Last updated: 2019-01-20
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/DirectionapaQTL.Rmd
Untracked: analysis/EvaleQTLs.Rmd
Untracked: analysis/PreAshExplore.Rmd
Untracked: analysis/YL_QTL_test.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: code/PeaksToCoverPerReads.py
Untracked: code/strober_pc_pve_heatmap_func.R
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/ChromHmmOverlap/
Untracked: data/GM12878.chromHMM.bed
Untracked: data/GM12878.chromHMM.txt
Untracked: data/LianoglouLCL/
Untracked: data/LocusZoom/
Untracked: data/NuclearApaQTLs.txt
Untracked: data/PeakCounts/
Untracked: data/PeakUsage/
Untracked: data/PeakUsage_noMP/
Untracked: data/PeaksUsed/
Untracked: data/PeaksUsed_noMP_5percCov/
Untracked: data/RNAkalisto/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/UnderstandPeaksQC/
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/YL_QTL_test/
Untracked: data/apaExamp/
Untracked: data/apaQTL_examp_noMP/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/diff_iso_trans/
Untracked: data/ensemble_to_genename.txt
Untracked: data/example_gene_peakQuant/
Untracked: data/explainProtVar/
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/molPheno_noMP/
Untracked: data/mol_overlap/
Untracked: data/mol_pheno/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/nuc_10up/
Untracked: data/other_qtls/
Untracked: data/pQTL_otherphen/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/perm_QTL_trans_filt/
Untracked: data/perm_QTL_trans_noMP_5percov/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: data/threePrimeSeqMetaData.csv
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/CompareLianoglouData.Rmd
Modified: analysis/apaQTLoverlapGWAS.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/coloc_apaQTLs_protQTLs.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explainpQTLs.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/flash2mash.Rmd
Modified: analysis/mispriming_approach.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlapMolQTL.opposite.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/peakQCPPlots.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: analysis/understandPeaks.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 57da244 | Briana Mittleman | 2019-01-20 | updeated to remove mispriming |
html | 2b482ce | Briana Mittleman | 2019-01-18 | Build site. |
Rmd | ee0c781 | Briana Mittleman | 2019-01-18 | deeptools code |
html | 6e22653 | Briana Mittleman | 2019-01-17 | Build site. |
Rmd | 7eaae54 | Briana Mittleman | 2019-01-17 | select peaks to use in deeptools plot |
I want to show RNA seq vs 3’ seq in peaks that are internal.
To do this I need to pull in the peaks (use the filtered ones from peakQCPlots) to get peaks that are used but are not the most distal for the gene. I need to split by strand when i do this becasue most distal is different in both cases.
This analysis is updated post cleaning for mispriming
Load Libraries
library(data.table)
library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.3.1
✔ readr 1.1.1 ✔ forcats 0.3.0
── Conflicts ───────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::between() masks data.table::between()
✖ dplyr::filter() masks stats::filter()
✖ dplyr::first() masks data.table::first()
✖ dplyr::lag() masks stats::lag()
✖ dplyr::last() masks data.table::last()
✖ purrr::transpose() masks data.table::transpose()
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(cowplot)
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
Load peaks for total and nuclear post filter:
name=c("chr","start","end", "gene", "strand", "peak", "meanUsage")
total_PeakUsMean=read.table("../data/PeakUsage_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.pheno.5percPeaks.txt", head = F,col.names = name)
nuclear_PeakUsMean=read.table("../data/PeakUsage_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Nuclear_fixed.pheno.5percPeaks.txt", head=F,col.names = name)
Seperate positive and negative:
total_PeakUsMean_pos=total_PeakUsMean %>% filter(strand=="+")
total_PeakUsMean_neg=total_PeakUsMean %>% filter(strand=="-")
nuclear_PeakUsMean_pos=nuclear_PeakUsMean %>% filter(strand=="+")
nuclear_PeakUsMean_neg=nuclear_PeakUsMean %>% filter(strand=="-")
Group by gene and keep internal (remove genes with only 1)
total_PeakUsMean_pos_internal=total_PeakUsMean_pos %>% group_by(gene) %>% mutate(n=n()) %>% filter(n>1) %>% top_n(1,peak)
nuclear_PeakUsMean_pos_internal=nuclear_PeakUsMean_pos %>% group_by(gene) %>% mutate(n=n()) %>% filter(n>1) %>% top_n(1,peak)
*For negative strand use top_n(-1)
total_PeakUsMean_neg_internal=total_PeakUsMean_neg %>% group_by(gene) %>% mutate(n=n()) %>% filter(n>1) %>% top_n(-1,peak)
nuclear_PeakUsMean_neg_internal=nuclear_PeakUsMean_neg %>% group_by(gene) %>% mutate(n=n()) %>% filter(n>1) %>% top_n(-1,peak)
Bind the total and nuclear rows back together:
Total
total_PeakUsMean_internal=as.data.frame(rbind(total_PeakUsMean_pos_internal,total_PeakUsMean_neg_internal)) %>% arrange(chr, start, end)
write.table(total_PeakUsMean_internal, file="../data/PeakUsage_noMP/InternalFilteredPeak.total.txt", row.names = F, col.names = F, quote = F)
Nuclear:
nuclear_PeakUsMean_internal=as.data.frame(rbind(nuclear_PeakUsMean_pos_internal,nuclear_PeakUsMean_neg_internal)) %>% arrange(chr, start, end)
write.table(nuclear_PeakUsMean_internal, file="../data/PeakUsage_noMP/InternalFilteredPeak.nuclear.txt", row.names = F, col.names = F, quote = F)
Use these peak numbers to filter the bed file that I use for deep tools. I can do this in python with a dictionary of the peaks to keep.
The file I want to subset is /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed.bed
filterPeaksInner_noMP.py
#python
peaksIn="/project2/gilad/briana/threeprimeseq/data/mergedPeaks_noMP_filtered/Filtered_APApeaks_merged_allchrom_noMP.sort.named.noCHR.refseqTrans.closest2end.sm.fixed_5percCov.bed"
innerPeaksTotal="/project2/gilad/briana/threeprimeseq/data/PeakUsage/InternalFilteredPeak.total.txt"
innerPeaksNuclear="/project2/gilad/briana/threeprimeseq/data/PeakUsage/InternalFilteredPeak.nuclear.txt"
OkPeakTot={}
for ln in open(innerPeaksTotal, "r"):
peaknum=ln.split()[5]
peaknumOnly=peaknum[4:]
OkPeakTot[peaknumOnly] = ""
OkPeakNuc={}
for ln in open(innerPeaksNuclear, "r"):
peaknum=ln.split()[5]
peaknumOnly=peaknum[4:]
OkPeakNuc[peaknumOnly]=""
TotOut=open("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_TotalInternal.bed", "w")
NucOut=open("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_NuclearInternal.bed", "w")
#read peaks and write out to each file
for ln in open(peaksIn,"r"):
peakName=ln.split()[3]
peakNameStr=str(peakName)
if peakName in OkPeakTot.keys():
TotOut.write(ln)
if peakName in OkPeakNuc.keys():
NucOut.write(ln)
TotOut.close()
NucOut.close()
Now I can make the deep tools plots:
Three prime seq with inner total
TotalDTPlotmyPeaks_Internal.sh
#!/bin/bash
#SBATCH --job-name=TotalDTPlotmyPeaks_Internal
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=TotalDTPlotmyPeaks_Internal.out
#SBATCH --error=TotalDTPlotmyPeaks_Internal.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/mergedBW/Total_MergedBamCoverage.bw -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_TotalInternal.bed -b 1000 -a 1000 --outFileName /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Total_myPeaks_Internal.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Total_myPeaks_Internal.gz --refPointLabel "Internal Peaks" --plotTitle "Total Combined Reads Internal Peaks" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Total_myPeaks_internal.png
NuclearDTPlotmyPeaks_Internal.sh
#!/bin/bash
#SBATCH --job-name=NuclearDTPlotmyPeaks_Internal
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NucelarDTPlotmyPeaks_Internal.out
#SBATCH --error=NucelarDTPlotmyPeaks_Internal.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/mergedBW/Nucelar_MergedBamCoverage.bw -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_NuclearInternal.bed -b 1000 -a 1000 --outFileName /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Nuclear_myPeaks_Internal.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Nuclear_myPeaks_Internal.gz --refPointLabel "Internal Peaks" --plotTitle "Nuclear Combined Reads Internal Peaks" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Nuclear_myPeaks_internal.png
RNA seq plot with the total internal peaks
RNAseqDTPlotmyPeaks_Internal.sh
#!/bin/bash
#SBATCH --job-name=RNAseqDTPlotmyPeaks_Internal
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=RNAseqDTPlotmyPeaks_Internal.out
#SBATCH --error=RNAseqDTPlotmyPeaks_Internal.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/rnaseq_bw/RNAseqGeuvadis_STAR_6samp_MergedBams.sort.bw -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_TotalInternal.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_Internal.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_Internal.gz --refPointLabel "Total Internal Peaks" --plotTitle "Combined RNAseq Reads at Total Internal" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_Internal.png
RNAseqDTPlotmyPeaks_NuclearInternal.sh
#!/bin/bash
#SBATCH --job-name=RNAseqDTPlotmyPeaks_NuclearInternal
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=RNAseqDTPlotmyPeaks_NuclearInternal.out
#SBATCH --error=RNAseqDTPlotmyPeaks_NuclearInternal.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/rnaseq_bw/RNAseqGeuvadis_STAR_6samp_MergedBams.sort.bw -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_NuclearInternal.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_NuclearInternal.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_NuclearInternal.gz --refPointLabel "Nucelar Internal Peaks" --plotTitle "Combined RNAseq Reads at Nuclear Internal" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_NuclearInternal.png
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 cowplot_0.9.3 workflowr_1.1.1
[4] forcats_0.3.0 stringr_1.3.1 dplyr_0.7.6
[7] purrr_0.2.5 readr_1.1.1 tidyr_0.8.1
[10] tibble_1.4.2 ggplot2_3.0.0 tidyverse_1.2.1
[13] data.table_1.11.8
loaded via a namespace (and not attached):
[1] tidyselect_0.2.4 haven_1.1.2 lattice_0.20-35
[4] colorspace_1.3-2 htmltools_0.3.6 yaml_2.2.0
[7] rlang_0.2.2 R.oo_1.22.0 pillar_1.3.0
[10] glue_1.3.0 withr_2.1.2 R.utils_2.7.0
[13] modelr_0.1.2 readxl_1.1.0 bindr_0.1.1
[16] plyr_1.8.4 munsell_0.5.0 gtable_0.2.0
[19] cellranger_1.1.0 rvest_0.3.2 R.methodsS3_1.7.1
[22] evaluate_0.11 knitr_1.20 broom_0.5.0
[25] Rcpp_0.12.19 backports_1.1.2 scales_1.0.0
[28] jsonlite_1.5 hms_0.4.2 digest_0.6.17
[31] stringi_1.2.4 grid_3.5.1 rprojroot_1.3-2
[34] cli_1.0.1 tools_3.5.1 magrittr_1.5
[37] lazyeval_0.2.1 crayon_1.3.4 whisker_0.3-2
[40] pkgconfig_2.0.2 xml2_1.2.0 lubridate_1.7.4
[43] assertthat_0.2.0 rmarkdown_1.10 httr_1.3.1
[46] rstudioapi_0.8 R6_2.3.0 nlme_3.1-137
[49] git2r_0.23.0 compiler_3.5.1
This reproducible R Markdown analysis was created with workflowr 1.1.1