Last updated: 2018-07-30

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 782320d

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/gene_cov/
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/nuc6up/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 782320d Briana Mittleman 2018-07-30 look at coverage in merged bw
    html e5a8da6 Briana Mittleman 2018-07-30 Build site.
    Rmd 422a428 Briana Mittleman 2018-07-30 add peak cove pipeline and combined lane qc


I need to create a processing pipeline that I can run each time I get more individuals that will do the following:

  • combine all total and nuclear libraries (as a bigwig/genome coverage)

  • call peaks with Yang’s script

  • filter peaks with Yang’s script

  • clean peaks

  • run feature counts on these peaks for all fo the individuals

Create bedgraph and bigwig:

I can do this step in my snakefile. First, I added the following to my environemnt.

  • ucsc-bedgraphtobigwig
  • ucsc-bigwigmerge
  • ucsc-wigtobigwig
  • ucsc-bigwigtobedgraph

I want to create bedgraph for each file. I will add a rule to my snakefile that does this and puts them in the bedgraph directory.

#add to directory
dir_bedgraph= dir_data + "bedgraph/"

#add to rule_all  

expand(dir_bedgraph + "{samples}.bg", samples=samples)

#rule
rule bedgraph: 
  input:
    bam = dir_sort + "{samples}-sort.bam"
  output: dir_bedgraph + "{samples}.bg"
  shell: "bedtools genomecov -ibam {input.bam} -bg -5 > {output}"

I want to add more memory for this rule in the cluster.json

"bedgraph" :
    {
            "mem": 16000
    }

I will use the bedgraphtobigwig tool.

#add to directory
dir_bigwig= dir_data + "bigwig/"
dir_sortbg= dir_data + "bedgraph_sort/"

#add to rule_all  
expand(dir_sortbg + "{samples}.sort.bg", samples=samples)
expand(dir_bigwig + "{samples}.bw", samples=samples)

rule sort_bg:
    input: dir_bedgraph + "{samples}.bg"
    output: dir_sortbg + "{samples}.sort.bg"
    shell: "sort -k1,1 -k2,2n {input} > {output}"

rule bg_to_bw:
    input: 
        bg=dir_sortbg + "{samples}.sort.bg"
        len= chrom_length 
    output: dir_bigwig + "{samples}.bw"
    shell: "bedGraphToBigWig {input.bg} {input.len} {output}""

Merge BW

This next step will take all of the files in the bigwig directory and merge them. To do this I will create a script that creates a list of all of the files then uses this list in the merge script.

mergeBW.sh

#!/bin/bash

#SBATCH --job-name=mergeBW
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeBW.out
#SBATCH --error=mergeBW.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env

ls -d -1 /project2/gilad/briana/threeprimeseq/data/bigwig/* | tail -n +2 > /project2/gilad/briana/threeprimeseq/data/list_bw/list_of_bigwig.txt

bigWigMerge -inList /project2/gilad/briana/threeprimeseq/data/list_bw/list_of_bigwig.txt /project2/gilad/briana/threeprimeseq/data/mergedBW/merged_combined_YL-SP-threeprimeseq.bg

The result of this script will be a merged bedgraph of all of the files.

Merge to get peaks

library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(ggplot2)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

update the following: callPeaksYL_combdata.py

Merge until the coverage is less than a number (ex. 5). Then start again when it is greater than that number. Previously we used the cuttoff 5. I can look at the distribution of the coverage to pick an informative cuttoff.

merged_bg=read.table("../data/merged_combined_YL-SP-threeprimeseq.bg", col.names=c("chr", "start", "end", "cov"))
summary(merged_bg$cov)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      1       1       3      52       9 5304660 
cov_plot=plot(sort(log10(merged_bg$cov)))
abline(h=1)

From this itlooks like 10 is a good cuttoff for the peaks.

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] dplyr_0.7.6     ggplot2_3.0.0   workflowr_1.1.1

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      compiler_3.5.1    pillar_1.3.0     
 [4] git2r_0.23.0      plyr_1.8.4        bindr_0.1.1      
 [7] R.methodsS3_1.7.1 R.utils_2.6.0     tools_3.5.1      
[10] digest_0.6.15     evaluate_0.11     tibble_1.4.2     
[13] gtable_0.2.0      pkgconfig_2.0.1   rlang_0.2.1      
[16] rstudioapi_0.7    yaml_2.1.19       bindrcpp_0.2.2   
[19] withr_2.1.2       stringr_1.3.1     knitr_1.20       
[22] rprojroot_1.3-2   grid_3.5.1        tidyselect_0.2.4 
[25] glue_1.3.0        R6_2.2.2          rmarkdown_1.10   
[28] purrr_0.2.5       magrittr_1.5      whisker_0.3-2    
[31] backports_1.1.2   scales_0.5.0      htmltools_0.3.6  
[34] assertthat_0.2.0  colorspace_1.3-2  stringi_1.2.4    
[37] lazyeval_0.2.1    munsell_0.5.0     crayon_1.3.4     
[40] R.oo_1.22.0      



This reproducible R Markdown analysis was created with workflowr 1.1.1