = F)
qval_su30=pi0est(totAPAinsu30$pval, pi0.method = "bootstrap")
  • 4su60
totAPAinsu60=read.table("../data/mol_overlap/APA2molTotal/TotAPAqtlsPval4su60.txt", header = T, stringsAsFactors = F)
qval_su60=pi0est(totAPAinsu60$pval, pi0.method = "bootstrap")

All plots:

par(mfrow=c(2,3))
hist(totAPAinsu30$pval, xlab="4su30 Pvalue", main="Significant Total APA QTLs \n 4su30")
text(.6,15, paste("pi_1=", round((1-qval_su30$pi0), digit=3), sep=" "))
hist(totAPAinsu60$pval, xlab="4su60 Pvalue", main="Significant Total APA QTLs \n 4su60")
text(.6,15, paste("pi_1=", round((1-qval_su60$pi0), digit=3), sep=" "))
hist(totAPAinRNA$pval,  xlab="RNAPvalue", main="Significant Total APA QTLs \n RNA")
text(.6,18, paste("pi_1=", round((1-qval_RNA$pi0), digit=3), sep=" "))
hist(totAPAinRNAg$pval, xlab="RNA Guevadis Pvalue", main="Significant Total APA QTLs \n RNA Geuvadis")
text(.6,18, paste("pi_1=", round((1-qval_RNAg$pi0), digit=3), sep=" "))
hist(totAPAinRibo$pval, xlab="Ribo (Translation) Pvalue", main="Significant Total APA QTLs \n Ribo")
text(.6,15, paste("pi_1=", round((1-qval_Ribo$pi0), digit=3), sep=" "))
hist(totAPAinProt$pval,  xlab="Protein Pvalue", main="Significant Total APA QTLs \n Protein")
text(.6,10, paste("pi_1=", round((1-qval_prot$pi0), digit=3), sep=" "))

Nuclear

I will next estimate sharing with pi_1 and create histograms of the resulting pvalues.

  • Protein
NucAPAinProt=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalProtein.txt", header = T, stringsAsFactors = F)
qval_protN=pi0est(NucAPAinProt$pval, pi0.method = "bootstrap")
  • RNA
NucAPAinRNA=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalRNA.txt", header = T, stringsAsFactors = F)
qval_RNAN=pi0est(NucAPAinRNA$pval, pi0.method = "bootstrap")
  • RNA Geuvadis
NucAPAinRNAg=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalRNAg.txt", header = T, stringsAsFactors = F)
qval_RNAgN=pi0est(NucAPAinRNAg$pval, pi0.method = "bootstrap")

*Ribo

NucAPAinRibo=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPvalribo.txt", header = T, stringsAsFactors = F)
qval_RiboN=pi0est(NucAPAinRibo$pval, pi0.method = "bootstrap")
  • 4su30
NucAPAinsu30=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPval4su30.txt", header = T, stringsAsFactors = F)
qval_su30N=pi0est(NucAPAinsu30$pval, pi0.method = "bootstrap")
  • 4su60
NucAPAinsu60=read.table("../data/mol_overlap/APA2molNuclear/NucAPAqtlsPval4su60.txt", header = T, stringsAsFactors = F)
qval_su60N=pi0est(NucAPAinsu60$pval, pi0.method = "bootstrap")

All plots:

par(mfrow=c(2,3))
hist(NucAPAinsu30$pval, xlab="4su30 Pvalue", main="Significant nuclear APA QTLs \n 4su30")
text(.6,80, paste("pi_1=", round((1-qval_su30N$pi0), digit=3), sep=" "))
hist(NucAPAinsu60$pval,xlab="4su60 Pvalue",main="Significant nuclear APA QTLs \n 4su60")
text(.6,90, paste("pi_1=", round((1-qval_su60N$pi0), digit=3), sep=" "))
hist(NucAPAinRNA$pval, xlab="RNA Pvalue",main="Significant nuclear APA QTLs \n RNA")
text(.6,100, paste("pi_1=", round((1-qval_RNAN$pi0), digit=3), sep=" "))
hist(NucAPAinRNAg$pval, xlab="RNA Guevadis Pvalue",main="Significant nuclear APA QTLs \n RNA Geuvadis")
text(.6,100, paste("pi_1=", round((1-qval_RNAgN$pi0), digit=3), sep=" "))
hist(NucAPAinRibo$pval, xlab="Ribo (translation) Pvalue",main="Significant nuclear APA QTLs \n Ribo")
text(.6,100, paste("pi_1=", round((1-qval_RiboN$pi0), digit=3), sep=" "))
hist(NucAPAinProt$pval, xlab="Protein Pvalue", main="Significant nuclear APA QTLs \n Protein")
text(.6,40, paste("pi_1=", round((1-qval_protN$pi0), digit=3), sep=" "))

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] qvalue_2.12.0       data.table_1.11.8   VennDiagram_1.6.20 
 [4] futile.logger_1.4.3 forcats_0.3.0       stringr_1.3.1      
 [7] dplyr_0.7.6         purrr_0.2.5         readr_1.1.1        
[10] tidyr_0.8.1         tibble_1.4.2        ggplot2_3.0.0      
[13] tidyverse_1.2.1     reshape2_1.4.3      workflowr_1.1.1    

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4     splines_3.5.1        haven_1.1.2         
 [4] lattice_0.20-35      colorspace_1.3-2     htmltools_0.3.6     
 [7] yaml_2.2.0           rlang_0.2.2          R.oo_1.22.0         
[10] pillar_1.3.0         glue_1.3.0           withr_2.1.2         
[13] R.utils_2.7.0        lambda.r_1.2.3       modelr_0.1.2        
[16] readxl_1.1.0         bindrcpp_0.2.2       bindr_0.1.1         
[19] plyr_1.8.4           munsell_0.5.0        gtable_0.2.0        
[22] cellranger_1.1.0     rvest_0.3.2          R.methodsS3_1.7.1   
[25] evaluate_0.11        knitr_1.20           broom_0.5.0         
[28] Rcpp_0.12.19         formatR_1.5          backports_1.1.2     
[31] scales_1.0.0         jsonlite_1.5         hms_0.4.2           
[34] digest_0.6.17        stringi_1.2.4        rprojroot_1.3-2     
[37] cli_1.0.1            tools_3.5.1          magrittr_1.5        
[40] lazyeval_0.2.1       futile.options_1.0.1 crayon_1.3.4        
[43] whisker_0.3-2        pkgconfig_2.0.2      xml2_1.2.0          
[46] lubridate_1.7.4      assertthat_0.2.0     rmarkdown_1.10      
[49] httr_1.3.1           rstudioapi_0.8       R6_2.3.0            
[52] nlme_3.1-137         git2r_0.23.0         compiler_3.5.1      



This reproducible R Markdown analysis was created with workflowr 1.1.1