• Session information

Last updated: 2019-01-17

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 04c7dc5

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/figure/
        Ignored:    data/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/DirectionapaQTL.Rmd
        Untracked:  analysis/EvaleQTLs.Rmd
        Untracked:  analysis/PreAshExplore.Rmd
        Untracked:  analysis/YL_QTL_test.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  code/PeaksToCoverPerReads.py
        Untracked:  code/strober_pc_pve_heatmap_func.R
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/ChromHmmOverlap/
        Untracked:  data/GM12878.chromHMM.bed
        Untracked:  data/GM12878.chromHMM.txt
        Untracked:  data/LianoglouLCL/
        Untracked:  data/LocusZoom/
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/PeakCounts/
        Untracked:  data/PeakUsage/
        Untracked:  data/PeaksUsed/
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/UnderstandPeaksQC/
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/YL_QTL_test/
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/diff_iso_trans/
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/example_gene_peakQuant/
        Untracked:  data/explainProtVar/
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/mol_pheno/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/nuc_10up/
        Untracked:  data/other_qtls/
        Untracked:  data/pQTL_otherphen/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/perm_QTL_trans_filt/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  data/threePrimeSeqMetaData.csv
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/CompareLianoglouData.Rmd
        Modified:   analysis/NewPeakPostMP.Rmd
        Modified:   analysis/apaQTLoverlapGWAS.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explainpQTLs.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/flash2mash.Rmd
        Modified:   analysis/mispriming_approach.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlapMolQTL.opposite.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   analysis/understandPeaks.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 04c7dc5 Briana Mittleman 2019-01-17 add second way to filter peaks
    html a5d48fd Briana Mittleman 2019-01-16 Build site.
    Rmd 6aa94e4 Briana Mittleman 2019-01-16 plots for 5% usage


I want to do some QC and filtering on the peaks to go along with the number of peaks to cover % of a gene figure.

  • Number of called peaks

  • peaks used at X% in total/nuclear

  • number of genes

library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(data.table)

Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':

    between, first, last
The following object is masked from 'package:purrr':

    transpose
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave
totalPeakUs=read.table("../data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total.pheno_fixed.txt.gz", header = T, stringsAsFactors = F) %>% separate(chrom, sep = ":", into = c("chr", "start", "end", "id")) %>% separate(id, sep="_", into=c("gene", "strand", "peak"))
nuclearPeakUs=read.table("../data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear.pheno_fixed.txt.gz", header = T, stringsAsFactors = F) %>% separate(chrom, sep = ":", into = c("chr", "start", "end", "id")) %>% separate(id, sep="_", into=c("gene", "strand", "peak"))

There are 338141 called peaks in the data.

I need to make the fractions numeric, I will do this in python because I can go through each value, split them and get the numeric.

It will be easiest if I write the counts out:

#write.table(totalPeakUs[,7:45], file="../data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total.pheno_fixed.CountsOnly",quote=FALSE, col.names = F, row.names = F)

#write.table(nuclearPeakUs[,7:45], file="../data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear.pheno_fixed.CountsOnly",quote=FALSE, col.names = F, row.names = F)

Move these to /project2/gilad/briana/threeprimeseq/data/PeakUsage

convertCount2Numeric.py

def convert(infile, outfile):
  final=open(outfile, "w")
  for ln in open(infile, "r"):
    line_list=ln.split()
    new_list=[]
    for i in line_list:
      num, dem = i.split("/")
      if dem == "0":
        perc = "0.00"
      else:
        perc = int(num)/int(dem)
        perc=round(perc,2)
        perc= str(perc)
      new_list.append(perc)
    final.write("\t".join(new_list)+ '\n')
  final.close()
  
convert("/project2/gilad/briana/threeprimeseq/data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total.pheno_fixed.CountsOnly","/project2/gilad/briana/threeprimeseq/data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total.pheno_fixed.CountsOnlyNUMERIC.txt" )


convert("/project2/gilad/briana/threeprimeseq/data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear.pheno_fixed.CountsOnly","/project2/gilad/briana/threeprimeseq/data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear.pheno_fixed.CountsOnlyNUMERIC.txt")

Because any value less than .001 becomes 0, all peaks for a gene will not add to zero.

ind=colnames(totalPeakUs)[7:dim(totalPeakUs)[2]]
totalPeakUs_CountNum=read.table("../data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total.pheno_fixed.CountsOnlyNUMERIC.txt", col.names = ind)

nuclearPeakUs_CountNum=read.table("../data/PeakUsage/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear.pheno_fixed.CountsOnlyNUMERIC.txt", col.names = ind)

Numeric values with the annotations:

totalPeak=as.data.frame(cbind(totalPeakUs[,1:6], totalPeakUs_CountNum))
nuclearPeak=as.data.frame(cbind(nuclearPeakUs[,1:6], nuclearPeakUs_CountNum))

Get the mean coverage for each peak.

totalPeakUs_CountNum_mean=rowMeans(totalPeakUs_CountNum)
nuclearPeakUs_CountNum_mean=rowMeans(nuclearPeakUs_CountNum)

Append these to the inforamtion about the peak.

TotalPeakUSMean=as.data.frame(cbind(totalPeakUs[,1:6],totalPeakUs_CountNum_mean))
NuclearPeakUSMean=as.data.frame(cbind(nuclearPeakUs[,1:6],nuclearPeakUs_CountNum_mean))

Get the number of genes with mean(usage > 5%)

Total:

TotalPeakUSMean_filt=TotalPeakUSMean %>% filter(totalPeakUs_CountNum_mean>=.05) %>% group_by(gene) %>% summarise(Npeaks=n())

I want to get how many genes have 1,2,3,4 ect:

totalPeaksPerGene=TotalPeakUSMean_filt %>% group_by(Npeaks) %>% summarise(GenesWithNPeaks=n())

ggplot(totalPeaksPerGene,aes(x=Npeaks,y=GenesWithNPeaks)) + geom_bar(stat="identity",fill="darkviolet") + labs(x="Number Peaks with >5% usage", y="Number of Genes", title="Genes with peaks covering > 5% in Total")

Expand here to see past versions of unnamed-chunk-10-1.png:
Version Author Date
a5d48fd Briana Mittleman 2019-01-16

Nuclear:

NuclearPeakUSMean_filt=NuclearPeakUSMean %>% filter(nuclearPeakUs_CountNum_mean>=.05) %>% group_by(gene) %>% summarise(Npeaks=n())

I want to get how many genes have 1,2,3,4 ect:

nuclearPeaksPerGene=NuclearPeakUSMean_filt %>% group_by(Npeaks) %>% summarise(GenesWithNPeaks=n())
nuclearPeaksPerGene$GenesWithNPeaks=as.integer(nuclearPeaksPerGene$GenesWithNPeaks)
ggplot(nuclearPeaksPerGene,aes(x=Npeaks,y=GenesWithNPeaks)) + geom_bar(stat="identity", fill="deepskyblue3") + labs(x="Number Peaks with >5% usage", y="Number of Genes", title="Genes with peaks covering > 5% in Nuclear")

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
a5d48fd Briana Mittleman 2019-01-16

Genes with at least 1:

#nuclear
nrow(NuclearPeakUSMean_filt)  
[1] 15431
#total
nrow(TotalPeakUSMean_filt)  
[1] 15435

Join them to put on the same plot:
gene level

nPeaksBoth_gene=TotalPeakUSMean_filt %>% full_join(NuclearPeakUSMean_filt, by="gene")
colnames(nPeaksBoth_gene)= c("Gene", "Total", "Nuclear")
nPeaksBoth_gene$Nuclear= nPeaksBoth_gene$Nuclear %>% replace_na(0)
nPeaksBoth_gene$Total= nPeaksBoth_gene$Total %>% replace_na(0)
nPeaksBoth_gene=nPeaksBoth_gene %>% mutate(Difference=Nuclear-Total)

ggplot(nPeaksBoth_gene, aes(x=Difference)) + geom_histogram() + labs(title="Distribution of difference in number of \n Peaks >5% between Nuclear and Total", y="Genes", x="Nuclear - Total")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

summary(nPeaksBoth_gene$Difference)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
-6.0000  0.0000  0.0000  0.5998  1.0000  8.0000 

WHich genes is this most affecting:

nPeaksBoth_gene %>% arrange(desc(Difference)) %>% slice(1:10)
# A tibble: 10 x 4
   Gene    Total Nuclear Difference
   <chr>   <dbl>   <dbl>      <dbl>
 1 C3orf67     3      11          8
 2 OLIG3       1       9          8
 3 API5        1       8          7
 4 ARL3        2       9          7
 5 ATE1        1       8          7
 6 HNF1B       1       8          7
 7 MPV17L2     1       8          7
 8 SHQ1        3      10          7
 9 ARMC10      2       8          6
10 ATF1        3       9          6

Look at some of these in IGV

Good examples: API5,ARL3, SHQ1

peak number level:

nPeaksBoth=totalPeaksPerGene %>% full_join(nuclearPeaksPerGene, by="Npeaks")
colnames(nPeaksBoth)= c("Peaks", "Total", "Nuclear")
nPeaksBoth$Total= nPeaksBoth$Total %>% replace_na(0)

#melt nPeaksBoth
nPeaksBoth_melt=melt(nPeaksBoth, id.var="Peaks")
colnames(nPeaksBoth_melt)= c("Peaks", "Fraction", "Genes")

Make a plot:

peakUsage5perc=ggplot(nPeaksBoth_melt, aes(x=Peaks, y=Genes, fill=Fraction)) + geom_bar(stat="identity", position = "dodge") + labs(title="Number of Genes with >5% Peak Usage") + theme(axis.text.y = element_text(size=12),axis.title.y=element_text(size=10,face="bold"), axis.title.x=element_text(size=12,face="bold"))+ scale_fill_manual(values=c("darkviolet","deepskyblue3"))  + facet_grid(~Fraction)

peakUsage5perc

ggsave(peakUsage5perc, file="../output/plots/QC_plots/peakUsage5perc.png")
Saving 7 x 5 in image

Peaks with >5 per not at gene level:

#nuclear  
NuclearPeakUSMean %>% filter(nuclearPeakUs_CountNum_mean>=.05) %>% nrow()
[1] 58494
#total
TotalPeakUSMean %>% filter(totalPeakUs_CountNum_mean>=.05) %>% nrow()
[1] 49234

Plot distributions priots to filtering:

NuclearPeakUSMean_sm=NuclearPeakUSMean %>% select(peak, nuclearPeakUs_CountNum_mean)
TotalPeakUSMean_sm=TotalPeakUSMean %>% select(peak, totalPeakUs_CountNum_mean)
BothPeakUSMean=TotalPeakUSMean_sm %>% full_join(NuclearPeakUSMean_sm, by=c("peak"))
summary(BothPeakUSMean)
     peak           totalPeakUs_CountNum_mean nuclearPeakUs_CountNum_mean
 Length:338141      Min.   :0.000000          Min.   :0.000000           
 Class :character   1st Qu.:0.001538          1st Qu.:0.002051           
 Mode  :character   Median :0.005641          Median :0.008718           
                    Mean   :0.042354          Mean   :0.043827           
                    3rd Qu.:0.021795          3rd Qu.:0.029487           
                    Max.   :1.000000          Max.   :1.000000           
colnames(BothPeakUSMean)=c("Peak", "Total", "Nuclear")
BothPeakUSMean_melt=melt(BothPeakUSMean, id.vars = "Peak")
colnames(BothPeakUSMean_melt)=c("Peak", "Fraction", "MeanUsage")
meanUsBox=ggplot(BothPeakUSMean_melt,aes(y=MeanUsage, x=Fraction, fill=Fraction)) +geom_boxplot() +scale_fill_manual(values=c("darkviolet","deepskyblue3"))
meanUsBoxZoom=ggplot(BothPeakUSMean_melt,aes(y=MeanUsage, x=Fraction, fill=Fraction)) +geom_boxplot() +ylim(c(0,.05))+scale_fill_manual(values=c("darkviolet","deepskyblue3"))

meanUsBoxBoth=plot_grid(meanUsBox,meanUsBoxZoom)
Warning: Removed 107335 rows containing non-finite values (stat_boxplot).
ggsave(file="../output/plots/QC_plots/meanPeakUsageBoxPlots.png",meanUsBoxBoth)
Saving 7 x 5 in image
meanUs_den=ggplot(BothPeakUSMean_melt,aes(x=MeanUsage, by=Fraction, fill=Fraction)) +geom_density(alpha=.4) +scale_fill_manual(values=c("darkviolet","deepskyblue3"))
meanUs_denZoom=ggplot(BothPeakUSMean_melt,aes(x=MeanUsage, by=Fraction, fill=Fraction)) +geom_density(alpha=.4) +xlim(c(0,.05)) + scale_fill_manual(values=c("darkviolet","deepskyblue3"))

meanUs_denBoth=plot_grid(meanUs_den,meanUs_denZoom)
Warning: Removed 107335 rows containing non-finite values (stat_density).
ggsave(file="../output/plots/QC_plots/meanPeakUsagDensityPlots.png",meanUs_denBoth,)
Saving 7 x 5 in image

With means at about 4%. I may remake these plots with 1 %

TotalPeakUSMean_filt1=TotalPeakUSMean %>% filter(totalPeakUs_CountNum_mean>=.01) %>% group_by(gene) %>% summarise(Npeaks=n())

totalPeaksPerGene1=TotalPeakUSMean_filt1 %>% group_by(Npeaks) %>% summarise(GenesWithNPeaks=n())

ggplot(totalPeaksPerGene1,aes(x=Npeaks,y=GenesWithNPeaks)) + geom_bar(stat="identity",fill="darkviolet") + labs(x="Number Peaks with >1% usage", y="Number of Genes", title="Genes with peaks covering > 1% in Total")

Nuclear:

NuclearPeakUSMean_filt1=NuclearPeakUSMean %>% filter(nuclearPeakUs_CountNum_mean>=.01) %>% group_by(gene) %>% summarise(Npeaks=n())

I want to get how many genes have 1,2,3,4 ect:

nuclearPeaksPerGene1=NuclearPeakUSMean_filt1 %>% group_by(Npeaks) %>% summarise(GenesWithNPeaks=n())
nuclearPeaksPerGene1$GenesWithNPeaks=as.integer(nuclearPeaksPerGene1$GenesWithNPeaks)
ggplot(nuclearPeaksPerGene1,aes(x=Npeaks,y=GenesWithNPeaks)) + geom_bar(stat="identity", fill="deepskyblue3") + labs(x="Number Peaks with >1% usage", y="Number of Genes", title="Genes with peaks covering > 1% in Nuclear")

Try to do this with 5% in 2/3 of the libraries instead:

keep.exprs_T=rowSums(as.matrix(totalPeakUs_CountNum>=.05)) >= 26
TotalPeakUS_filt= as.data.frame(cbind(totalPeakUs[,1:6], totalPeakUs_CountNum))[keep.exprs_T,]



keep.exprs_N=rowSums(as.matrix(nuclearPeakUs_CountNum>=.05)) >= 26
nuclearPeakUS_filt= as.data.frame(cbind(nuclearPeakUs[,1:6],nuclearPeakUs_CountNum))[keep.exprs_N,]

Total: 30657 peaks pass this filter Nuclear:44030 peaks pass

Now I can group by gene and see what happens:

TotalPeakUS_filt_gene=TotalPeakUS_filt %>% group_by(gene) %>% summarise(nPeaks=n())

TotalPeaksPerGene2=TotalPeakUS_filt_gene %>% group_by(nPeaks) %>% summarise(GenesWithNPeaks=n())
ggplot(TotalPeaksPerGene2,aes(x=nPeaks,y=GenesWithNPeaks)) + geom_bar(stat="identity", fill="darkviolet") + labs(x="Number Peaks with >5% usage in 2/3 ind", y="Number of Genes", title="Genes with peaks covering > 5% in 2/3 Ind Total")

In this filter there are 13497 genes.

nuclearPeakUS_filt_gene=nuclearPeakUS_filt %>% group_by(gene) %>% summarise(nPeaks=n())

nuclearPeaksPerGene2=nuclearPeakUS_filt_gene %>% group_by(nPeaks) %>% summarise(GenesWithNPeaks=n())
ggplot(nuclearPeaksPerGene2,aes(x=nPeaks,y=GenesWithNPeaks)) + geom_bar(stat="identity", fill="deepskyblue3") + labs(x="Number Peaks with >5% usage in 2/3 ind", y="Number of Genes", title="Genes with peaks covering > 5% in 2/3 Ind Nuclear")

14690

Melt these to put on one plot:

nPeaksBoth_filt2=TotalPeaksPerGene2 %>% full_join(nuclearPeaksPerGene2, by="nPeaks")
colnames(nPeaksBoth_filt2)= c("Peaks", "Total", "Nuclear")
nPeaksBoth_filt2$Total= nPeaksBoth_filt2$Total %>% replace_na(0)

#melt nPeaksBoth
nPeaksBoth_melt2=melt(nPeaksBoth_filt2, id.var="Peaks")
colnames(nPeaksBoth_melt2)= c("Peaks", "Fraction", "Genes")

Plot:

peakUsage5perc2=ggplot(nPeaksBoth_melt2, aes(x=Peaks, y=Genes, fill=Fraction)) + geom_bar(stat="identity", position = "dodge") + labs(title="Number of Genes with >5% peak usage in 2/3 Ind") + theme(axis.text.y = element_text(size=12),axis.title.y=element_text(size=10,face="bold"), axis.title.x=element_text(size=12,face="bold"))+ scale_fill_manual(values=c("darkviolet","deepskyblue3"))  + facet_grid(~Fraction)

peakUsage5perc2

ggsave(peakUsage5perc2, file="../output/plots/QC_plots/peakUsage5perc2.3ind.png")
Saving 7 x 5 in image
nPeaksBoth2_gene=TotalPeakUS_filt_gene %>% full_join(nuclearPeakUS_filt_gene, by="gene")


colnames(nPeaksBoth2_gene)= c("Gene", "Total", "Nuclear")
nPeaksBoth2_gene$Nuclear= nPeaksBoth2_gene$Nuclear %>% replace_na(0)
nPeaksBoth2_gene$Total= nPeaksBoth2_gene$Total %>% replace_na(0)
nPeaksBoth2_gene=nPeaksBoth2_gene %>% mutate(Difference=Nuclear-Total)

PeakDiffPlot_5perc2.3ind=ggplot(nPeaksBoth2_gene, aes(x=Difference)) + geom_histogram() + labs(title="Distribution of difference in number of \n Peaks >5% Usage in 2/3 Individuals \n between Nuclear and Total", y="Genes", x="Nuclear - Total")
summary(nPeaksBoth2_gene$Difference)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 -5.000   0.000   1.000   0.903   2.000   8.000 
ggsave(file="../output/plots/QC_plots/PeakDiffPlot_5perc2.3ind.png", PeakDiffPlot_5perc2.3ind)
Saving 7 x 5 in image
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

The mean is this set is .9

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2    cowplot_0.9.3     workflowr_1.1.1  
 [4] data.table_1.11.8 forcats_0.3.0     stringr_1.3.1    
 [7] dplyr_0.7.6       purrr_0.2.5       readr_1.1.1      
[10] tidyr_0.8.1       tibble_1.4.2      ggplot2_3.0.0    
[13] tidyverse_1.2.1  

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  reshape2_1.4.3    haven_1.1.2      
 [4] lattice_0.20-35   colorspace_1.3-2  htmltools_0.3.6  
 [7] yaml_2.2.0        utf8_1.1.4        rlang_0.2.2      
[10] R.oo_1.22.0       pillar_1.3.0      glue_1.3.0       
[13] withr_2.1.2       R.utils_2.7.0     modelr_0.1.2     
[16] readxl_1.1.0      bindr_0.1.1       plyr_1.8.4       
[19] munsell_0.5.0     gtable_0.2.0      cellranger_1.1.0 
[22] rvest_0.3.2       R.methodsS3_1.7.1 evaluate_0.11    
[25] labeling_0.3      knitr_1.20        fansi_0.4.0      
[28] broom_0.5.0       Rcpp_0.12.19      scales_1.0.0     
[31] backports_1.1.2   jsonlite_1.5      hms_0.4.2        
[34] digest_0.6.17     stringi_1.2.4     grid_3.5.1       
[37] rprojroot_1.3-2   cli_1.0.1         tools_3.5.1      
[40] magrittr_1.5      lazyeval_0.2.1    crayon_1.3.4     
[43] whisker_0.3-2     pkgconfig_2.0.2   xml2_1.2.0       
[46] lubridate_1.7.4   assertthat_0.2.0  rmarkdown_1.10   
[49] httr_1.3.1        rstudioapi_0.8    R6_2.3.0         
[52] nlme_3.1-137      git2r_0.23.0      compiler_3.5.1   



This reproducible R Markdown analysis was created with workflowr 1.1.1