Last updated: 2018-06-27

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 15c0dd0

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  data/18486.genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/gene_cov/
        Untracked:  data/leafcutter/
        Untracked:  data/nuc6up/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/ssFC200.cov.bed
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 15c0dd0 Briana Mittleman 2018-06-27 try no shift
    html 8120471 Briana Mittleman 2018-06-27 Build site.
    Rmd 5e81c8e Briana Mittleman 2018-06-27 add code for macs2 peak calling
    html ee777df Briana Mittleman 2018-06-26 Build site.
    Rmd 789d8ef Briana Mittleman 2018-06-26 start test macs analysis. download package


In this analysis I want to test macs2 as a potential peak caller in the 3’ seq data. This is a widely used peak caller for chip seq data.

I have to create a specific environment to install macs2 because you need to use python 2.7. I call it macs-env. To access this environment I use source activate macs-env.

First, I will merge all of my files into 1 bam file. Using samtools merge. I will do all of my work for this in data/macs2


#!/bin/bash

#SBATCH --job-name=merge
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END

module load samtools

samtools merge macs2/allBamFiles.bam bam/*.bam

I will create a script in the code directory to call the peaks:

#!/bin/bash

#SBATCH --job-name=macs2nomod
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=macs2nomod.out
#SBATCH --error=macs2nomod.err
#SBATCH --partition=broadwl
#SBATCH --mem=8G
#SBATCH --mail-type=END


module load Anaconda3 

source activate macs-env

macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/allBamFiles.bam  -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n threeprimebatch1 --slocal 1000 --nomodel 

This method called 102988 peaks. This is likely more than the true PAS.

Update the -m (MFOLD) term to change the fold enrichment. They must be lower than the upper limmit and higher than the lower limit. The default is 5 50. I will try to make this 20 100.

#!/bin/bash

#SBATCH --job-name=macs2nomod20.100
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=macs2nomod.20.100.out
#SBATCH --error=macs2nomod.20.100.err
#SBATCH --partition=broadwl
#SBATCH --mem=8G
#SBATCH --mail-type=END


module load Anaconda3 

source activate macs-env

macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/allBamFiles.bam  -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n threeprimebatch1.20.100 --slocal 1000 --nomodel -m 20 100  

This did not change anything. I am going to try a higher cutoff.

#!/bin/bash

#SBATCH --job-name=macs2nomod40.400
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=macs2nomod.40.200.out
#SBATCH --error=macs2nomod.40.200.err
#SBATCH --partition=broadwl
#SBATCH --mem=8G
#SBATCH --mail-type=END


module load Anaconda3 

source activate macs-env

macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/allBamFiles.bam  -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n threeprimebatch1.40.200 --slocal 1000 --nomodel -m 40 200  

Try to not have a shift.

#!/bin/bash

#SBATCH --job-name=macs2noshift
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=macs2nomod.noshift.out
#SBATCH --error=macs2nomod.noshift.err
#SBATCH --partition=broadwl
#SBATCH --mem=8G
#SBATCH --mail-type=END


module load Anaconda3 

source activate macs-env

macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/allBamFiles.bam  -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n threeprimebatch1.noshift --slocal 1000 --nomodel --shift 0 --extsize 200

Does not look like this changed anything.

I also want to run this using seperate files for the total and nuclear fractions.

I wil first merge the total and nuclear bam files seperatly.


#!/bin/bash

#SBATCH --job-name=mergeTN
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END

module load samtools

samtools merge macs2/TotalBamFiles.bam bam/*T*.bam


samtools merge macs2/NuclearBamFiles.bam bam/*N*.bam

Now I can run the original call peaks on each seperatly with macs2_nomod_TN.sh.

#!/bin/bash

#SBATCH --job-name=macs2nomodTN
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=macs2nomodTN.out
#SBATCH --error=macs2nomodTN.err
#SBATCH --partition=broadwl
#SBATCH --mem=8G
#SBATCH --mail-type=END


module load Anaconda3 

source activate macs-env

macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/TotalBamFiles.bam  -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n Totalthreeprimebatch1 --slocal 1000 --nomodel 

macs2 callpeak -t /project2/gilad/briana/threeprimeseq/data/macs2/NuclearBamFiles.bam  -f "BAM" -g 'hs' --outdir /project2/gilad/briana/threeprimeseq/data/macs2/ -n Nuclearthreeprimebatch1 --slocal 1000 --nomodel 

Session information

sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.0.1   Rcpp_0.12.17      digest_0.6.15    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.21.0      magrittr_1.5      evaluate_0.10.1  
[10] stringi_1.2.2     whisker_0.3-2     R.oo_1.22.0      
[13] R.utils_2.6.0     rmarkdown_1.8.5   tools_3.4.2      
[16] stringr_1.3.1     yaml_2.1.19       compiler_3.4.2   
[19] htmltools_0.3.6   knitr_1.18       



This reproducible R Markdown analysis was created with workflowr 1.0.1