Last updated: 2018-12-11

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 035053c

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/DirectionapaQTL.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  code/PeaksToCoverPerReads.py
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/ChromHmmOverlap/
        Untracked:  data/GM12878.chromHMM.bed
        Untracked:  data/GM12878.chromHMM.txt
        Untracked:  data/LocusZoom/
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/PeakCounts/
        Untracked:  data/PeaksUsed/
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/UnderstandPeaksQC/
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/diff_iso_trans/
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/example_gene_peakQuant/
        Untracked:  data/explainProtVar/
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/mol_pheno/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/pQTL_otherphen/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/perm_QTL_trans_filt/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  data/threePrimeSeqMetaData.csv
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/QTLsbyPCnum.Rmd
        Modified:   analysis/apaQTLoverlapGWAS.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explainpQTLs.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/flash2mash.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.

In looking at correlations and some examples, there is evidence the peak to gene assignment may be a problem. I am going to visualize the peaks in IGV. I will name them by the gene and look at them in the browser.

The peak to gene annotations used in the feature counts to map reads back to the peaks is the following:
* /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed.bed

I need to change this a bit to have the name be the gene rather than the score:

NamePeaksByGene.py

#python  

CovnamedPeaks=open("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed.bed", "r")
GeneNamedPeaks=open("/project2/gilad/briana/threeprimeseq/data/UnderstandPeaksQC/PeaksNamedWithGeneAssignment.bed", "w")

for ln in CovnamedPeaks:
  chrom, start, end, num, cov, strand, transcript = ln.split()
  gene=transcript.split("-")[1]
  GeneNamedPeaks.write("%s\t%s\t%s\t%s\n"%(chrom,start,end,gene))

GeneNamedPeaks.close()

This was made based on the transcript annotation: ncbiRefSeq.mRNA.named.bed

  • /project2/gilad/briana/genome_anotation_data/ncbiRefSeq.mRNA.named.bed

The ends of the transcripts specfically are in:

  • /project2/gilad/briana/genome_anotation_data/ncbiRefSeq_endProtCodGenes_sort.txt

Ideas for Dilters:

  • Cant be upstream of the gene, ex: chr2:135,558,075-135,604,343

  • maybe it cant be in another gene

  • we should include LINCs

  • looks like we have a ton of low expressed intergenic peaks that should be filtered before we do the gene annotation

Filter out intergenic peaks

As a first pass I want to filter out the peaks that are outside a gene body. While this may not be perfect it will help alot with the intergenic noise.

I need to overlap the named peaks with /project2/gilad/briana/genome_anotation_data/ncbiRefSeq.mRNA.named.bed and only keep the matches. I can use bedtools intersect.

Rename the peaks according to convention to run an intesect.

RenamePeaks4Intersect.py

#python  
CovnamedPeaks=open("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed.bed", "r")
GeneNamedPeaks=open("/project2/gilad/briana/threeprimeseq/data/UnderstandPeaksQC/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_RENAMED.bed", "w")  

for ln in CovnamedPeaks:
  chrom, start, end, num, cov, strand, transcript = ln.split()
  gene=transcript.split("-")[1]
  start=int(start)
  end=int(end)
  GeneNamedPeaks.write("%s\t%d\t%d\t%s-%s\t%s\t%s\n"%(chrom,start,end,num,gene,cov,strand))

GeneNamedPeaks.close()

Remove CHR from the refseq annpotation:

sed 's/^chr//' /project2/gilad/briana/genome_anotation_data/ncbiRefSeq.mRNA.named.bed > /project2/gilad/briana/genome_anotation_data/ncbiRefSeq.mRNA.named_noCHR.bed

Filter4GenicPeaks.sh


#!/bin/bash


#SBATCH --job-name=Filter4GenicPeaks
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=Filter4GenicPeaks.out
#SBATCH --error=Filter4GenicPeaks.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


bedtools intersect -wa -s -a /project2/gilad/briana/threeprimeseq/data/UnderstandPeaksQC/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_RENAMED.bed -b /project2/gilad/briana/genome_anotation_data/ncbiRefSeq.mRNA.named_noCHR.bed > /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_inGeneBody/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_inGeneBodies.bed

This is printing them multiple times.

uniq /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_inGeneBody/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_inGeneBodies.bed > /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_inGeneBody/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_inGeneBodiesUNIQ.bed

Now I need to make this an SAF to run feature counts.

bed2saf_peaksInGenicReg.py

from misc_helper import *

fout = open("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_inGeneBody/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_inGeneBodiesUNIQ.SAF",'w')
fout.write("GeneID\tChr\tStart\tEnd\tStrand\n")
for ln in open("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_inGeneBody/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_inGeneBodiesUNIQ.bed"):
    chrom, start, end, name, score, strand = ln.split()
    namenum=name.split("-")[0]
    name_i=int(namenum)
    start_i=int(start)
    end_i=int(end)
    gene_only=name.split("-")[1]
    ID = "peak%d:%s:%d:%d:%s:%s"%(name_i, chrom, start_i, end_i, strand, gene_only)
    fout.write("%s\t%s\t%d\t%d\t%s\n"%(ID, chrom, start_i, end_i, strand))
fout.close()

Run Feature Counts
PeaksinGenicRegion_fc_TN.sh

#!/bin/bash

#SBATCH --job-name=PeaksinGenicRegion_fc_TN
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=PeaksinGenicRegion_fc_TN.out
#SBATCH --error=PeaksinGenicRegion_fc_TN.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env

featureCounts -O -a /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_inGeneBody/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_inGeneBodiesUNIQ.SAF -F SAF -o /project2/gilad/briana/threeprimeseq/data/PeakInGenecRegion_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant_Genic.Total.fc /project2/gilad/briana/threeprimeseq/data/sort/*-T-*-sort.bam -s 2

featureCounts -O -a /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_inGeneBody/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_inGeneBodiesUNIQ.SAF -F SAF -o /project2/gilad/briana/threeprimeseq/data/PeakInGenecRegion_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant_Genic.Nuclear.fc /project2/gilad/briana/threeprimeseq/data/sort/*-N-*-sort.bam -s 2

Lastly I will need to fix the headers.

fix_head_fc_genicPeak_tot.py

infile= open("/project2/gilad/briana/threeprimeseq/data/PeakInGenecRegion_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant_Genic.Total.fc", "r")
fout = file("/project2/gilad/briana/threeprimeseq/data/PeakInGenecRegion_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant_Genic.Total_fixed.fc",'w')
for line, i in enumerate(infile):
    if line == 1:
        i_list=i.split()
        libraries=i_list[:6]
        for sample in i_list[6:]:
            full = sample.split("/")[7]
            samp= full.split("-")[2:4]
            lim="_"
            samp_st=lim.join(samp)
            libraries.append(samp_st)
        first_line= "\t".join(libraries)
        fout.write(first_line + '\n')
    else :
        fout.write(i)
fout.close()

fix_head_fc_genicPeak_nuc.py

infile= open("/project2/gilad/briana/threeprimeseq/data/PeakInGenecRegion_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant_Genic.Nuclear.fc", "r")
fout = file("/project2/gilad/briana/threeprimeseq/data/PeakInGenecRegion_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant_Genic.Nuclear_fixed.fc",'w')
for line, i in enumerate(infile):
    if line == 1:
        i_list=i.split()
        libraries=i_list[:6]
        for sample in i_list[6:]:
            full = sample.split("/")[7]
            samp= full.split("-")[2:4]
            lim="_"
            samp_st=lim.join(samp)
            libraries.append(samp_st)
        first_line= "\t".join(libraries)
        fout.write(first_line + '\n')
    else :
        fout.write(i)
fout.close()

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.1.1   Rcpp_0.12.19      digest_0.6.17    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.23.0      magrittr_1.5      evaluate_0.11    
[10] stringi_1.2.4     whisker_0.3-2     R.oo_1.22.0      
[13] R.utils_2.7.0     rmarkdown_1.10    tools_3.5.1      
[16] stringr_1.3.1     yaml_2.2.0        compiler_3.5.1   
[19] htmltools_0.3.6   knitr_1.20       



This reproducible R Markdown analysis was created with workflowr 1.1.1