Last updated: 2019-02-15
Checks: 6 0
Knit directory: threeprimeseq/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: data/perm_QTL_trans_noMP_5percov/
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/4suDataIGV.Rmd
Untracked: analysis/DirectionapaQTL.Rmd
Untracked: analysis/EvaleQTLs.Rmd
Untracked: analysis/YL_QTL_test.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: analysis/verifybam_dubs.Rmd
Untracked: code/PeaksToCoverPerReads.py
Untracked: code/strober_pc_pve_heatmap_func.R
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/ApaQTLs/
Untracked: data/ChromHmmOverlap/
Untracked: data/DistTXN2Peak_genelocAnno/
Untracked: data/GM12878.chromHMM.bed
Untracked: data/GM12878.chromHMM.txt
Untracked: data/LianoglouLCL/
Untracked: data/LocusZoom/
Untracked: data/NuclearApaQTLs.txt
Untracked: data/PeakCounts/
Untracked: data/PeakCounts_noMP_5perc/
Untracked: data/PeakCounts_noMP_genelocanno/
Untracked: data/PeakUsage/
Untracked: data/PeakUsage_noMP/
Untracked: data/PeakUsage_noMP_GeneLocAnno/
Untracked: data/PeaksUsed/
Untracked: data/PeaksUsed_noMP_5percCov/
Untracked: data/RNAkalisto/
Untracked: data/RefSeq_annotations/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/UnderstandPeaksQC/
Untracked: data/WASP_STAT/
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/YL_QTL_test/
Untracked: data/apaExamp/
Untracked: data/apaQTL_examp_noMP/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/diff_iso_GeneLocAnno/
Untracked: data/diff_iso_proc/
Untracked: data/diff_iso_trans/
Untracked: data/ensemble_to_genename.txt
Untracked: data/example_gene_peakQuant/
Untracked: data/explainProtVar/
Untracked: data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/molPheno_noMP/
Untracked: data/mol_overlap/
Untracked: data/mol_pheno/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/nuc_10up/
Untracked: data/other_qtls/
Untracked: data/pQTL_otherphen/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/perm_QTL_trans_filt/
Untracked: data/protAndAPAAndExplmRes.Rda
Untracked: data/protAndAPAlmRes.Rda
Untracked: data/protAndExpressionlmRes.Rda
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: data/threePrimeSeqMetaData.csv
Untracked: data/threePrimeSeqMetaData55Ind.txt
Untracked: data/threePrimeSeqMetaData55Ind.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/CompareLianoglouData.Rmd
Modified: analysis/NewPeakPostMP.Rmd
Modified: analysis/apaQTLoverlapGWAS.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/coloc_apaQTLs_protQTLs.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explainpQTLs.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/flash2mash.Rmd
Modified: analysis/mispriming_approach.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlapMolQTL.opposite.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/peakQCPPlots.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/pipeline_55Ind.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: analysis/test.smash.Rmd
Modified: analysis/understandPeaks.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 0398fdb | Briana Mittleman | 2018-07-25 | Build site. |
Rmd | 2d41f11 | Briana Mittleman | 2018-07-25 | add expand smash to index |
I want to run smash on a whole chromosome to see what regions I can do it on to get the whole genome. First I am going to try chromosome 22.
I want to create a bedgraph for the combined nuclear and total files.
/project2/gilad/briana/threeprimeseq/data/macs2/TotalBamFiles.sort.bam
/project2/gilad/briana/threeprimeseq/data/macs2/NuclearBamFiles.bam
#!/bin/bash
#SBATCH --job-name=5gencov_comb
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=5gencov_comb.out
#SBATCH --error=5gencov_com.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
bedtools genomecov -d -5 -ibam /project2/gilad/briana/threeprimeseq/data/macs2/TotalBamFiles.sort.bam > /project2/gilad/briana/threeprimeseq/data/genomecov/gencov5prime.combinedTotal.bed
bedtools genomecov -d -5 -ibam /project2/gilad/briana/threeprimeseq/data/macs2/NuclearBamFiles.sort.bam > /project2/gilad/briana/threeprimeseq/data/genomecov/gencov5prime.combinedNuclear.bed
I now need to subset the bed files to chr22.
#!/bin/bash
#SBATCH --job-name=subset22
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=subset22.out
#SBATCH --error=subset22.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
awk '$1==22 {print}' /project2/gilad/briana/threeprimeseq/data/genomecov/gencov5prime.combinedNuclear.bed > /project2/gilad/briana/threeprimeseq/data/genomecov_chr22/gencov5prime.combinedNuclear.chr22.bed
awk '$1==22 {print}' /project2/gilad/briana/threeprimeseq/data/genomecov/gencov5prime.combinedTotal.bed > /project2/gilad/briana/threeprimeseq/data/genomecov_chr22/gencov5prime.combinedTotal.chr22.bed
Chromosome 22 is 51304566 bases. I need this to satisfy the \(2^{x}\) criteria. I can use the log rule, \(log_{2}length=x\)
log2(51304566)
[1] 25.61258
2^26
[1] 67108864
zeros_to_add=67108864 -51304566
I will use 2^26, 67108864. This means I need to add 1.580429810^{7} 0s to the matrix. I can do this by making a matrix with the correct number of zeros and row binding it.
zero_matrix=matrix(0.1, zeros_to_add)
I will write and R script that I can run on the cluster. The file will take in the genomecoverage file and will output the graph and the smash results in a bedgraph format.
#!/bin/rscripts
# usage: ./run_smash.R gencoverage, outfile_plot, outfile_bedgraph
#this script takes the genomecov file and a name for an output plot (.png) and an output bedgraph (.bg)
#use optparse for management of input arguments I want to be able to imput the 6up nuc file and write out a filter file
#script needs to run outside of conda env. should module load R in bash script when I submit it
library(optparse)
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
library(smashr)
option_list = list(
make_option(c("-f", "--file"), action="store", default=NA, type='character',
help="input file"),
make_option(c("-p", "--plot"), action="store", default=NA, type='character',
help="output plot file"),
make_option(c("-o", "--output"), action="store", default=NA, type='character',
help="output file")
)
opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)
#interrupt execution if no file is supplied
if (is.null(opt$file)){
print_help(opt_parser)
stop("Need input file", call.=FALSE)
}
#Functions for this script
criteria=function(x){
#function takes a number and makes the matrix with 0s
exp=log2(x)
exp_round=ceiling(exp)
zerosadd= 2^exp_round - x
seq_0=rep(0, zerosadd)
return(seq_0)
}
#import bedgraph
names=c("Chr", "Pos", "Count")
cov=read.table(file = opt$file, col.names = names)
chromosome=cov[1,1]
#prepare data by adding 0s
zero_seq=criteria(nrow(cov))
data_vec=as.vector(cov$Count)
data_zero_vec=c(data_vec, zero_seq)
data_zero_matrix=matrix(data_zero_vec, 1, length(data_zero_vec))
#run smash
smash_res=smash.poiss(data_zero_matrix[1,],post.var=TRUE)
#create and save plot
pos=1:length(data_vec)
png(opt$plot)
finalplot=plot(pos,smash_res$est[1:length(data_vec)],type='l',xlab="position",ylab="intensity", main="SMASH results")
dev.off()
#create bedgraph and write it out
bedgraph=cbind(lapply(cov$Chr, function(x) paste("chr", x, sep="")), cov$Pos, cov$Pos + 1, smash_res$est[1:length(data_vec)])
write.table(bedgraph, file=opt$output, quote = F, row.names = F, col.names = F)
To run this I will have to create a batch script similar to the following.
#!/bin/bash
#SBATCH --job-name=run.run_smash
#SBATCH --account=pi-yangili1
#SBATCH --time=8:00:00
#SBATCH --output=run_runsmash.out
#SBATCH --error=run_runsmash.err
#SBATCH --partition=broadwl
#SBATCH --mem=20G
#SBATCH --mail-type=END
module load R
Rscript run_smash.R -f /project2/gilad/briana/threeprimeseq/data/genomecov_chr22/gencov5prime.combinedTotal.chr22.bed -p /project2/gilad/briana/threeprimeseq/data/smash.chr22/smooth.combinedTotal.chr22.png -o /project2/gilad/briana/threeprimeseq/data/smash.chr22/smooth.combinedTotal.chr22.bg
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.2.0 Rcpp_0.12.19 digest_0.6.17 rprojroot_1.3-2
[5] backports_1.1.2 git2r_0.24.0 magrittr_1.5 evaluate_0.13
[9] stringi_1.2.4 fs_1.2.6 whisker_0.3-2 rmarkdown_1.11
[13] tools_3.5.1 stringr_1.4.0 glue_1.3.0 yaml_2.2.0
[17] compiler_3.5.1 htmltools_0.3.6 knitr_1.20