Last updated: 2019-01-20
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date 
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
 ✔ Environment: empty 
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
 ✔ Seed: 
set.seed(12345) 
The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
 ✔ Session information: recorded 
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
 ✔ Repository version: 57da244 
wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store
Untracked files:
    Untracked:  KalistoAbundance18486.txt
    Untracked:  analysis/DirectionapaQTL.Rmd
    Untracked:  analysis/EvaleQTLs.Rmd
    Untracked:  analysis/PreAshExplore.Rmd
    Untracked:  analysis/YL_QTL_test.Rmd
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  code/PeaksToCoverPerReads.py
    Untracked:  code/strober_pc_pve_heatmap_func.R
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/ChromHmmOverlap/
    Untracked:  data/GM12878.chromHMM.bed
    Untracked:  data/GM12878.chromHMM.txt
    Untracked:  data/LianoglouLCL/
    Untracked:  data/LocusZoom/
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/PeakCounts/
    Untracked:  data/PeakUsage/
    Untracked:  data/PeakUsage_noMP/
    Untracked:  data/PeaksUsed/
    Untracked:  data/PeaksUsed_noMP_5percCov/
    Untracked:  data/RNAkalisto/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/UnderstandPeaksQC/
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/YL_QTL_test/
    Untracked:  data/apaExamp/
    Untracked:  data/apaQTL_examp_noMP/
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/diff_iso_trans/
    Untracked:  data/ensemble_to_genename.txt
    Untracked:  data/example_gene_peakQuant/
    Untracked:  data/explainProtVar/
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
    Untracked:  data/first50lines_closest.txt
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/molPheno_noMP/
    Untracked:  data/mol_overlap/
    Untracked:  data/mol_pheno/
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nom_QTL_trans/
    Untracked:  data/nuc6up/
    Untracked:  data/nuc_10up/
    Untracked:  data/other_qtls/
    Untracked:  data/pQTL_otherphen/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/perm_QTL_trans/
    Untracked:  data/perm_QTL_trans_filt/
    Untracked:  data/perm_QTL_trans_noMP_5percov/
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  data/threePrimeSeqMetaData.csv
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf
Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/CompareLianoglouData.Rmd
    Modified:   analysis/apaQTLoverlapGWAS.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explainpQTLs.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/flash2mash.Rmd
    Modified:   analysis/mispriming_approach.Rmd
    Modified:   analysis/overlapMolQTL.Rmd
    Modified:   analysis/overlapMolQTL.opposite.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/peakQCPPlots.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/swarmPlots_QTLs.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   analysis/understandPeaks.Rmd
    Modified:   code/Snakefile
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 57da244 | Briana Mittleman | 2019-01-20 | updeated to remove mispriming | 
| html | 2b482ce | Briana Mittleman | 2019-01-18 | Build site. | 
| Rmd | ee0c781 | Briana Mittleman | 2019-01-18 | deeptools code | 
| html | 6e22653 | Briana Mittleman | 2019-01-17 | Build site. | 
| Rmd | 7eaae54 | Briana Mittleman | 2019-01-17 | select peaks to use in deeptools plot | 
I want to show RNA seq vs 3’ seq in peaks that are internal.
To do this I need to pull in the peaks (use the filtered ones from peakQCPlots) to get peaks that are used but are not the most distal for the gene. I need to split by strand when i do this becasue most distal is different in both cases.
This analysis is updated post cleaning for mispriming
Load Libraries
library(data.table)
library(tidyverse)── Attaching packages ────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0── Conflicts ───────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::between()   masks data.table::between()
✖ dplyr::filter()    masks stats::filter()
✖ dplyr::first()     masks data.table::first()
✖ dplyr::lag()       masks stats::lag()
✖ dplyr::last()      masks data.table::last()
✖ purrr::transpose() masks data.table::transpose()library(workflowr)This is workflowr version 1.1.1
Run ?workflowr for help getting startedlibrary(cowplot)
Attaching package: 'cowplot'The following object is masked from 'package:ggplot2':
    ggsaveLoad peaks for total and nuclear post filter:
name=c("chr","start","end", "gene", "strand", "peak", "meanUsage")
total_PeakUsMean=read.table("../data/PeakUsage_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Total_fixed.pheno.5percPeaks.txt", head = F,col.names = name)
nuclear_PeakUsMean=read.table("../data/PeakUsage_noMP/filtered_APApeaks_merged_allchrom_refseqGenes.TranscriptNoMP_sm_quant.Nuclear_fixed.pheno.5percPeaks.txt", head=F,col.names = name)Seperate positive and negative:
total_PeakUsMean_pos=total_PeakUsMean %>% filter(strand=="+")
total_PeakUsMean_neg=total_PeakUsMean %>% filter(strand=="-")nuclear_PeakUsMean_pos=nuclear_PeakUsMean %>% filter(strand=="+")
nuclear_PeakUsMean_neg=nuclear_PeakUsMean %>% filter(strand=="-")Group by gene and keep internal (remove genes with only 1)
total_PeakUsMean_pos_internal=total_PeakUsMean_pos %>% group_by(gene) %>% mutate(n=n()) %>% filter(n>1) %>% top_n(1,peak)
nuclear_PeakUsMean_pos_internal=nuclear_PeakUsMean_pos %>% group_by(gene) %>% mutate(n=n()) %>% filter(n>1) %>% top_n(1,peak)*For negative strand use top_n(-1)
total_PeakUsMean_neg_internal=total_PeakUsMean_neg %>% group_by(gene) %>% mutate(n=n()) %>% filter(n>1) %>% top_n(-1,peak)
nuclear_PeakUsMean_neg_internal=nuclear_PeakUsMean_neg %>% group_by(gene) %>% mutate(n=n()) %>% filter(n>1) %>% top_n(-1,peak)Bind the total and nuclear rows back together:
Total
total_PeakUsMean_internal=as.data.frame(rbind(total_PeakUsMean_pos_internal,total_PeakUsMean_neg_internal)) %>% arrange(chr, start, end)
write.table(total_PeakUsMean_internal, file="../data/PeakUsage_noMP/InternalFilteredPeak.total.txt", row.names = F, col.names = F, quote = F)Nuclear:
nuclear_PeakUsMean_internal=as.data.frame(rbind(nuclear_PeakUsMean_pos_internal,nuclear_PeakUsMean_neg_internal)) %>% arrange(chr, start, end)
write.table(nuclear_PeakUsMean_internal, file="../data/PeakUsage_noMP/InternalFilteredPeak.nuclear.txt", row.names = F, col.names = F, quote = F)Use these peak numbers to filter the bed file that I use for deep tools. I can do this in python with a dictionary of the peaks to keep.
The file I want to subset is /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed.bed
filterPeaksInner_noMP.py
#python  
peaksIn="/project2/gilad/briana/threeprimeseq/data/mergedPeaks_noMP_filtered/Filtered_APApeaks_merged_allchrom_noMP.sort.named.noCHR.refseqTrans.closest2end.sm.fixed_5percCov.bed"
innerPeaksTotal="/project2/gilad/briana/threeprimeseq/data/PeakUsage/InternalFilteredPeak.total.txt"
innerPeaksNuclear="/project2/gilad/briana/threeprimeseq/data/PeakUsage/InternalFilteredPeak.nuclear.txt"
OkPeakTot={}
for ln in open(innerPeaksTotal, "r"):
    peaknum=ln.split()[5]
    peaknumOnly=peaknum[4:]
    OkPeakTot[peaknumOnly] = ""
  
OkPeakNuc={}
for ln in open(innerPeaksNuclear, "r"):
   peaknum=ln.split()[5]
   peaknumOnly=peaknum[4:]
   OkPeakNuc[peaknumOnly]=""
   
TotOut=open("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_TotalInternal.bed", "w")
NucOut=open("/project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_NuclearInternal.bed", "w")
#read peaks and write out to each file 
for ln in open(peaksIn,"r"):
    peakName=ln.split()[3]
    peakNameStr=str(peakName)
    if peakName in OkPeakTot.keys():
        TotOut.write(ln)
    if peakName in OkPeakNuc.keys():
        NucOut.write(ln)
TotOut.close()
NucOut.close()
      Now I can make the deep tools plots:
Three prime seq with inner total
TotalDTPlotmyPeaks_Internal.sh
#!/bin/bash
#SBATCH --job-name=TotalDTPlotmyPeaks_Internal
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=TotalDTPlotmyPeaks_Internal.out
#SBATCH --error=TotalDTPlotmyPeaks_Internal.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/mergedBW/Total_MergedBamCoverage.bw  -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_TotalInternal.bed -b 1000 -a 1000  --outFileName /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Total_myPeaks_Internal.gz  
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Total_myPeaks_Internal.gz --refPointLabel "Internal Peaks" --plotTitle "Total Combined Reads Internal Peaks" --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Total_myPeaks_internal.png
NuclearDTPlotmyPeaks_Internal.sh
#!/bin/bash
#SBATCH --job-name=NuclearDTPlotmyPeaks_Internal
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=NucelarDTPlotmyPeaks_Internal.out
#SBATCH --error=NucelarDTPlotmyPeaks_Internal.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/mergedBW/Nucelar_MergedBamCoverage.bw  -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_NuclearInternal.bed -b 1000 -a 1000  --outFileName /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Nuclear_myPeaks_Internal.gz  
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Nuclear_myPeaks_Internal.gz --refPointLabel "Internal Peaks" --plotTitle "Nuclear Combined Reads Internal Peaks" --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/LianoglouDeepTools/Nuclear_myPeaks_internal.png
RNA seq plot with the total internal peaks
RNAseqDTPlotmyPeaks_Internal.sh
#!/bin/bash
#SBATCH --job-name=RNAseqDTPlotmyPeaks_Internal
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=RNAseqDTPlotmyPeaks_Internal.out
#SBATCH --error=RNAseqDTPlotmyPeaks_Internal.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/rnaseq_bw/RNAseqGeuvadis_STAR_6samp_MergedBams.sort.bw   -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_TotalInternal.bed -b 1000 -a 1000  -out /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_Internal.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_Internal.gz --refPointLabel "Total Internal Peaks" --plotTitle "Combined RNAseq Reads at Total Internal"  --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_Internal.pngRNAseqDTPlotmyPeaks_NuclearInternal.sh
#!/bin/bash
#SBATCH --job-name=RNAseqDTPlotmyPeaks_NuclearInternal
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=RNAseqDTPlotmyPeaks_NuclearInternal.out
#SBATCH --error=RNAseqDTPlotmyPeaks_NuclearInternal.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/rnaseq_bw/RNAseqGeuvadis_STAR_6samp_MergedBams.sort.bw   -R /project2/gilad/briana/threeprimeseq/data/mergedPeaks_comb_noMP/filtered_APApeaks_merged_allchrom_refseqTrans.noties_sm.fixed_NuclearInternal.bed -b 1000 -a 1000  -out /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_NuclearInternal.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_NuclearInternal.gz --refPointLabel "Nucelar Internal Peaks" --plotTitle "Combined RNAseq Reads at Nuclear Internal"  --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/rnaseq_deeptools/RNAseq_myPeaks_NuclearInternal.pngsessionInfo()R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
 [1] bindrcpp_0.2.2    cowplot_0.9.3     workflowr_1.1.1  
 [4] forcats_0.3.0     stringr_1.3.1     dplyr_0.7.6      
 [7] purrr_0.2.5       readr_1.1.1       tidyr_0.8.1      
[10] tibble_1.4.2      ggplot2_3.0.0     tidyverse_1.2.1  
[13] data.table_1.11.8
loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  haven_1.1.2       lattice_0.20-35  
 [4] colorspace_1.3-2  htmltools_0.3.6   yaml_2.2.0       
 [7] rlang_0.2.2       R.oo_1.22.0       pillar_1.3.0     
[10] glue_1.3.0        withr_2.1.2       R.utils_2.7.0    
[13] modelr_0.1.2      readxl_1.1.0      bindr_0.1.1      
[16] plyr_1.8.4        munsell_0.5.0     gtable_0.2.0     
[19] cellranger_1.1.0  rvest_0.3.2       R.methodsS3_1.7.1
[22] evaluate_0.11     knitr_1.20        broom_0.5.0      
[25] Rcpp_0.12.19      backports_1.1.2   scales_1.0.0     
[28] jsonlite_1.5      hms_0.4.2         digest_0.6.17    
[31] stringi_1.2.4     grid_3.5.1        rprojroot_1.3-2  
[34] cli_1.0.1         tools_3.5.1       magrittr_1.5     
[37] lazyeval_0.2.1    crayon_1.3.4      whisker_0.3-2    
[40] pkgconfig_2.0.2   xml2_1.2.0        lubridate_1.7.4  
[43] assertthat_0.2.0  rmarkdown_1.10    httr_1.3.1       
[46] rstudioapi_0.8    R6_2.3.0          nlme_3.1-137     
[49] git2r_0.23.0      compiler_3.5.1   
This reproducible R Markdown analysis was created with workflowr 1.1.1