Last updated: 2018-10-11

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 9b23ee6

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/figure/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/genometrack_figs.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/39indQC.Rmd
        Modified:   analysis/PeakToGeneAssignment.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 9b23ee6 Briana Mittleman 2018-10-11 add example plots
    html ad6a5bf Briana Mittleman 2018-10-11 Build site.
    Rmd 373d351 Briana Mittleman 2018-10-11 add pheno code- working
    html e73be70 Briana Mittleman 2018-10-09 Build site.
    Rmd 2f5f071 Briana Mittleman 2018-10-09 add pheno code- not working yet
    html b6d5c19 Briana Mittleman 2018-10-08 Build site.
    Rmd cdec3c1 Briana Mittleman 2018-10-08 change colors
    html 077ed60 Briana Mittleman 2018-10-08 Build site.
    Rmd 50c8b76 Briana Mittleman 2018-10-08 plots for EIF2A in mult phenos


Upload Data:

Library

library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(reshape2)
library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(VennDiagram)
Loading required package: grid
Loading required package: futile.logger
library(data.table)

Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':

    between, first, last
The following object is masked from 'package:purrr':

    transpose
The following objects are masked from 'package:reshape2':

    dcast, melt
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave

Permuted Results from APA:

nuclearAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt", stringsAsFactors = F, header = T)
totalAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt", stringsAsFactors = F, header=T)  

I want to use a buzz swarm plot to plot peak usage for some of the top QTLs. I can use the examples I gave Tony.

Nuclear:
* peak305794, sid: 7:128635754

  • peak: 164036, sid: 2:3502035

Total:

  • Peak: peak228606, SID 3:150302010

  • Peak: peak152751, SID 19:4236475

I need to pull out the genotypes for each snp and the corresponding phenotype. I want to make a python script that I can give a snp and a peak and it will make a table with the genotypes and phenotypes for the necessary gene snp pair.

Example Peak: peak228606, SID 3:150302010

geno3_m=fread("../data/apaExamp/geno3_150302010.txt", header = T) %>% dplyr::select(starts_with("NA")) %>% t
geno3df= data.frame(geno3_m) %>% separate(geno3_m, into=c("geno", "dose", "extra"), sep=":") %>% dplyr::select(dose) %>% rownames_to_column(var="ind")
apaphen228606_m= fread("../data/apaExamp/Total.peak228606.txt", header = T) %>% dplyr::select(starts_with("NA")) %>% t
apaphen228606_df=data.frame(apaphen228606_m) %>% rownames_to_column(var="ind")
toplotAPA=geno3df %>% inner_join(apaphen228606_df, by="ind")
toplotAPA$dose= as.factor(toplotAPA$dose)
colnames(toplotAPA)= c("ind", "Genotype", "APA")
EIF2A_APAex=ggplot(toplotAPA, aes(y=APA, x=Genotype, by=Genotype, fill=Genotype)) + geom_boxplot() + geom_jitter() + labs(y="APA phenotype", title="Total APA: Peak 228606, EIF2A") + scale_fill_brewer(palette="YlOrRd")
ggsave("../output/plots/EIF2a_APA.png", EIF2A_APAex)
Saving 7 x 5 in image

This is in the gene EIF2A, I need to find this in the eQTL data. The ensg id for this gene is ENSG00000144895.

RNAseqEIF2A_m=read.table("../data/apaExamp/RNAseq.phenoEIF2A.txt", header=T) %>% dplyr::select(starts_with("NA")) %>% t 
RNAseqEIF2A_df= data.frame(RNAseqEIF2A_m) %>% rownames_to_column("ind")

plotRNA=geno3df %>% inner_join(RNAseqEIF2A_df, by="ind")
plotRNA$dose= as.factor(plotRNA$dose)
colnames(plotRNA)= c("ind", "Genotype", "Expression")

EIF2A_RNAex=ggplot(plotRNA, aes(y=Expression, x=Genotype, by=Genotype, fill=Genotype)) + geom_boxplot() + geom_jitter() + labs(y="Normalized Expression", title="Gene Expression: EIF2A") + scale_fill_brewer(palette="YlGn")

ggsave("../output/plots/EIF2a_RNA.png", EIF2A_RNAex)
Saving 7 x 5 in image

Try this in protein:

ProtEIF2A_m=read.table("../data/apaExamp/ProtEIF2A.txt", header=T) %>% dplyr::select(starts_with("NA")) %>% t 
ProtEIF2A_df= data.frame(ProtEIF2A_m) %>% rownames_to_column("ind")

plotProt=geno3df %>% inner_join(ProtEIF2A_df, by="ind")
plotProt$dose= as.factor(plotProt$dose)
colnames(plotProt)= c("ind", "Genotype", "Prot_level")

IF2A_Protex= ggplot(plotProt, aes(y=Prot_level, x=Genotype, by=Genotype, fill=Genotype)) + geom_boxplot() + geom_jitter() + labs(y="Normalized Protein Level", title="Protein Level: EIF2A") +scale_fill_brewer(palette="PuBu")

ggsave("../output/plots/EIF2a_Prot.png", IF2A_Protex)
Saving 7 x 5 in image
multphenoEIF2a=plot_grid(EIF2A_APAex,IF2A_Protex,EIF2A_RNAex,nrow=1)
ggsave("../output/plots/EIF2a_multpheno.png", multphenoEIF2a, width=15, height=5)

Do this with 4su 60:

have to remove the #

su60_EIF2A_m=read.table("../data/apaExamp/Foursu60EIF2A.txt", header=T) %>% dplyr::select(starts_with("NA")) %>% t 
su60_EIF2A_df= data.frame(su60_EIF2A_m) %>% rownames_to_column("ind")

plot4su60=geno3df %>% inner_join(su60_EIF2A_df, by="ind")
plot4su60$dose= as.factor(plot4su60$dose)
colnames(plot4su60)= c("ind", "Genotype", "su60")

EIF2A_4su60ex=ggplot(plot4su60, aes(y=su60, x=Genotype, by=Genotype, fill=Genotype)) + geom_boxplot() + geom_jitter() + labs(y="4su60", title="4su 60min Value: EIF2A") + scale_fill_brewer(palette="RdPu") +  theme_classic()

ggsave("../output/plots/EIF2a_4su60.png", EIF2A_4su60ex)
Saving 7 x 5 in image

Geuvadis RNA

rnaG_EIF2A_m=read.table("../data/apaExamp/RNA_GEU_EIF2A.txt", header=T) %>% dplyr::select(starts_with("NA")) %>% t 
rnaG_EIF2A_df= data.frame(rnaG_EIF2A_m) %>% rownames_to_column("ind")

plotRNAg=geno3df %>% inner_join(rnaG_EIF2A_df, by="ind")
plotRNAg$dose= as.factor(plotRNAg$dose)
colnames(plotRNAg)= c("ind", "Genotype", "RNAg")

EIF2A_RNAgex=ggplot(plotRNAg, aes(y=RNAg, x=Genotype, by=Genotype, fill=Genotype)) + geom_boxplot() + geom_jitter() + labs(y="RNA expression", title="RNA Expression Geuvadis: EIF2A") + scale_fill_brewer(palette="RdPu")

ggsave("../output/plots/EIF2a_RNAg.png", EIF2A_RNAgex)
Saving 7 x 5 in image

Ribo:

ribo_EIF2A_m=read.table("../data/apaExamp/Ribo_EIF2A.txt", header=T) %>% dplyr::select(starts_with("NA")) %>% t 
ribo_EIF2A_df= data.frame(ribo_EIF2A_m) %>% rownames_to_column("ind")

plotrib=geno3df %>% inner_join(ribo_EIF2A_df, by="ind")
plotrib$dose= as.factor(plotrib$dose)
colnames(plotrib)= c("ind", "Genotype", "Ribo")

EIF2A_riboex=ggplot(plotrib, aes(y=Ribo, x=Genotype, by=Genotype, fill=Genotype)) + geom_boxplot() + geom_jitter() + labs(y="RNA expression", title="Ribo Geuvadis: EIF2A") + scale_fill_brewer(palette="RdPu")

ggsave("../output/plots/EIF2a_Ribo.png", EIF2A_riboex)
Saving 7 x 5 in image

Create a script to make the relevent files

Python script that take a chromosome, snp, peak#, fraction

createQTLsnpAPAPhenTable.py

def main(PhenFile, GenFile, outFile, snp, peak):
    fout=open(outFile, "w")
    #Phen=open(PhenFile, "r")
    Gen=open(GenFile, "r")
    #get ind and pheno info
    def get_pheno():
      Phen=open(PhenFile, "r")
      for num, ln in enumerate(Phen):
          if num == 0:
              indiv= ln.split()[4:]
          else:
              id=ln.split()[3].split(":")[3]
              peakID=id.split("_")[2]
              if peakID == peak:
                  pheno_list=ln.split()[4:]
                  pheno_data=list(zip(indiv,pheno_list))
                  print(pheno_data)
                  return(pheno_data)
    def get_geno():
      for num, lnG in enumerate(Gen):
          if num == 13:
              Ind_geno=lnG.split()[9:]
          if num >= 14: 
              sid= lnG.split()[2]
              if sid == snp: 
                  gen_list=lnG.split()[9:]
                  allele1=[]
                  allele2=[]
                  for i in gen_list:
                      genotype=i.split(":")[0]
                      allele1.append(genotype.split("|")[0])
                      allele2.append(genotype.split("|")[1])
            #now i have my indiv., phen, allele 1, alle 2     
                  geno_data=list(zip(Ind_geno, allele1, allele2))
                  print(geno_data)
                  return(geno_data)

    phenotype=get_pheno()
    pheno_df=pd.DataFrame(data=phenotype,columns=["Ind", "Pheno"])
    genotype=get_geno()
    geno_df=pd.DataFrame(data=genotype, columns=["Ind", "Allele1", "Allele2"])
    full_df=pd.merge(geno_df, pheno_df, how="inner", on="Ind")
    full_df.to_csv(fout, sep="\t", encoding='utf-8', index=False)
    fout.close()
    

if __name__ == "__main__":
    import sys
    import pandas as pd
    chrom=sys.argv[1]
    snp = sys.argv[2]
    peak = sys.argv[3]
    fraction=sys.argv[4]
    
    PhenFile = "/project2/gilad/briana/threeprimeseq/data/phenotypes_filtPeakTranscript/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.%s.pheno_fixed.txt.gz.phen_chr%s"%(fraction, chrom)
    GenFile= "/project2/gilad/briana/YRI_geno_hg19/chr%s.dose.filt.vcf"%(chrom)
    outFile = "/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/qtlSNP_PeakAPA%s.%s%s.txt"%(fraction, snp, peak)
    main(PhenFile, GenFile, outFile, snp, peak)
    

Use the results to plot the nuclear pheno:

EIF2a_APAnuc=read.table("../data/apaExamp/qtlSNP_PeakAPANuclear.3:150302010peak228606.txt", header=T, stringsAsFactors = F) %>% mutate(Geno=Allele1 + Allele2)

EIF2a_APAnuc$Geno= as.factor(as.character(EIF2a_APAnuc$Geno))


ggplot(EIF2a_APAnuc, aes(y=Pheno, x=Geno, by=Geno, fill=Geno)) + geom_boxplot() + geom_jitter() + labs(y="APA Nuc Usage", title="APA nuc: EIF2A") + scale_fill_brewer(palette="RdPu")

Expand here to see past versions of unnamed-chunk-12-1.png:
Version Author Date
e73be70 Briana Mittleman 2018-10-09

This does the total and nuclear fraction of APA. I will do this for a snp and gene and get all of the other phenotypes. This will be similar other than changing the names of the genes and seperating the name for all but protein.

createQTLsnpMolPhenTable.py

def main(PhenFile, GenFile, outFile, snp, gene, molPhen):
    #genenames=open("/project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt", "r" )
    #for ln in genenames:
     #   geneName=ln.split()[1]
      #  if geneName == gene:
       #gene_ensg=ln.split()[0]
    gene_ensg=gene  
    fout=open(outFile, "w")
    #Phen=open(PhenFile, "r")
    Gen=open(GenFile, "r")
    def getPheno(geneE=gene_ensg , mp=molPhen):
      pheno=open(PhenFile, "r")
      #get ind and pheno info
      mp_use=mp[1:-1]
      if mp_use=="prot":
        for num,ln in enumerate(pheno):
            if num == 0:
                indiv= ln.split()[4:]
            else:
                gene=ln.split()[3]
                if gene == str(geneE):
                    print("x")
                    pheno_list=ln.split()[4:]
                    pheno_data= list(zip(indiv, pheno_list))
                    return(pheno_data)
      else:
        for num,ln in enumerate(pheno):
            if num == 0:
                indiv= ln.split()[4:]
            else: 
                full_gene=ln.split()[3]
                gene= full_gene.split(".")[0]
                if gene == geneE:
                    print(gene)
                    pheno_list=ln.split()[4:]
                    pheno_data= list(zip(indiv, pheno_list))
                    return(pheno_data)
    def getGeno(geno, SNP):
      for num, lnG in enumerate(geno):
          if num == 13:
              Ind_geno=lnG.split()[9:]
          if num >= 14: 
              sid= lnG.split()[2]
              if sid == SNP: 
                  gen_list=lnG.split()[9:]
                  allele1=[]
                  allele2=[]
                  for i in gen_list:
                      genotype=i.split(":")[0]
                      allele1.append(genotype.split("|")[0])
                      allele2.append(genotype.split("|")[1])
            #now i have my indiv., phen, allele 1, alle 2     
                  geno_data=list(zip(Ind_geno, allele1, allele2))
                  return(geno_data)
    
                      
                  
    phenotype_data=getPheno()
    print(phenotype_data)
    pheno_df=pd.DataFrame(data=phenotype_data,columns=["Ind", "Pheno"])  
  
    genotype_data=getGeno(Gen, snp)
    print(genotype_data)
    geno_df=pd.DataFrame(data=genotype_data, columns=["Ind", "Allele1", "Allele2"])
    
    full_df=pd.merge(geno_df, pheno_df, how="inner", on="Ind")
    full_df.to_csv(fout, sep="\t", encoding='utf-8', index=False)
    fout.close()
    

if __name__ == "__main__":
    import sys
    import pandas as pd
    chrom=sys.argv[1]
    snp = sys.argv[2]
    gene = sys.argv[3]
    molPhen=sys.argv[4]
    
    PhenFile = "/project2/gilad/briana/threeprimeseq/data/molecular_phenos/fastqtl_qqnorm%sphase2.fixed.noChr.txt"%(molPhen)
    GenFile= "/project2/gilad/briana/YRI_geno_hg19/chr%s.dose.filt.vcf"%(chrom)
    outFile = "/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/qtlSNP_Peak%s%s%s.txt"%(molPhen, snp, gene)
    main(PhenFile, GenFile, outFile, snp, gene,molPhen)
    

test this:

python createQTLsnpMolPhenTable.py 3 3:150302010 EIF2A _RNAseq_

list for phenos:

  • 4su_30

  • 4su_60

  • RNAseqGeuvadis

  • RNAseq

  • prot

  • ribo

Create a bash script that will use a for loop to run the python script on a all of the phenotypes

run_createQTLsnpMolPhenTable.sh

#!/bin/bash

#SBATCH --job-name=run_createQTLsnpMolPhenTable
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_createQTLsnpMolPhenTable.out
#SBATCH --error=run_createQTLsnpMolPhenTable.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load python 


chrom=$1
snp=$2
gene=$3

for i in "_4su_30_" "_4su_60_" "_RNAseqGeuvadis_" "_RNAseq_" "_prot." "_ribo_"
do
python createQTLsnpMolPhenTable.py ${chrom} ${snp} ${gene} ${i}
done

Function to create plots:

I want to imput the files with the following structure:

/Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/apaExamp/qtlSNP_Peakmolpheno.snp.peak/gene.txt

I will use these to make cowplot with ggplot boxplots for each phenotypes. To do this I will create a function that takes in a snp, peak, and gene and creates each phenotype plot. It will then return the cowplot plot grid.

plotQTL_func= function(SNP, peak, gene){
  apaN_file=read.table(paste("../data/apaExamp/qtlSNP_PeakAPANuclear.", SNP, peak, ".txt", sep = "" ), header=T)
  apaT_file=read.table(paste("../data/apaExamp/qtlSNP_PeakAPATotal.", SNP, peak, ".txt", sep = "" ), header=T)
  su30_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_4su_30_", SNP, gene, ".txt", sep=""), header = T)
  su60_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_4su_60_", SNP, gene, ".txt", sep=""), header=T)
  RNA_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_RNAseq_", SNP, gene, ".txt", sep=""),header=T)
  RNAg_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_RNAseqGeuvadis_", SNP, gene, ".txt", sep=""), header = T)
  ribo_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_ribo_", SNP, gene, ".txt", sep=""),header=T)
  prot_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_prot.", SNP, gene, ".txt", sep=""), header=T)
  
  ggplot_func= function(file, molPhen,GENE){
    file = file %>% mutate(genotype=Allele1 + Allele2)
    file$genotype= as.factor(as.character(file$genotype))
    plot=ggplot(file, aes(y=Pheno, x=genotype, by=genotype, fill=genotype)) + geom_boxplot(width=.25) + geom_jitter() + labs(y="Phenotpye",title=paste(molPhen, GENE, sep=": ")) + scale_fill_brewer(palette="Paired")
    return(plot)
  }
  
  apaNplot=ggplot_func(apaN_file, "Apa Nuclear", gene)
  apaTplot=ggplot_func(apaT_file, "Apa Total", gene)
  su30plot=ggplot_func(su30_file, "4su30",gene)
  su60plot=ggplot_func(su60_file, "4su60",gene)
  RNAplot=ggplot_func(RNA_file, "RNA Seq",gene)
  RNAgPlot=ggplot_func(RNAg_file, "RNA Seq Geuvadis",gene)
  riboPlot= ggplot_func(ribo_file, "Ribo Seq",gene)
  protplot=ggplot_func(prot_file, "Protein",gene)
  
  full_plot= plot_grid(apaNplot,apaTplot, su30plot, su60plot, RNAplot, RNAgPlot, riboPlot, protplot,nrow=2)
  return (full_plot)
}

Try this with the EIF2A QTL:

eif2a_allplots=plotQTL_func(SNP="3:150302010", peak="peak228606", gene="EIF2A")

ggsave("../output/plots/EIF2A_allplots.png", eif2a_allplots, height=5, width=12)

Try with another snp:

  • peak164036, sid: 2:3502035

Step 1: Figure out what gene the peak is in.

grep peak164036 /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt

This peak is in ADI1

Step2: Get the total and nuclear APA values by genotype with createQTLsnpAPAPhenTable.py


python createQTLsnpAPAPhenTable.py 2 2:3502035 peak164036 Total

python createQTLsnpAPAPhenTable.py 2 2:3502035 peak164036 Nuclear

Step 3: Get the ensg gene name:

grep ADI1 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt

Step 4: Run this on the other phenotypes with : run_createQTLsnpMolPhenTable.sh


sbatch run_createQTLsnpMolPhenTable.sh "2" "2:3502035" "ENSG00000182551"

Step 4: copy files to computer:

scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/qtlSNP_Peak*2:*  . 

Step 5: plot

plotQTL_func(SNP="2:3502035", peak="peak164036", gene="ENSG00000182551")

  • peak305794, sid: 7:128635754
grep peak305794 /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt
#gene=IRF5
grep IRF5 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ensg= ENSG00000128604

python createQTLsnpAPAPhenTable.py 7 7:128635754  peak305794 Total
python createQTLsnpAPAPhenTable.py 7 7:128635754  peak305794 Nuclear


sbatch run_createQTLsnpMolPhenTable.sh "7" "7:128635754" "ENSG00000128604"

scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/qtlSNP_Peak_*7:* .
scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/qtlSNP_PeakAPA*.7* .
plotQTL_func(SNP="7:128635754", peak="peak305794", gene="ENSG00000128604")

* Peak: peak152751, SID 19:4236475

grep peak152751 /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt
#gene=EBI3
grep EBI3 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ensg= ENSG00000105246

python createQTLsnpAPAPhenTable.py 19 19:4236475  peak152751 Total
python createQTLsnpAPAPhenTable.py 19 19:4236475  peak152751 Nuclear


sbatch run_createQTLsnpMolPhenTable.sh "19" "19:4236475 " "ENSG00000105246"

scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*19:4236475* .
plotQTL_func(SNP="19:4236475", peak="peak152751", gene="ENSG00000105246")

  • 4:84382181:84382182:MRPS18C_+_peak241853, snp4:84382264

#gene=MRPS18C
grep MRPS18C /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ensg= ENSG00000163319

python createQTLsnpAPAPhenTable.py 4 4:84382264  peak241853 Total
python createQTLsnpAPAPhenTable.py 4 4:84382264  peak241853 Nuclear


sbatch run_createQTLsnpMolPhenTable.sh "4" "4:84382264 " "ENSG00000163319"

scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*4:84382264* .

We dont have protein information for this gene

plotQTL_func(SNP="4:84382264", peak="peak241853", gene="ENSG00000163319")

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] bindrcpp_0.2.2      cowplot_0.9.3       data.table_1.11.8  
 [4] VennDiagram_1.6.20  futile.logger_1.4.3 forcats_0.3.0      
 [7] stringr_1.3.1       dplyr_0.7.6         purrr_0.2.5        
[10] readr_1.1.1         tidyr_0.8.1         tibble_1.4.2       
[13] ggplot2_3.0.0       tidyverse_1.2.1     reshape2_1.4.3     
[16] workflowr_1.1.1    

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4     haven_1.1.2          lattice_0.20-35     
 [4] colorspace_1.3-2     htmltools_0.3.6      yaml_2.2.0          
 [7] rlang_0.2.2          R.oo_1.22.0          pillar_1.3.0        
[10] glue_1.3.0           withr_2.1.2          R.utils_2.7.0       
[13] RColorBrewer_1.1-2   lambda.r_1.2.3       modelr_0.1.2        
[16] readxl_1.1.0         bindr_0.1.1          plyr_1.8.4          
[19] munsell_0.5.0        gtable_0.2.0         cellranger_1.1.0    
[22] rvest_0.3.2          R.methodsS3_1.7.1    evaluate_0.11       
[25] labeling_0.3         knitr_1.20           broom_0.5.0         
[28] Rcpp_0.12.19         formatR_1.5          backports_1.1.2     
[31] scales_1.0.0         jsonlite_1.5         hms_0.4.2           
[34] digest_0.6.17        stringi_1.2.4        rprojroot_1.3-2     
[37] cli_1.0.1            tools_3.5.1          magrittr_1.5        
[40] lazyeval_0.2.1       futile.options_1.0.1 crayon_1.3.4        
[43] whisker_0.3-2        pkgconfig_2.0.2      xml2_1.2.0          
[46] lubridate_1.7.4      assertthat_0.2.0     rmarkdown_1.10      
[49] httr_1.3.1           rstudioapi_0.8       R6_2.3.0            
[52] nlme_3.1-137         git2r_0.23.0         compiler_3.5.1      



This reproducible R Markdown analysis was created with workflowr 1.1.1