Last updated: 2019-03-11
Checks: 6 0
Knit directory: threeprimeseq/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: data/perm_QTL_trans_noMP_5percov/
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/4suDataIGV.Rmd
Untracked: analysis/DirectionapaQTL.Rmd
Untracked: analysis/EmpDistforOverlaps.Rmd
Untracked: analysis/EvaleQTLs.Rmd
Untracked: analysis/NuclearSpecQTL.Rmd
Untracked: analysis/YL_QTL_test.Rmd
Untracked: analysis/groSeqAnalysis.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: analysis/verifybam_dubs.Rmd
Untracked: code/PeaksToCoverPerReads.py
Untracked: code/strober_pc_pve_heatmap_func.R
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/AllPeak_counts/
Untracked: data/ApaQTLs/
Untracked: data/ApaQTLs_otherPhen/
Untracked: data/ChromHmmOverlap/
Untracked: data/DistTXN2Peak_genelocAnno/
Untracked: data/FeatureoverlapPeaks/
Untracked: data/GM12878.chromHMM.bed
Untracked: data/GM12878.chromHMM.txt
Untracked: data/GWAS_overlap/
Untracked: data/LianoglouLCL/
Untracked: data/LocusZoom/
Untracked: data/LocusZoom_Unexp/
Untracked: data/LocusZoom_proc/
Untracked: data/MatchedSnps/
Untracked: data/NucSpecQTL/
Untracked: data/NuclearApaQTLs.txt
Untracked: data/PeakCounts/
Untracked: data/PeakCounts_noMP_5perc/
Untracked: data/PeakCounts_noMP_genelocanno/
Untracked: data/PeakUsage/
Untracked: data/PeakUsage_noMP/
Untracked: data/PeakUsage_noMP_GeneLocAnno/
Untracked: data/PeaksUsed/
Untracked: data/PeaksUsed_noMP_5percCov/
Untracked: data/PolyA_DB/
Untracked: data/QTL_overlap/
Untracked: data/RNAkalisto/
Untracked: data/RefSeq_annotations/
Untracked: data/Replicates_usage/
Untracked: data/Signal_Loc/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/UnderstandPeaksQC/
Untracked: data/WASP_STAT/
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/YL_QTL_test/
Untracked: data/apaExamp/
Untracked: data/apaExamp_proc/
Untracked: data/apaQTL_examp_noMP/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/diff_iso_GeneLocAnno/
Untracked: data/diff_iso_proc/
Untracked: data/diff_iso_trans/
Untracked: data/eQTLs_Lietal/
Untracked: data/ensemble_to_genename.txt
Untracked: data/example_gene_peakQuant/
Untracked: data/explainProtVar/
Untracked: data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/molPheno_noMP/
Untracked: data/mol_overlap/
Untracked: data/mol_pheno/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/nuc_10up/
Untracked: data/other_qtls/
Untracked: data/pQTL_otherphen/
Untracked: data/pacbio_cov/
Untracked: data/peakPerRefSeqGene/
Untracked: data/peaks4DT/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
Untracked: data/perm_QTL_diffWindow/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/perm_QTL_trans_filt/
Untracked: data/protAndAPAAndExplmRes.Rda
Untracked: data/protAndAPAlmRes.Rda
Untracked: data/protAndExpressionlmRes.Rda
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: data/threePrimeSeqMetaData.csv
Untracked: data/threePrimeSeqMetaData55Ind.txt
Untracked: data/threePrimeSeqMetaData55Ind.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
Untracked: output/LZ/
Untracked: output/deeptools_plots/
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/CompareLianoglouData.Rmd
Modified: analysis/NewPeakPostMP.Rmd
Modified: analysis/SignalSiteLoc.Rmd
Modified: analysis/apaQTLoverlapGWAS.Rmd
Modified: analysis/characterize_apaQTLs.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/coloc_apaQTLs_protQTLs.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explainpQTLs.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/fixBWChromNames.Rmd
Modified: analysis/flash2mash.Rmd
Modified: analysis/initialPacBioQuant.Rmd
Modified: analysis/mispriming_approach.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlapMolQTL.opposite.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/peakQCPPlots.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/pipeline_55Ind.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: analysis/test.smash.Rmd
Modified: analysis/understandPeaks.Rmd
Modified: analysis/unexplainedeQTL_analysis.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 8871122 | Briana Mittleman | 2019-03-11 | subset to x% |
library(workflowr)
This is workflowr version 1.2.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0 ✔ purrr 0.3.1
✔ tibble 2.0.1 ✔ dplyr 0.8.0.1
✔ tidyr 0.8.3 ✔ stringr 1.4.0
✔ readr 1.3.1 ✔ forcats 0.4.0
Warning: package 'tibble' was built under R version 3.5.2
Warning: package 'tidyr' was built under R version 3.5.2
Warning: package 'purrr' was built under R version 3.5.2
Warning: package 'dplyr' was built under R version 3.5.2
Warning: package 'stringr' was built under R version 3.5.2
Warning: package 'forcats' was built under R version 3.5.2
── Conflicts ──────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
library(cowplot)
Warning: package 'cowplot' was built under R version 3.5.2
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
I want to collect the peaks up to X% usage and show the total/nuclear 3’ seq and RNA seq read buildup at these peaks.
To do this I need all of the peaks, i can group by mean usage and look at cumulative sum. I will have to think about the + and - peaks.
I will do this based on the nuclear mean usage.
NucMeanPeakUsage=read.table("../data/PeakUsage_noMP_GeneLocAnno/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno.NoMP_sm_quant.Nuclear_fixed.pheno.5percPeaks.txt",stringsAsFactors = F, col.names = c("chr", "start","end", "gene", "strand", "peak", "meanUsage"))
NucMeanPeakUsage_neg=NucMeanPeakUsage %>% filter(strand=="-")
NucMeanPeakUsage_pos=NucMeanPeakUsage %>% filter(strand=="+")
Do the positive strand first:
I should only do this for genes with at least 2 peaks
NucMeanPeakUsage_pos_10perc=NucMeanPeakUsage_pos %>% group_by(gene) %>% mutate(CumMean=cumsum(meanUsage), nPeaks=n()) %>%
filter(nPeaks>1) %>% filter(CumMean < .1)
NucMeanPeakUsage_pos_50perc=NucMeanPeakUsage_pos %>% group_by(gene) %>% mutate(CumMean=cumsum(meanUsage), nPeaks=n()) %>%
filter(nPeaks>1) %>% filter(CumMean < .5)
For the negative strand:
NucMeanPeakUsage_neg_10perc=NucMeanPeakUsage_neg %>% group_by(gene) %>% mutate(CumMean=rev(cumsum(rev(meanUsage))), nPeaks=n()) %>% filter(nPeaks>1) %>% filter(CumMean < .1)
NucMeanPeakUsage_neg_50perc=NucMeanPeakUsage_neg %>% group_by(gene) %>% mutate(CumMean=rev(cumsum(rev(meanUsage))), nPeaks=n()) %>% filter(nPeaks>1) %>% filter(CumMean < .5)
I will plot the up to 50% peaks first:
Join pos and neg
NucMeanPeakUsage_50perc =as.data.frame(rbind(NucMeanPeakUsage_neg_50perc, NucMeanPeakUsage_pos_50perc))
NucMeanPeakUsage_10perc =as.data.frame(rbind(NucMeanPeakUsage_neg_10perc, NucMeanPeakUsage_pos_10perc))
#write.table(NucMeanPeakUsage_50perc, file="../data/PeakUsage_noMP_GeneLocAnno/NucPeaksTo50perc.txt", sep="\t", row.names = F, col.names = F,quote=F)
#write.table(NucMeanPeakUsage_10perc, file="../data/PeakUsage_noMP_GeneLocAnno/NucPeaksTo10perc.txt", sep="\t", row.names = F, col.names = F,quote=F)
I want to filter the deep tools peaks on these:
/project2/gilad/briana/threeprimeseq/data/peaks4DT/NucPeaksTo50perc.txt
/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_allPeaks_fixedStrand.bed
subsetPeak_uptoXper.py
def main(filterFile, outfile):
inBed=open("/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_allPeaks_fixedStrand.bed", "r")
outF=open(outfile, "w")
filt=open(filterFile,"r")
okDic={}
for ln in filt:
peak=ln.split()[5]
okDic[peak]=""
for ln in inBed:
peak=ln.split()[3].split(":")[0]
if peak in okDic.keys():
outF.write(ln)
outF.close()
if __name__ == "__main__":
import sys
import pybedtools
filterFile=sys.argv[1]
outfile=sys.argv[2]
main(filterFile, outfile)
Run this with the 50% and 10% peaks
python subsetPeak_uptoXper.py /project2/gilad/briana/threeprimeseq/data/peaks4DT/NucPeaksTo50perc.txt /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_NucPeakto50perc_fixedStrand.bed
python subsetPeak_uptoXper.py /project2/gilad/briana/threeprimeseq/data/peaks4DT/NucPeaksTo10perc.txt /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_NucPeakto10perc_fixedStrand.bed
Run the deeptools plots
DTPlot_Nuc50percCov.sh
#!/bin/bash
#SBATCH --job-name=DTPlot_Nuc50percCov
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=DTPlot_Nuc50percCov.out
#SBATCH --error=DTPlot_Nuc50percCov.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/mergedBW/Total_MergedBamCoverage.bw /project2/gilad/briana/threeprimeseq/data/mergedBW/Nuclear_MergedBamCoverage.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_NucPeakto50perc_fixedStrand.bed -b 500 -a 500 -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/BothFrac_nuc50perc_Nompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/BothFrac_nuc50perc_Nompfilt.gz --refPointLabel "PAS" --plotTitle "Combined Reads at PAS up to 50%" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/BothFrac_nuc50perc_Nompfilt.png
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/rnaseq_bw/RNAseqGeuvadis_STAR_6samp_MergedBams.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_NucPeakto50perc_fixedStrand.bed -b 500 -a 500 -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/RNA_nuc50perc_Nompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/RNA_nuc50perc_Nompfilt.gz --refPointLabel "PAS" --plotTitle "RNA seq at PAS up to 50%" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/RNA_nuc50perc_Nompfilt.png
DTPlot_Nuc10percCov.sh
#!/bin/bash
#SBATCH --job-name=DTPlot_Nuc10percCov
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=DTPlot_Nuc10percCov.out
#SBATCH --error=DTPlot_Nuc10percCov.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/mergedBW/Total_MergedBamCoverage.bw /project2/gilad/briana/threeprimeseq/data/mergedBW/Nuclear_MergedBamCoverage.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_NucPeakto10perc_fixedStrand.bed -b 500 -a 500 -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/BothFrac_nuc10perc_Nompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/BothFrac_nuc10perc_Nompfilt.gz --refPointLabel "PAS" --plotTitle "Combined Reads at PAS up to 10%" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/BothFrac_nuc10perc_Nompfilt.png
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/rnaseq_bw/RNAseqGeuvadis_STAR_6samp_MergedBams.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_NucPeakto10perc_fixedStrand.bed -b 500 -a 500 -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/RNA_nuc10perc_Nompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/RNA_nuc10perc_Nompfilt.gz --refPointLabel "PAS" --plotTitle "RNA seq at PAS up to 10%" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/RNA_nuc10perc_Nompfilt.png
Top ten (>90)
NucMeanPeakUsage_neg_top10perc=NucMeanPeakUsage_neg %>% group_by(gene) %>% mutate(CumMean=rev(cumsum(rev(meanUsage))), nPeaks=n()) %>% filter(nPeaks>1) %>% filter(CumMean > .9)
NucMeanPeakUsage_pos_top10perc=NucMeanPeakUsage_pos %>% group_by(gene) %>% mutate(CumMean=cumsum(meanUsage), nPeaks=n()) %>%
filter(nPeaks>1) %>% filter(CumMean <.9)
NucMeanPeakUsage_top10perc =as.data.frame(rbind(NucMeanPeakUsage_neg_top10perc, NucMeanPeakUsage_pos_top10perc))
write.table(NucMeanPeakUsage_top10perc, file="../data/PeakUsage_noMP_GeneLocAnno/NucPeaksTOP10perc.txt", sep="\t", row.names = F, col.names = F,quote=F)
python subsetPeak_uptoXper.py /project2/gilad/briana/threeprimeseq/data/peaks4DT/NucPeaksTOP10perc.txt /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_NucPeakTOP10perc_fixedStrand.bed
DTPlot_NucTop10percCov.sh
#!/bin/bash
#SBATCH --job-name=DTPlot_NucTop10percCov
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=DTPlot_NucTop10percCov.out
#SBATCH --error=DTPlot_NucTop10percCov.err
#SBATCH --partition=broadwl
#SBATCH --mem=36G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/mergedBW/Total_MergedBamCoverage.bw /project2/gilad/briana/threeprimeseq/data/mergedBW/Nuclear_MergedBamCoverage.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_NucPeakTOP10perc_fixedStrand.bed -b 500 -a 500 -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/BothFrac_nucTop10perc_Nompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/BothFrac_nucTop10perc_Nompfilt.gz --refPointLabel "PAS" --plotTitle "Combined Reads at PAS up to 10%" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/BothFrac_nucTop10perc_Nompfilt.png
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/rnaseq_bw/RNAseqGeuvadis_STAR_6samp_MergedBams.sort.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_NucPeakTOP10perc_fixedStrand.bed -b 500 -a 500 -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/RNA_nucTop10perc_Nompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/RNA_nucTop10perc_Nompfilt.gz --refPointLabel "PAS" --plotTitle "RNA seq at PAS up to 10%" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/DT_up2Xperc/RNA_nucTop10perc_Nompfilt.png
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] cowplot_0.9.4 reshape2_1.4.3 forcats_0.4.0 stringr_1.4.0
[5] dplyr_0.8.0.1 purrr_0.3.1 readr_1.3.1 tidyr_0.8.3
[9] tibble_2.0.1 ggplot2_3.1.0 tidyverse_1.2.1 workflowr_1.2.0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 cellranger_1.1.0 plyr_1.8.4 pillar_1.3.1
[5] compiler_3.5.1 git2r_0.24.0 tools_3.5.1 digest_0.6.18
[9] lubridate_1.7.4 jsonlite_1.6 evaluate_0.13 nlme_3.1-137
[13] gtable_0.2.0 lattice_0.20-38 pkgconfig_2.0.2 rlang_0.3.1
[17] cli_1.0.1 rstudioapi_0.9.0 yaml_2.2.0 haven_2.1.0
[21] xfun_0.5 withr_2.1.2 xml2_1.2.0 httr_1.4.0
[25] knitr_1.21 hms_0.4.2 generics_0.0.2 fs_1.2.6
[29] rprojroot_1.3-2 grid_3.5.1 tidyselect_0.2.5 glue_1.3.0
[33] R6_2.4.0 readxl_1.3.0 rmarkdown_1.11 modelr_0.1.4
[37] magrittr_1.5 whisker_0.3-2 backports_1.1.3 scales_1.0.0
[41] htmltools_0.3.6 rvest_0.3.2 assertthat_0.2.0 colorspace_1.4-0
[45] stringi_1.3.1 lazyeval_0.2.1 munsell_0.5.0 broom_0.5.1
[49] crayon_1.3.4