• Create reg QTL files
    • Load data
  • Filter nuc by other QTLs
  • Plot overlapping QTLs
  • Session information

Last updated: 2018-09-06

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 98159a7

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/RNAkalisto/
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/peak.cov.pipeline.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 98159a7 Briana Mittleman 2018-09-06 alpha .3
    html febabe4 Briana Mittleman 2018-09-06 Build site.
    Rmd 57005d9 Briana Mittleman 2018-09-06 make qqplot
    html 584548c Briana Mittleman 2018-09-06 Build site.
    Rmd e2f5e81 Briana Mittleman 2018-09-06 fix run code
    html f92a58f Briana Mittleman 2018-09-06 Build site.
    Rmd 46b7343 Briana Mittleman 2018-09-06 add overlap analysis with code to subset


I will use this to overlap my QTLs with the other molecular QTLs already identified in the same individuals. First pass I will subset my nuclear and total nomial qtls by the snps with pvals less than .05 in each of the sets and make a qqplot.

Create reg QTL files

I want to create a python script that takes in which type of qtl and a pvalue and subsets the full file for snps that pass that filter.

subset_qtls.py


def main(inFile, outFile, qtl, cutoff):
    fout=open(outFile, "w")
    ifile=open(inFile, "r")
    cutoff=float(cutoff)
    qtl_types= ['4su_30', '4su_60', 'RNAseq', 'RNAseqGeuvadis', 'ribo', 'prot']
    if qtl not in qtl_types:
         raise NameError("QTL arg must be 4su_30, 4su_60, RNAseq, RNAseqGeuvadis, ribo, or prot") 
    elif qtl=="4su_30":
        target=4
    elif qtl=="4su_60":
        target=5
    elif qtl=="RNAseq":
        target=6
    elif qtl=="RNAseqGeuvadis":
        target=7
    elif qtl=="ribo":
        target =8
    elif qtl=="prot":
        target=9
    for num,ln in enumerate(ifile):
        if num > 0 :
            line_list = ln.split()
            chrom=line_list[0][3:]
            pos=line_list[1]
            rsid=line_list[2]
            geneID=line_list[3]
            val = line_list[target].split(":")[0]
            if val == "NA":
              continue
            else:
                val = float(val)
                if val <= cutoff:
                    fout.write("%s:%s\t%s\t%s\t%f\n"%(chrom, pos, rsid, geneID,val))
    


if __name__ == "__main__":
    import sys

    qtl = sys.argv[1]
    cutoff= sys.argv[2]
    
    inFile = "/project2/gilad/briana/threeprimeseq/data/otherQTL/summary_betas_ste_100kb.txt"
    outFile = "/project2/gilad/briana/threeprimeseq/data/otherQTL/summary_betas_ste_100kb.%s%s.txt"%(qtl, cutoff)
    main(inFile, outFile, qtl, cutoff)

I can run this to subset by each qtl at .05

run_subsetQTLs05.sh

#!/bin/bash

#SBATCH --job-name=run_subsetqtl05
#SBATCH --account=pi-gilad
#SBATCH --time=24:00:00
#SBATCH --output=run_subsetqtl05.out
#SBATCH --error=run_subsetqtl05.err
#SBATCH --partition=gilad
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env

#qtls=('4su_30', '4su_60', 'RNAseq', 'RNAseqGeuvadis', 'ribo', 'prot')  

for i in 4su_30 4su_60 RNAseq RNAseqGeuvadis ribo prot; do
    python subset_qtls.py $i .05 
done

Load data

library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
library(readr)
nuc.nom=read.table("../data/nom_QTL_opp/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_NomRes_onetenth.txt", header = F, stringsAsFactors = F)
colnames(nuc.nom)= c("peakID", "snpID", "dist", "nuc_pval", "slope")

QTL_names=c("snpID", "snpid2","Gene", "pval")

fourSU30= read.table("../data/other_qtls/summary_betas_ste_100kb.4su_30.05.txt", header=F, stringsAsFactors = F, col.names = QTL_names)

fourSU60=read.table("../data/other_qtls/summary_betas_ste_100kb.4su_60.05.txt", header=F, stringsAsFactors = F, col.names = QTL_names)

RNAseq=read.table("../data/other_qtls/summary_betas_ste_100kb.RNAseq.05.txt", header=F, stringsAsFactors = F, col.names = QTL_names)

guevardis=read.table("../data/other_qtls/summary_betas_ste_100kb.RNAseqGeuvadis.05.txt", header=F, stringsAsFactors = F, col.names = QTL_names)

ribo=read.table("../data/other_qtls/summary_betas_ste_100kb.ribo.05.txt", header=F, stringsAsFactors = F, col.names = QTL_names)

prot=read.table("../data/other_qtls/summary_betas_ste_100kb.prot.05.txt", header=F, stringsAsFactors = F, col.names = QTL_names)

Filter nuc by other QTLs

Overlap the files:

fourSU30AndNuc= fourSU30 %>% inner_join(nuc.nom, by="snpID") %>% select(snpID, nuc_pval)
fourSU30_unif=runif(nrow(fourSU30AndNuc))

fourSU60AndNuc= fourSU60 %>% inner_join(nuc.nom, by="snpID") %>% select(snpID, nuc_pval)
fourSU60_unif=runif(nrow(fourSU60AndNuc))


RNAAndNuc= RNAseq %>% inner_join(nuc.nom, by="snpID") %>% select(snpID, nuc_pval)
RNAseq_unif=runif(nrow(RNAAndNuc))


GuevAndNuc= guevardis %>% inner_join(nuc.nom, by="snpID") %>% select(snpID, nuc_pval)
guev_unif=runif(nrow(GuevAndNuc))


riboAndNuc= ribo %>% inner_join(nuc.nom, by="snpID") %>% select(snpID, nuc_pval)
ribo_unif=runif(nrow(riboAndNuc))

protAndNuc= prot %>% inner_join(nuc.nom, by="snpID") %>% select(snpID, nuc_pval)
prot_unif=runif(nrow(protAndNuc))

Plot overlapping QTLs

Plot results:

qqplot(-log10(runif(nrow(nuc.nom))), -log10(nuc.nom$nuc_pval),ylab="-log10 Nuclear nominal pvalue", xlab="Uniform expectation", main="Nuclear Nominal pvalues for all snps")
points(sort(-log10(fourSU30_unif)), sort(-log10(fourSU30AndNuc$nuc_pval)), col="Red", alpha=.3)
Warning in plot.xy(xy.coords(x, y), type = type, ...): "alpha" is not a
graphical parameter
points(sort(-log10(fourSU60_unif)), sort(-log10(fourSU60AndNuc$nuc_pval)), col="Orange",alpha=.3)
Warning in plot.xy(xy.coords(x, y), type = type, ...): "alpha" is not a
graphical parameter
points(sort(-log10(RNAseq_unif)), sort(-log10(RNAAndNuc$nuc_pval)), col="Yellow",alpha=.3)
Warning in plot.xy(xy.coords(x, y), type = type, ...): "alpha" is not a
graphical parameter
points(sort(-log10(guev_unif)), sort(-log10(GuevAndNuc$nuc_pval)), col="Green",alpha=.3)
Warning in plot.xy(xy.coords(x, y), type = type, ...): "alpha" is not a
graphical parameter
points(sort(-log10(ribo_unif)), sort(-log10(riboAndNuc$nuc_pval)), col="Blue",alpha=.3)
Warning in plot.xy(xy.coords(x, y), type = type, ...): "alpha" is not a
graphical parameter
points(sort(-log10(prot_unif)), sort(-log10(protAndNuc$nuc_pval)), col="Purple",alpha=.3)
Warning in plot.xy(xy.coords(x, y), type = type, ...): "alpha" is not a
graphical parameter
abline(0,1)


legend("topleft", legend=c("All SNPs", "4su 30", "4su 60", "RNAseq", "Guevadis RNA", "Ribo", "Protein"), col=c("black", "red", "orange", "yellow", "green", "blue", "purple"), pch=19)

Expand here to see past versions of unnamed-chunk-6-1.png:
Version Author Date
febabe4 Briana Mittleman 2018-09-06

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reshape2_1.4.3  workflowr_1.1.1 forcats_0.3.0   stringr_1.3.1  
 [5] dplyr_0.7.6     purrr_0.2.5     readr_1.1.1     tidyr_0.8.1    
 [9] tibble_1.4.2    ggplot2_3.0.0   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  haven_1.1.2       lattice_0.20-35  
 [4] colorspace_1.3-2  htmltools_0.3.6   yaml_2.2.0       
 [7] rlang_0.2.2       R.oo_1.22.0       pillar_1.3.0     
[10] glue_1.3.0        withr_2.1.2       R.utils_2.7.0    
[13] modelr_0.1.2      readxl_1.1.0      bindrcpp_0.2.2   
[16] bindr_0.1.1       plyr_1.8.4        munsell_0.5.0    
[19] gtable_0.2.0      cellranger_1.1.0  rvest_0.3.2      
[22] R.methodsS3_1.7.1 evaluate_0.11     knitr_1.20       
[25] broom_0.5.0       Rcpp_0.12.18      scales_1.0.0     
[28] backports_1.1.2   jsonlite_1.5      hms_0.4.2        
[31] digest_0.6.16     stringi_1.2.4     grid_3.5.1       
[34] rprojroot_1.3-2   cli_1.0.0         tools_3.5.1      
[37] magrittr_1.5      lazyeval_0.2.1    crayon_1.3.4     
[40] whisker_0.3-2     pkgconfig_2.0.2   xml2_1.2.0       
[43] lubridate_1.7.4   assertthat_0.2.0  rmarkdown_1.10   
[46] httr_1.3.1        rstudioapi_0.7    R6_2.2.2         
[49] nlme_3.1-137      git2r_0.23.0      compiler_3.5.1   



This reproducible R Markdown analysis was created with workflowr 1.1.1