Last updated: 2018-11-13

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: f8d8c94

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/ChromHmmOverlap/
        Untracked:  data/GM12878.chromHMM.bed
        Untracked:  data/GM12878.chromHMM.txt
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/PeaksUsed/
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/diff_iso_trans/
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/example_gene_peakQuant/
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/mol_pheno/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/39indQC.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/flash2mash.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd f8d8c94 Briana Mittleman 2018-11-13 add plots for peak coverage
    html 24821f2 Briana Mittleman 2018-11-12 Build site.
    Rmd 7d1bd9a Briana Mittleman 2018-11-12 add code for looking at sig gene peaks


The quantified peak files are:

  • /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc
  • /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc

I want to grep specific genes and look at the read distribution for peaks along a gene. In these files the peakIDs stil have the peak locations. Before I ran the QTL analysis I changed the final coverage (ex /project2/gilad/briana/threeprimeseq/data/phenotypes_filtPeakTranscript/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear.pheno_fixed.txt.gz.qqnorm_chr$i.gz) to have the TSS as the ID.

Librarys

library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(reshape2)
library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(VennDiagram)
Loading required package: grid
Loading required package: futile.logger
library(data.table)

Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':

    between, first, last
The following object is masked from 'package:purrr':

    transpose
The following objects are masked from 'package:reshape2':

    dcast, melt
library(ggpubr)
Loading required package: magrittr

Attaching package: 'magrittr'
The following object is masked from 'package:purrr':

    set_names
The following object is masked from 'package:tidyr':

    extract

Attaching package: 'ggpubr'
The following object is masked from 'package:VennDiagram':

    rotate
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggpubr':

    get_legend
The following object is masked from 'package:ggplot2':

    ggsave
nuc_names=c('Geneid',   'Chr',  'Start',    'End',  'Strand',   'Length',   '18486_N'   ,'18497_N', '18500_N'   ,'18505_N', '18508_N'   ,'18511_N', '18519_N',  '18520_N',  '18853_N'   ,'18858_N', '18861_N',  '18870_N'   ,'18909_N'  ,'18912_N'  ,'18916_N', '19092_N'   ,'19093_N', '19119_N',  '19128_N'   ,'19130_N', '19131_N'   ,'19137_N', '19140_N',  '19141_N'   ,'19144_N', '19152_N'   ,'19153_N', '19160_N'   ,'19171_N', '19193_N'   ,'19200_N', '19207_N',  '19209_N',  '19210_N',  '19223_N'   ,'19225_N', '19238_N'   ,'19239_N', '19257_N')


tot_names=c('Geneid',   'Chr'   ,'Start',   'End',  'Strand',   'Length',   '18486_T',  '18497_T'   ,'18500_T','18505_T',   '18508_T'   ,'18511_T', '18519_T',  '18520_T',  '18853_T',  '18858_T',  '18861_T',  '18870_T',  '18909_T'   ,'18912_T', '18916_T',  '19092_T'   ,'19093_T', '19119_T',  '19128_T',  '19130_T',  '19131_T'   ,'19137_T', '19140_T'   ,'19141_T', '19144_T',  '19152_T'   ,'19153_T', '19160_T'   ,'19171_T', '19193_T',  '19200_T',  '19207_T'   ,'19209_T'  ,'19210_T', '19223_T',  '19225_T',  '19238_T',  '19239_T',  '19257_T')
NuclearAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt", stringsAsFactors = F, header=T)  %>% mutate(sig=ifelse(-log10(bh)>=1, 1,0 )) %>%  separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% filter(sig==1)
totalAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt", stringsAsFactors = F, header=T)  %>% mutate(sig=ifelse(-log10(bh)>=1, 1,0 )) %>%  separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% filter(sig==1)

examples to look at Nuclear: IRF5, HSF1, NOL9,DCAF16,

Total: NBEAL2, SACM1L, COX7A2L


#nuclear
grep IRF5 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/IRF5_NuclearCov_peaks.txt

grep HSF1 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/HSF1_NuclearCov_peaks.txt


grep NOL9 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/NOL9_NuclearCov_peaks.txt

grep DCAF16 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/DCAF16_NuclearCov_peaks.txt

grep PPP4C /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/PPP4C_NuclearCov_peaks.txt



#total
grep NBEAL2 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/NBEAL2_TotalCov_peaks.txt

grep SACM1L /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/SACM1L_TotalCov_peaks.txt



grep TESK1 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/TESK1_TotalCov_peaks.txt  


grep DGCR14 /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc > /project2/gilad/briana/threeprimeseq/data/example_gene_peakQuant/DGCR14_TotalCov_peaks.txt  

Copy these to my computer so I can work with them here. I am going to want to make a function that makes the histogram reproducibly for anyfile. I will need to know how many bins to include in the histogram. First I will make the graph for one example then I will make it more general.

Files are in /Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/example_gene_peakQuant

Start wit a small file.

pos=c(3,4,7:39)
PPP4c=read.table("../data/example_gene_peakQuant/PPP4C_NuclearCov_peaks.txt", stringsAsFactors = F, col.names = nuc_names) %>% select(pos)

PPP4c$peaks=seq(0, (nrow(PPP4c)-1))

PPP4c_melt=melt(PPP4c, id.vars=c('peaks','Start','End'))

Plot:

ggplot(PPP4c_melt, aes(x=peaks, y=value, by=variable, fill=variable)) + geom_histogram(stat="identity")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Try with actual location as the center of the peak.

pos=c(3,4,7:39)
PPP4c_2=read.table("../data/example_gene_peakQuant/PPP4C_NuclearCov_peaks.txt", stringsAsFactors = F, col.names = tot_names) %>% select(pos)
PPP4c_2$peaks=seq(0, (nrow(PPP4c_2)-1))
PPP4c_2= PPP4c_2 %>% mutate(PeakCenter=(Start+ (End-Start)/2))
PPP4c2_melt=melt(PPP4c_2, id.vars=c('peaks','PeakCenter', "Start", "End"))
colnames(PPP4c2_melt)= c('peaks','PeakCenter', "Start", "End", "Individual", "ReadCount")

Plot:

ggplot(PPP4c2_melt, aes(x=PeakCenter, y=ReadCount, by=Individual, fill=Individual)) + geom_histogram(stat="identity") + labs(title="Peak Coverage and Location PP4c")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Generalize this for more genes:

makePeakLocplot=function(file, geneName,fraction){
  pos=c(3,4,7:39)
  if (fraction=="Total"){
  gene=read.table(file, stringsAsFactors = F, col.names = tot_names) %>% select(pos)
  }
  else{
    gene=read.table(file, stringsAsFactors = F, col.names = nuc_names) %>% select(pos)
  }
  
  gene$peaks=seq(0, (nrow(gene)-1))
  gene= gene %>% mutate(PeakCenter=(Start+ (End-Start)/2))
  gene_melt=melt(gene, id.vars=c('peaks','PeakCenter', "Start", "End"))
  colnames(gene_melt)= c('peaks','PeakCenter', "Start", "End", "Individual", "ReadCount")
  finalplot=ggplot(gene_melt, aes(x=PeakCenter, y=ReadCount, by=Individual, fill=Individual)) + geom_histogram(stat="identity", show.legend = FALSE) + labs(title=paste("Peak Coverage and Location", geneName, sep = " ")) 
  return(finalplot)
}

Try for another gene:

makePeakLocplot("../data/example_gene_peakQuant/PPP4C_NuclearCov_peaks.txt",'PPP4c',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad

makePeakLocplot("../data/example_gene_peakQuant/DCAF16_NuclearCov_peaks.txt",'DCAF16',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad

makePeakLocplot("../data/example_gene_peakQuant/DGCR14_TotalCov_peaks.txt",'DGCR14',"Total")
Warning: Ignoring unknown parameters: binwidth, bins, pad

makePeakLocplot("../data/example_gene_peakQuant/IRF5_NuclearCov_peaks.txt",'IRF5',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad

makePeakLocplot("../data/example_gene_peakQuant/HSF1_NuclearCov_peaks.txt",'HSF1',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad

makePeakLocplot("../data/example_gene_peakQuant/NOL9_NuclearCov_peaks.txt",'NOL9',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad

makePeakLocplot("../data/example_gene_peakQuant/SACM1L_TotalCov_peaks.txt",'SACM1L',"Total")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Make a function to do this by peak number (ignoring direction)

makePeakNumplot=function(file, geneName,fraction){
  pos=c(7:39)
  if (fraction=="Total"){
  gene=read.table(file, stringsAsFactors = F, col.names = tot_names) %>% select(pos)
  }
  else{
    gene=read.table(file, stringsAsFactors = F, col.names = nuc_names) %>% select(pos)
  }
  
  gene$peaks=seq(0, (nrow(gene)-1))
  gene_melt=melt(gene, id.vars=c('peaks'))
  colnames(gene_melt)= c('peaks',"Individual", "ReadCount")
  finalplot=ggplot(gene_melt, aes(x=peaks, y=ReadCount, by=Individual, fill=Individual)) + geom_histogram(stat="identity", show.legend = FALSE) + labs(title=paste("Peak Coverage", geneName, sep = " ")) 
  return(finalplot)
}

I can plot them next to eachother using cowplot

ppp4c_loc=makePeakLocplot("../data/example_gene_peakQuant/PPP4C_NuclearCov_peaks.txt",'PPP4c',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
ppp4c_num=makePeakNumplot("../data/example_gene_peakQuant/PPP4C_NuclearCov_peaks.txt",'PPP4c',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
plot_grid(ppp4c_loc,ppp4c_num)

dcaf16_loc=makePeakLocplot("../data/example_gene_peakQuant/DCAF16_NuclearCov_peaks.txt",'DCAF16',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
dcaf16_num=makePeakNumplot("../data/example_gene_peakQuant/DCAF16_NuclearCov_peaks.txt",'DCAF16',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
plot_grid(dcaf16_loc,dcaf16_num)

dgcr14_loc=makePeakLocplot("../data/example_gene_peakQuant/DGCR14_TotalCov_peaks.txt",'DGCR14',"Total")
Warning: Ignoring unknown parameters: binwidth, bins, pad
dgcr14_num=makePeakNumplot("../data/example_gene_peakQuant/DGCR14_TotalCov_peaks.txt",'DGCR14',"Total")
Warning: Ignoring unknown parameters: binwidth, bins, pad
plot_grid(dgcr14_loc,dgcr14_num)

irf5_loc=makePeakLocplot("../data/example_gene_peakQuant/IRF5_NuclearCov_peaks.txt",'IRF5',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
irf5_num=makePeakNumplot("../data/example_gene_peakQuant/IRF5_NuclearCov_peaks.txt",'IRF5',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
plot_grid(irf5_loc,irf5_num)

HSF1_loc=makePeakLocplot("../data/example_gene_peakQuant/HSF1_NuclearCov_peaks.txt",'HSF1',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
HSF1_num=makePeakNumplot("../data/example_gene_peakQuant/HSF1_NuclearCov_peaks.txt",'HSF1',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
plot_grid(HSF1_loc,HSF1_num)

NOL9_loc=makePeakLocplot("../data/example_gene_peakQuant/NOL9_NuclearCov_peaks.txt",'NOL9',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
NOL9_num=makePeakNumplot("../data/example_gene_peakQuant/NOL9_NuclearCov_peaks.txt",'NOL9',"Nuclear")
Warning: Ignoring unknown parameters: binwidth, bins, pad
plot_grid(NOL9_loc,NOL9_num)

SACM1L_loc=makePeakLocplot("../data/example_gene_peakQuant/SACM1L_TotalCov_peaks.txt",'SACM1L',"Total")
Warning: Ignoring unknown parameters: binwidth, bins, pad
SACM1L_num=makePeakNumplot("../data/example_gene_peakQuant/SACM1L_TotalCov_peaks.txt",'SACM1L',"Total")
Warning: Ignoring unknown parameters: binwidth, bins, pad
plot_grid(SACM1L_loc,SACM1L_num)

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] bindrcpp_0.2.2      cowplot_0.9.3       ggpubr_0.1.8       
 [4] magrittr_1.5        data.table_1.11.8   VennDiagram_1.6.20 
 [7] futile.logger_1.4.3 forcats_0.3.0       stringr_1.3.1      
[10] dplyr_0.7.6         purrr_0.2.5         readr_1.1.1        
[13] tidyr_0.8.1         tibble_1.4.2        ggplot2_3.0.0      
[16] tidyverse_1.2.1     reshape2_1.4.3      workflowr_1.1.1    

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4     haven_1.1.2          lattice_0.20-35     
 [4] colorspace_1.3-2     htmltools_0.3.6      yaml_2.2.0          
 [7] rlang_0.2.2          R.oo_1.22.0          pillar_1.3.0        
[10] glue_1.3.0           withr_2.1.2          R.utils_2.7.0       
[13] lambda.r_1.2.3       modelr_0.1.2         readxl_1.1.0        
[16] bindr_0.1.1          plyr_1.8.4           munsell_0.5.0       
[19] gtable_0.2.0         cellranger_1.1.0     rvest_0.3.2         
[22] R.methodsS3_1.7.1    evaluate_0.11        labeling_0.3        
[25] knitr_1.20           broom_0.5.0          Rcpp_0.12.19        
[28] formatR_1.5          backports_1.1.2      scales_1.0.0        
[31] jsonlite_1.5         hms_0.4.2            digest_0.6.17       
[34] stringi_1.2.4        rprojroot_1.3-2      cli_1.0.1           
[37] tools_3.5.1          lazyeval_0.2.1       futile.options_1.0.1
[40] crayon_1.3.4         whisker_0.3-2        pkgconfig_2.0.2     
[43] xml2_1.2.0           lubridate_1.7.4      assertthat_0.2.0    
[46] rmarkdown_1.10       httr_1.3.1           rstudioapi_0.8      
[49] R6_2.3.0             nlme_3.1-137         git2r_0.23.0        
[52] compiler_3.5.1      



This reproducible R Markdown analysis was created with workflowr 1.1.1