Last updated: 2019-01-08

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 47f115d

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/figure/
        Ignored:    data/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/DirectionapaQTL.Rmd
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  code/PeaksToCoverPerReads.py
        Untracked:  code/strober_pc_pve_heatmap_func.R
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/ChromHmmOverlap/
        Untracked:  data/GM12878.chromHMM.bed
        Untracked:  data/GM12878.chromHMM.txt
        Untracked:  data/LianoglouLCL/
        Untracked:  data/LocusZoom/
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/PeakCounts/
        Untracked:  data/PeaksUsed/
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/UnderstandPeaksQC/
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/diff_iso_trans/
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/example_gene_peakQuant/
        Untracked:  data/explainProtVar/
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/mol_pheno/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/pQTL_otherphen/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/perm_QTL_trans_filt/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  data/threePrimeSeqMetaData.csv
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/InvestigatePeak2GeneAssignment.Rmd
        Modified:   analysis/apaQTLoverlapGWAS.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explainpQTLs.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/flash2mash.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 47f115d Briana Mittleman 2019-01-08 code for deeptools plots
    html 6da90e9 Briana Mittleman 2018-12-11 Build site.
    Rmd 035053c Briana Mittleman 2018-12-11 work on peak and gene assignments
    html afafcc3 Briana Mittleman 2018-12-10 Build site.
    Rmd bc9f4cf Briana Mittleman 2018-12-10 add plot 2 peaks to get perc reads
    html 1549daf Briana Mittleman 2018-12-07 Build site.
    Rmd 38843d3 Briana Mittleman 2018-12-07 update q2 with current problem
    html daa5818 Briana Mittleman 2018-12-07 Build site.
    Rmd fa26526 Briana Mittleman 2018-12-07 add filter correlation
    html 7848485 Briana Mittleman 2018-12-07 Build site.
    Rmd 55c61ea Briana Mittleman 2018-12-07 scatterplot TPM vs gene cov
    html 3cd438e Briana Mittleman 2018-12-06 Build site.
    Rmd ddde22b Briana Mittleman 2018-12-06 add peaks per feature plot
    html cdfa5b2 Briana Mittleman 2018-12-05 Build site.
    Rmd 655b582 Briana Mittleman 2018-12-05 PCA with batch and read count


The goal of this analysis is to understand the data a bit better at the peak level. I want to have the cleanest set of peaks when I perform the final anlyses for the paper.

Variation in peaks

First I will run PCA on the peak coverage. I will run this seperatly for the total and nuclear fractions. I do not expect large amount of separation.

I will use the peak coverage data before the ratios are created for leafcutter. These files were created using feature counts on the filtered peaks. At this point the peaks have been mapped to the closest refseq transcript on the opposite strand.

Relevant file:
* /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc

  • /project2/gilad/briana/threeprimeseq/data/filtPeakOppstrand_cov/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc

These files are in /Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/PeakCounts on my computer.

library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ─────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths
library(devtools)
library(tximport)

Load data:

#only keep the counts 
total_Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,7:45]
nuclear_Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,7:45]
ggplot(total_Cov, aes(x=log10(X18486_T))) + geom_density()
Warning: Removed 233009 rows containing non-finite values (stat_density).

Expand here to see past versions of unnamed-chunk-3-1.png:
Version Author Date
afafcc3 Briana Mittleman 2018-12-10

Total:

Run PCA on the total coverage

pca_tot_peak=prcomp(total_Cov, center=T,scale=T)
summary(pca_tot_peak)
Importance of components:
                          PC1     PC2     PC3     PC4     PC5    PC6
Standard deviation     5.9010 1.30000 0.81376 0.75658 0.47993 0.4501
Proportion of Variance 0.8929 0.04333 0.01698 0.01468 0.00591 0.0052
Cumulative Proportion  0.8929 0.93621 0.95319 0.96787 0.97378 0.9790
                           PC7     PC8     PC9    PC10    PC11    PC12
Standard deviation     0.42896 0.32313 0.30419 0.27984 0.23427 0.19916
Proportion of Variance 0.00472 0.00268 0.00237 0.00201 0.00141 0.00102
Cumulative Proportion  0.98369 0.98637 0.98874 0.99075 0.99216 0.99317
                          PC13    PC14    PC15    PC16    PC17   PC18
Standard deviation     0.18883 0.15913 0.15127 0.14309 0.12758 0.1254
Proportion of Variance 0.00091 0.00065 0.00059 0.00053 0.00042 0.0004
Cumulative Proportion  0.99409 0.99474 0.99532 0.99585 0.99626 0.9967
                          PC19    PC20    PC21    PC22    PC23    PC24
Standard deviation     0.12328 0.11035 0.10707 0.09979 0.09530 0.08797
Proportion of Variance 0.00039 0.00031 0.00029 0.00026 0.00023 0.00020
Cumulative Proportion  0.99706 0.99737 0.99766 0.99792 0.99815 0.99835
                          PC25    PC26    PC27    PC28    PC29    PC30
Standard deviation     0.08576 0.08086 0.07902 0.07535 0.07454 0.06907
Proportion of Variance 0.00019 0.00017 0.00016 0.00015 0.00014 0.00012
Cumulative Proportion  0.99854 0.99871 0.99887 0.99901 0.99916 0.99928
                          PC31    PC32    PC33    PC34    PC35    PC36
Standard deviation     0.06717 0.06441 0.06201 0.05666 0.05415 0.05261
Proportion of Variance 0.00012 0.00011 0.00010 0.00008 0.00008 0.00007
Cumulative Proportion  0.99939 0.99950 0.99960 0.99968 0.99976 0.99983
                          PC37    PC38    PC39
Standard deviation     0.05128 0.04839 0.04237
Proportion of Variance 0.00007 0.00006 0.00005
Cumulative Proportion  0.99989 0.99995 1.00000
pca_tot_df=as.data.frame(pca_tot_peak$rotation) %>% rownames_to_column(var="lib") %>% mutate(line=substr(lib,2,6))
pca_tot_df$line=as.integer(pca_tot_df$line)

I want to color these by library size.

map_stats=read.csv("../data/comb_map_stats_39ind.csv", header=T)

map_stat_total=map_stats %>% filter(fraction=="total")
map_stat_total$batch=as.factor(map_stat_total$batch)

Join the relevant stats with the pca dataframe.

pca_tot_df=pca_tot_df %>% full_join(map_stat_total, by="line")

Plot this PCA:

totPCA_batch=ggplot(pca_tot_df, aes(x=PC1, y=PC2, col=batch )) + geom_point() + labs(x="PC1:0.89", y="PC2:0.043", title="Raw PAS qunatification data Total \n colored by batch ")
ggsave("../output/plots/QC_plots/TotalPCA_colBatch.png",totPCA_batch)
Saving 7 x 5 in image
totPCA_mapped=ggplot(pca_tot_df, aes(x=PC1, y=PC2, col=comb_mapped )) + geom_point() + labs(x="PC1:0.89", y="PC2:0.043", title="Raw PAS qunatification data Total \n colored by Mapped Read count")
ggsave("../output/plots/QC_plots/TotalPCA_colMapped.png",totPCA_mapped)
Saving 7 x 5 in image

Nuclear

Run PCA on the Nuclear coverage

pca_nuc_peak=prcomp(nuclear_Cov, center=T,scale=T)
summary(pca_nuc_peak)
Importance of components:
                          PC1     PC2     PC3     PC4     PC5     PC6
Standard deviation     5.3861 1.87775 1.62240 0.99268 0.92998 0.63513
Proportion of Variance 0.7438 0.09041 0.06749 0.02527 0.02218 0.01034
Cumulative Proportion  0.7438 0.83425 0.90174 0.92701 0.94919 0.95953
                           PC7    PC8    PC9    PC10    PC11    PC12
Standard deviation     0.53149 0.4674 0.4095 0.36160 0.32862 0.28960
Proportion of Variance 0.00724 0.0056 0.0043 0.00335 0.00277 0.00215
Cumulative Proportion  0.96677 0.9724 0.9767 0.98003 0.98280 0.98495
                          PC13    PC14   PC15    PC16    PC17    PC18
Standard deviation     0.26862 0.25414 0.2333 0.22825 0.20329 0.19277
Proportion of Variance 0.00185 0.00166 0.0014 0.00134 0.00106 0.00095
Cumulative Proportion  0.98680 0.98845 0.9899 0.99118 0.99224 0.99320
                          PC19    PC20    PC21    PC22    PC23    PC24
Standard deviation     0.18620 0.17247 0.16092 0.14244 0.13630 0.12741
Proportion of Variance 0.00089 0.00076 0.00066 0.00052 0.00048 0.00042
Cumulative Proportion  0.99409 0.99485 0.99551 0.99603 0.99651 0.99693
                          PC25    PC26    PC27    PC28    PC29    PC30
Standard deviation     0.12025 0.11377 0.11306 0.10563 0.10228 0.09219
Proportion of Variance 0.00037 0.00033 0.00033 0.00029 0.00027 0.00022
Cumulative Proportion  0.99730 0.99763 0.99796 0.99824 0.99851 0.99873
                          PC31    PC32    PC33    PC34    PC35    PC36
Standard deviation     0.08916 0.08768 0.08144 0.07916 0.07412 0.07253
Proportion of Variance 0.00020 0.00020 0.00017 0.00016 0.00014 0.00013
Cumulative Proportion  0.99893 0.99913 0.99930 0.99946 0.99960 0.99974
                          PC37    PC38    PC39
Standard deviation     0.06394 0.05721 0.05416
Proportion of Variance 0.00010 0.00008 0.00008
Cumulative Proportion  0.99984 0.99992 1.00000
pca_nuc_df=as.data.frame(pca_nuc_peak$rotation) %>% rownames_to_column(var="lib") %>% mutate(line=substr(lib,2,6))
pca_nuc_df$line=as.integer(pca_nuc_df$line)

I want to color these by library size.

map_stat_nuclear=map_stats %>% filter(fraction=="nuclear")
map_stat_nuclear$batch=as.factor(map_stat_nuclear$batch)

Join the relevant stats with the pca dataframe.

pca_nuc_df=pca_nuc_df %>% full_join(map_stat_nuclear, by="line")

Plot this PCA:

nucPCA_batch=ggplot(pca_nuc_df, aes(x=PC1, y=PC2, col=batch )) + geom_point() + labs(x="PC1: 0.74", y="PC2: 0.09", title="Raw PAS qunatification data nuclear \n colored by batch ")
ggsave("../output/plots/QC_plots/NuclearPCA_colBatch.png",nucPCA_batch)
Saving 7 x 5 in image

This shows that PC 2 is highly corrleated with batch,

nucPCA_mapped=ggplot(pca_nuc_df, aes(x=PC1, y=PC2, col=comb_mapped )) + geom_point() + labs(x="PC1: 0.74", y="PC2: 0.09", title="Raw PAS qunatification data nuclear \n colored by Mapped Read count")
ggsave("../output/plots/QC_plots/NuclearlPCA_colMapped.png",nucPCA_mapped)
Saving 7 x 5 in image

Q: Do the PAS read number recapitulate gene expression as it should?

Plot: scatter plot + fit (x-axis: gene TPM, y-axis: gene normalized PAS counts) total/nuclear separate

The TPM measurements come from the kalisto run I did on 18486.

tx2gene=read.table("../data/RNAkalisto/ncbiRefSeq.txn2gene.txt" ,header= F, sep="\t", stringsAsFactors = F)

txi.kallisto.tsv <- tximport("../data/RNAkalisto/abundance.tsv", type = "kallisto", tx2gene = tx2gene,countsFromAbundance="lengthScaledTPM" )
Note: importing `abundance.h5` is typically faster than `abundance.tsv`
reading in files with read_tsv
1 
removing duplicated transcript rows from tx2gene
transcripts missing from tx2gene: 99
summarizing abundance
summarizing counts
summarizing length

I need to get all of the peaks for 18486 and which gene they are in. Then I will take the gene average and divide by the number of mapped reads.

total_Cov_18486=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_T) %>% filter(X18486_T>10) %>%  group_by(gene) %>% summarize(GeneSum=sum(X18486_T)) %>% mutate(GeneSumNorm=GeneSum/10.8)

#%>% mutate(NormGenePeakCov=GeneSum/10819437)

Join with the transcript TPM

TXN_abund=as.data.frame(txi.kallisto.tsv$abundance) %>% rownames_to_column(var="gene")
colnames(TXN_abund)=c("gene", "TPM")

TXN_NormGene=TXN_abund %>% inner_join(total_Cov_18486,by="gene")

Plot distribution of each variable seperatly first to understand distribution:

summary(TXN_abund$TPM)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
     0.00      0.02      1.03     36.87     14.21 101438.00 
ggplot(TXN_abund, aes(x=log10(TPM))) + geom_density(kernel="gaussian") + scale_x_log10()
Warning in self$trans$transform(x): NaNs produced
Warning: Transformation introduced infinite values in continuous x-axis
Warning: Removed 13505 rows containing non-finite values (stat_density).

Expand here to see past versions of unnamed-chunk-16-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
afafcc3 Briana Mittleman 2018-12-10
daa5818 Briana Mittleman 2018-12-07
7848485 Briana Mittleman 2018-12-07

summary(total_Cov_18486$GeneSumNorm)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
    1.019     7.963    22.963    68.164    56.551 17110.648 
ggplot(total_Cov_18486, aes(x=log10(GeneSumNorm))) + geom_density(kernel="gaussian")+ scale_x_log10()

Expand here to see past versions of unnamed-chunk-17-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
afafcc3 Briana Mittleman 2018-12-10
7848485 Briana Mittleman 2018-12-07
3cd438e Briana Mittleman 2018-12-06

Create a scatterplot:

TXN_NormGene=TXN_NormGene %>% filter(TPM>0) %>% filter(GeneSumNorm>0)
corr_18486Tot=ggplot(TXN_NormGene, aes(x=log10(TPM), y= log10(GeneSumNorm))) + geom_point() + labs(title="Total", x="log10 RNA seq TPM", y="log10 Peak count sum per gene")+ geom_smooth(aes(x=log10(TPM),y=log10(GeneSumNorm)),method = "lm") + annotate("text",x=5, y=5,label="R2=.42")+ geom_text(aes(label=gene),hjust=0, vjust=0)
       
corr_18486Tot       

Expand here to see past versions of unnamed-chunk-18-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
afafcc3 Briana Mittleman 2018-12-10

summary(lm(log10(TPM)~log10(GeneSumNorm),TXN_NormGene)) 

Call:
lm(formula = log10(TPM) ~ log10(GeneSumNorm), data = TXN_NormGene)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.3165 -0.2546  0.0856  0.3960  2.8572 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)        -0.20648    0.01505  -13.72   <2e-16 ***
log10(GeneSumNorm)  0.92672    0.01011   91.63   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6755 on 11541 degrees of freedom
Multiple R-squared:  0.4211,    Adjusted R-squared:  0.4211 
F-statistic:  8397 on 1 and 11541 DF,  p-value: < 2.2e-16

Let me try this with the nuclear fraction:

nuclear_Cov_18486=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_N) %>% filter(X18486_N>10) %>% group_by(gene) %>% summarize(GeneSum=sum(X18486_N)) %>% mutate(GeneSumNorm=GeneSum/11.4)

TXN_NormGene_Nuc=TXN_abund %>% inner_join(nuclear_Cov_18486,by="gene")

Create a scatterplot:

TXN_NormGene_Nuc=TXN_NormGene_Nuc %>% filter(TPM>0) %>% filter(GeneSumNorm>0)

corr_18486Nuc=ggplot(TXN_NormGene_Nuc, aes(x=log(TPM), y= log10(GeneSumNorm))) + geom_point() + geom_smooth(aes(x = log10(TPM +.001), y = log10(GeneSumNorm+.001)),method = "lm",se=T) + labs(title=" Nuclear", x="log10 RNA seq TPM", y="log10 Peak Sum per gene") + annotate("text",x=-3, y=5,label="R2=.32") +geom_text(aes(label=gene),hjust=0, vjust=0)
corr_18486Nuc

Expand here to see past versions of unnamed-chunk-20-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
afafcc3 Briana Mittleman 2018-12-10

summary(lm(log10(TPM)~log10(GeneSumNorm),TXN_NormGene_Nuc)) 

Call:
lm(formula = log10(TPM) ~ log10(GeneSumNorm), data = TXN_NormGene_Nuc)

Residuals:
    Min      1Q  Median      3Q     Max 
-8.7166 -0.3526  0.0734  0.4565  3.2783 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)        -0.13635    0.01665  -8.187 2.95e-16 ***
log10(GeneSumNorm)  0.82341    0.01102  74.727  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7629 on 11972 degrees of freedom
Multiple R-squared:  0.3181,    Adjusted R-squared:  0.318 
F-statistic:  5584 on 1 and 11972 DF,  p-value: < 2.2e-16
title <- ggdraw() + draw_label("Correlation between TPM and 3' Seq \nNA18486", fontface='bold')

plots=plot_grid(corr_18486Tot,corr_18486Nuc)

CorrelationPlot18486=plot_grid(title,plots, ncol=1 , rel_heights = c(.1,1))
ggsave(file="../output/plots/QC_plots/CorrelationWKalisto18486.png",CorrelationPlot18486)
Saving 7 x 5 in image
CorrelationPlot18486

Expand here to see past versions of unnamed-chunk-21-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
7848485 Briana Mittleman 2018-12-07

These do not look good. We expect higher correlations. I can make variants of these plots to diagnose the problem.

Just look at the count for the top peak for the gene.

Total:

topPeakCov_total_18486=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_T) %>% group_by(gene) %>%  arrange(gene,desc(X18486_T)) %>% top_n(1)
Selecting by X18486_T
TXN_TopPeak=TXN_abund %>% inner_join(topPeakCov_total_18486,by="gene")


ggplot(TXN_TopPeak, aes(x=log(TPM+.001), y= log10(X18486_T+.001))) + geom_point() + geom_smooth(aes(x = log10(TPM +.001), y = log10(X18486_T+.001)),method = "lm",se=T) 

Expand here to see past versions of unnamed-chunk-22-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
daa5818 Briana Mittleman 2018-12-07

summary(lm(log10(TPM +.001)~log10(X18486_T+ .001),TXN_TopPeak)) 

Call:
lm(formula = log10(TPM + 0.001) ~ log10(X18486_T + 0.001), data = TXN_TopPeak)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.5665 -0.3715  0.3014  0.6793  2.9706 

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)             0.082190   0.008386   9.801   <2e-16 ***
log10(X18486_T + 0.001) 0.360467   0.003491 103.257   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.152 on 19537 degrees of freedom
Multiple R-squared:  0.3531,    Adjusted R-squared:  0.353 
F-statistic: 1.066e+04 on 1 and 19537 DF,  p-value: < 2.2e-16

Nuclear:

topPeakCov_nuclear_18486=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_N) %>% group_by(gene) %>%  arrange(gene,desc(X18486_N)) %>% top_n(1) 
Selecting by X18486_N
TXN_TopPeak_nuc=TXN_abund %>% inner_join(topPeakCov_nuclear_18486,by="gene")


ggplot(TXN_TopPeak_nuc, aes(x=log(TPM), y= log10(X18486_N))) + geom_point() + geom_smooth(aes(x = log10(TPM), y = log10(X18486_N)),method = "lm",se=T) +xlim(-1,10)
Warning: Removed 3349 rows containing non-finite values (stat_smooth).
Warning: Removed 2733 rows containing missing values (geom_point).

Expand here to see past versions of unnamed-chunk-23-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
daa5818 Briana Mittleman 2018-12-07

summary(lm(log10(TPM+.001)~log10(X18486_N+.001),TXN_TopPeak_nuc)) 

Call:
lm(formula = log10(TPM + 0.001) ~ log10(X18486_N + 0.001), data = TXN_TopPeak_nuc)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.4195 -0.4383  0.2779  0.6944  3.6667 

Coefficients:
                         Estimate Std. Error t value Pr(>|t|)    
(Intercept)             -0.385540   0.012683  -30.40   <2e-16 ***
log10(X18486_N + 0.001)  0.546958   0.006061   90.25   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.177 on 16302 degrees of freedom
Multiple R-squared:  0.3332,    Adjusted R-squared:  0.3331 
F-statistic:  8144 on 1 and 16302 DF,  p-value: < 2.2e-16

Try removing genes with 0 in one the of the columns.

TXN_TopPeak_filt=TXN_TopPeak %>% filter(TPM>0) %>% filter(X18486_T>0)

ggplot(TXN_TopPeak_filt, aes(x=log(TPM), y= log10(X18486_T))) + geom_point() + geom_smooth(aes(x = log10(TPM), y = log10(X18486_T)),method = "lm",se=T)+ geom_text(aes(label=gene),hjust=0, vjust=0)

Expand here to see past versions of unnamed-chunk-24-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
daa5818 Briana Mittleman 2018-12-07

summary(lm(log10(TPM)~log10(X18486_T),TXN_TopPeak_filt)) 

Call:
lm(formula = log10(TPM) ~ log10(X18486_T), data = TXN_TopPeak_filt)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.3583 -0.2584  0.1128  0.4186  2.8988 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -0.906074   0.017369  -52.17   <2e-16 ***
log10(X18486_T)  0.910187   0.008167  111.44   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.705 on 12860 degrees of freedom
Multiple R-squared:  0.4913,    Adjusted R-squared:  0.4912 
F-statistic: 1.242e+04 on 1 and 12860 DF,  p-value: < 2.2e-16
TXN_TopPeak_filt_nuc=TXN_TopPeak_nuc %>% filter(TPM>0) %>% filter(X18486_N>0)

ggplot(TXN_TopPeak_filt_nuc, aes(x=log(TPM), y= log10(X18486_N))) + geom_point() + geom_smooth(aes(x = log10(TPM), y = log10(X18486_N)),method = "lm",se=T)+ geom_text(aes(label=gene),hjust=0, vjust=0)

Expand here to see past versions of unnamed-chunk-25-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
daa5818 Briana Mittleman 2018-12-07

summary(lm(log10(TPM)~log10(X18486_N),TXN_TopPeak_filt_nuc)) 

Call:
lm(formula = log10(TPM) ~ log10(X18486_N), data = TXN_TopPeak_filt_nuc)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.0537 -0.3514  0.0857  0.4783  3.3509 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -1.021815   0.018052   -56.6   <2e-16 ***
log10(X18486_N)  0.957513   0.008878   107.8   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7692 on 13958 degrees of freedom
Multiple R-squared:  0.4545,    Adjusted R-squared:  0.4545 
F-statistic: 1.163e+04 on 1 and 13958 DF,  p-value: < 2.2e-16

I should remove these genes because they are outliers:

outlier=c("POTEJ", "SPATA31A1", "TP53TG3B")

TXN_TopPeak_filt2_nuc= TXN_TopPeak_filt_nuc %>% filter(!(gene %in% outlier))

TXN_TopPeak_filt2= TXN_TopPeak_filt %>% filter(!(gene %in% outlier))

Replot:

#nuclear 
ggplot(TXN_TopPeak_filt2_nuc, aes(x=log(TPM), y= log10(X18486_N))) + geom_point() + geom_smooth(aes(x = log10(TPM), y = log10(X18486_N)),method = "lm",se=T) 

Expand here to see past versions of unnamed-chunk-27-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
daa5818 Briana Mittleman 2018-12-07

summary(lm(log10(TPM)~log10(X18486_N),TXN_TopPeak_filt2_nuc)) 

Call:
lm(formula = log10(TPM) ~ log10(X18486_N), data = TXN_TopPeak_filt2_nuc)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.2929 -0.3507  0.0844  0.4763  3.3486 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -1.01719    0.01781   -57.1   <2e-16 ***
log10(X18486_N)  0.95605    0.00876   109.1   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7588 on 13955 degrees of freedom
Multiple R-squared:  0.4605,    Adjusted R-squared:  0.4604 
F-statistic: 1.191e+04 on 1 and 13955 DF,  p-value: < 2.2e-16
#total
ggplot(TXN_TopPeak_filt2, aes(x=log(TPM), y= log10(X18486_T))) + geom_point() + geom_smooth(aes(x = log10(TPM), y = log10(X18486_T)),method = "lm",se=T)

Expand here to see past versions of unnamed-chunk-27-2.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
daa5818 Briana Mittleman 2018-12-07

summary(lm(log10(TPM)~log10(X18486_T),TXN_TopPeak_filt)) 

Call:
lm(formula = log10(TPM) ~ log10(X18486_T), data = TXN_TopPeak_filt)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.3583 -0.2584  0.1128  0.4186  2.8988 

Coefficients:
                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -0.906074   0.017369  -52.17   <2e-16 ***
log10(X18486_T)  0.910187   0.008167  111.44   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.705 on 12860 degrees of freedom
Multiple R-squared:  0.4913,    Adjusted R-squared:  0.4912 
F-statistic: 1.242e+04 on 1 and 12860 DF,  p-value: < 2.2e-16

Genes with 1 peak

Nuclear

First I need to get the genes with just 1 peak.

OnePeak_nuc=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% group_by(gene) %>% tally() %>% filter(n==1) %>% select(gene)

I can join this with the counts to get only the counts for these genes and join with the TXN df.

OnePeak_nuc_cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_N) %>% inner_join(OnePeak_nuc, by="gene") %>% inner_join(TXN_abund, by="gene")

Plot and get the correlation:

OnePeak_nuc_cov=OnePeak_nuc_cov %>% filter(TPM>0) %>% filter(X18486_N>0)

ggplot(OnePeak_nuc_cov, aes(x=log10(TPM), y= log10(X18486_N))) + geom_point() + geom_smooth(aes(x = log10(TPM), y = log10(X18486_N)),method = "lm",se=T) + geom_text(aes(label=gene),hjust=0, vjust=0)

Expand here to see past versions of unnamed-chunk-30-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
3cd438e Briana Mittleman 2018-12-06

summary(lm(log10(TPM)~log10(X18486_N),OnePeak_nuc_cov)) 

Call:
lm(formula = log10(TPM) ~ log10(X18486_N), data = OnePeak_nuc_cov)

Residuals:
    Min      1Q  Median      3Q     Max 
-8.8689 -0.5502  0.0730  0.5916  3.2499 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -1.17296    0.05663  -20.71   <2e-16 ***
log10(X18486_N)  0.84559    0.04475   18.90   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9359 on 801 degrees of freedom
Multiple R-squared:  0.3084,    Adjusted R-squared:  0.3075 
F-statistic: 357.1 on 1 and 801 DF,  p-value: < 2.2e-16

Filter the outlier:

OnePeakN_outlier=c("POTEJ")


OnePeak_nuc_cov_filt= OnePeak_nuc_cov %>% filter(!(gene %in% OnePeakN_outlier))


ggplot(OnePeak_nuc_cov_filt, aes(x=log10(TPM), y= log10(X18486_N))) + geom_point() + geom_smooth(aes(x = log10(TPM), y = log10(X18486_N)),method = "lm",se=T) + geom_text(aes(label=gene),hjust=0, vjust=0)

Expand here to see past versions of unnamed-chunk-31-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11

summary(lm(log10(TPM)~log10(X18486_N),OnePeak_nuc_cov_filt)) 

Call:
lm(formula = log10(TPM) ~ log10(X18486_N), data = OnePeak_nuc_cov_filt)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.2074 -0.5615  0.0608  0.5899  3.2384 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -1.14670    0.05345  -21.45   <2e-16 ***
log10(X18486_N)  0.83081    0.04221   19.68   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8823 on 800 degrees of freedom
Multiple R-squared:  0.3263,    Adjusted R-squared:  0.3254 
F-statistic: 387.4 on 1 and 800 DF,  p-value: < 2.2e-16

Total

First I need to get the genes with just 1 peak.

OnePeak_tot=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% group_by(gene) %>% tally() %>% filter(n==1) %>% select(gene)

I can join this with the counts to get only the counts for these genes and join with the TXN df.

OnePeak_tot_cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_T) %>% inner_join(OnePeak_tot, by="gene") %>% inner_join(TXN_abund, by="gene")

Plot and get the correlation:

OnePeak_tot_cov=OnePeak_tot_cov %>% filter(TPM>0) %>% filter(X18486_T>0)

ggplot(OnePeak_tot_cov, aes(x=log10(TPM), y= log10(X18486_T))) + geom_point() + geom_smooth(aes(x = log10(TPM), y = log10(X18486_T)),method = "lm",se=T) + geom_text(aes(label=gene),hjust=0, vjust=0)

Expand here to see past versions of unnamed-chunk-34-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
1549daf Briana Mittleman 2018-12-07
daa5818 Briana Mittleman 2018-12-07

summary(lm(log10(TPM)~log10(X18486_T),OnePeak_tot_cov)) 

Call:
lm(formula = log10(TPM) ~ log10(X18486_T), data = OnePeak_tot_cov)

Residuals:
    Min      1Q  Median      3Q     Max 
-8.5586 -0.5457  0.1636  0.6173  2.5539 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -1.22867    0.07551  -16.27   <2e-16 ***
log10(X18486_T)  0.86571    0.04861   17.81   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9762 on 536 degrees of freedom
Multiple R-squared:  0.3718,    Adjusted R-squared:  0.3706 
F-statistic: 317.2 on 1 and 536 DF,  p-value: < 2.2e-16

Total has the same outlier.

OnePeak_tot_cov_filt= OnePeak_tot_cov %>% filter(!(gene %in% OnePeakN_outlier))


ggplot(OnePeak_tot_cov_filt, aes(x=log10(TPM), y= log10(X18486_T))) + geom_point() + geom_smooth(aes(x = log10(TPM), y = log10(X18486_T)),method = "lm",se=T) + geom_text(aes(label=gene),hjust=0, vjust=0)

Expand here to see past versions of unnamed-chunk-35-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
afafcc3 Briana Mittleman 2018-12-10
7848485 Briana Mittleman 2018-12-07

summary(lm(log10(TPM)~log10(X18486_T),OnePeak_tot_cov_filt)) 

Call:
lm(formula = log10(TPM) ~ log10(X18486_T), data = OnePeak_tot_cov_filt)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4792 -0.5680  0.1435  0.6233  2.5532 

Coefficients:
                Estimate Std. Error t value Pr(>|t|)    
(Intercept)     -1.17715    0.07013  -16.79   <2e-16 ***
log10(X18486_T)  0.83818    0.04510   18.59   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9039 on 535 degrees of freedom
Multiple R-squared:  0.3923,    Adjusted R-squared:  0.3912 
F-statistic: 345.4 on 1 and 535 DF,  p-value: < 2.2e-16

I want to visualize some of these outliers.

These dont look great, I am continuing this section of the analysis by looking at the Peak to gene assignment

Q: For each gene, what percentage of reads assigned fall within 1, 2, 3, etc… peaks, we would expect that for many genes >90% of the reads fall within 1 peak, for a few 2 peaks, etc…?

Plot: Y-axis: Number of genes, X-axis: how many peaks is needed to “capture” 90%, 80%, … 50% of the reads assigned to that gene (using different colors).

Start with analysis to see how many peaks are needed to capture 90% of the reads assigned to the gene. I will start by looking at the number of reads that map to peaks in genes. To do this I can group on genes in the peak coverage and get the sum.

nuclear_covBygene=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_N) %>% group_by(gene) %>% summarize(GeneSum=sum(X18486_N)) %>% mutate(per90=GeneSum*.9)%>% mutate(per80=GeneSum*.8)%>% mutate(per70=GeneSum*.7)%>% mutate(per60=GeneSum*.6)%>% mutate(per50=GeneSum*.5) 
total_covBygene=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_T) %>% group_by(gene) %>% summarize(GeneSum=sum(X18486_T))%>% mutate(per90=GeneSum*.9)%>% mutate(per80=GeneSum*.8)%>% mutate(per70=GeneSum*.7)%>% mutate(per60=GeneSum*.6)%>% mutate(per50=GeneSum*.5)

Write these out to use them in the script:

write.table(file="../data/UnderstandPeaksQC/Nuclear_PerCovbyGene.txt", nuclear_covBygene, quote=F, col.names = T, row.names = F)
write.table(file="../data/UnderstandPeaksQC/Total_PerCovbyGene.txt", total_covBygene, quote=F, col.names = T,row.names = F)

Try in R

#groupedNuclear=sumforeachgene %>% sort(ind) %>% cumulativesum %>% dividebygenesum %>% filter(only90) %>% count()
#remove genes with 0 count sum 

nuclear_90Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_N) %>% group_by(gene) %>%  arrange(gene,desc(X18486_N)) %>%  mutate(SUM = cumsum(X18486_N)) %>% full_join(nuclear_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.9) %>% tally() %>% rename("90"=n)

nuclear_80Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_N) %>% group_by(gene) %>%  arrange(gene,desc(X18486_N)) %>%  mutate(SUM = cumsum(X18486_N)) %>% full_join(nuclear_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.8) %>% tally() %>% rename("80"=n)

nuclear_70Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_N) %>% group_by(gene) %>%  arrange(gene,desc(X18486_N)) %>%  mutate(SUM = cumsum(X18486_N)) %>% full_join(nuclear_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.7) %>% tally() %>% rename("70"=n)

nuclear_60Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_N) %>% group_by(gene) %>%  arrange(gene,desc(X18486_N)) %>%  mutate(SUM = cumsum(X18486_N)) %>% full_join(nuclear_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.6) %>% tally() %>% rename("60"=n)

nuclear_50Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Nuclear_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_N) %>% group_by(gene) %>%  arrange(gene,desc(X18486_N)) %>%  mutate(SUM = cumsum(X18486_N)) %>% full_join(nuclear_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.5) %>% tally() %>% rename("50"=n)

Join these to plot them:

nuclear_PercentPeakCov= nuclear_90Cov %>% left_join(nuclear_80Cov, by="gene") %>% left_join(nuclear_70Cov, by="gene") %>% left_join(nuclear_60Cov, by="gene") %>% left_join(nuclear_50Cov, by="gene")

nuclear_PercentPeakCov_melt=melt(nuclear_PercentPeakCov,id.vars = "gene")
nucPeakCov=ggplot(nuclear_PercentPeakCov_melt, aes(x=value,fill=variable))+ geom_histogram(position="dodge", bins=30) + labs(y="Number of Genes", x="Number of Peaks", title="Nuclear: Number of Peaks to capture % of Gene count") + facet_grid(~variable) + xlim(0,30)


nucPeakCov_cdf=ggplot(nuclear_PercentPeakCov_melt, aes(x=value,col=variable))+ stat_ecdf(geom="step")+ labs(y="Percent of Genes", x="Number of Peaks", title="Nuclear: Number of Peaks to capture % of Gene count") + scale_x_continuous(breaks=seq(1,30,2),limits=c(0,30))

ggplot(nuclear_PercentPeakCov_melt, aes(x=value,fill=variable, by=variable))+ geom_density(alpha=.4) + labs(y="Number of Genes", x="Number of Peaks", title="Nuclear: Number of Peaks to capture % of Gene count")

Expand here to see past versions of unnamed-chunk-40-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11

Try this with total:

total_90Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_T) %>% group_by(gene) %>%  arrange(gene,desc(X18486_T)) %>%  mutate(SUM = cumsum(X18486_T)) %>% full_join(total_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.9) %>% tally() %>% rename("90"=n)

total_80Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_T) %>% group_by(gene) %>%  arrange(gene,desc(X18486_T)) %>%  mutate(SUM = cumsum(X18486_T)) %>% full_join(total_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.8) %>% tally() %>% rename("80"=n)

total_70Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_T) %>% group_by(gene) %>%  arrange(gene,desc(X18486_T)) %>%  mutate(SUM = cumsum(X18486_T)) %>% full_join(total_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.7) %>% tally() %>% rename("70"=n)

total_60Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_T) %>% group_by(gene) %>%  arrange(gene,desc(X18486_T)) %>%  mutate(SUM = cumsum(X18486_T)) %>% full_join(total_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.6) %>% tally() %>% rename("60"=n)

total_50Cov=read.table("../data/PeakCounts/filtered_APApeaks_merged_allchrom_refseqGenes.Transcript_sm_quant.Total_fixed.fc", header=T, stringsAsFactors = F)[,1:7] %>% separate(Geneid, into=c("peak", "chr", "start", "end", "strand", "gene"), sep=":") %>% select(gene, X18486_T) %>% group_by(gene) %>%  arrange(gene,desc(X18486_T)) %>%  mutate(SUM = cumsum(X18486_T)) %>% full_join(total_covBygene,by="gene") %>% filter(GeneSum >0) %>% mutate(perSum=SUM/GeneSum) %>% mutate(perSum_lag=lag(perSum,1)) %>%  replace_na(list(perSum_lag =0)) %>% filter(perSum_lag<.5) %>% tally() %>% rename("50"=n)

Put together:

total_PercentPeakCov= total_90Cov %>% left_join(total_80Cov, by="gene") %>% left_join(total_70Cov, by="gene") %>% left_join(total_60Cov, by="gene") %>% left_join(total_50Cov, by="gene")

total_PercentPeakCov_melt=melt(total_PercentPeakCov,id.vars = "gene")
totPeakCov=ggplot(total_PercentPeakCov_melt, aes(x=value,fill=variable))+ geom_histogram(position="dodge", bins=30) + labs(y="Number of Genes", x="Number of Peaks", title="Total: Number of Peaks to capture % of Gene count") + facet_grid(~variable) + xlim(0,30)


totPeakCov_cdf=ggplot(total_PercentPeakCov_melt, aes(x=value,col=variable))+ stat_ecdf(geom="step")+ labs(y="Percent of Genes", x="Number of Peaks", title="Total: Number of Peaks to capture % of Gene count") + scale_x_continuous(breaks=seq(1,30,2),limits=c(0,30))




ggplot(total_PercentPeakCov_melt, aes(x=value,fill=variable, by=variable))+ geom_density(alpha=.4) + labs(y="Number of Genes", x="Number of Peaks", title="Nuclear: Number of Peaks to capture % of Gene count")

Expand here to see past versions of unnamed-chunk-43-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11
1549daf Briana Mittleman 2018-12-07
daa5818 Briana Mittleman 2018-12-07

PeakCovPerGeneCount=plot_grid(totPeakCov,nucPeakCov, ncol = 1)
Warning: Removed 85 rows containing non-finite values (stat_bin).
Warning: Removed 810 rows containing non-finite values (stat_bin).
ggsave(file="../output/plots/QC_plots/PeakCovPerGeneCount.png",PeakCovPerGeneCount)
Saving 7 x 5 in image
PeakCovPerGeneCountCDF=plot_grid(totPeakCov_cdf,nucPeakCov_cdf,ncol=1)
Warning: Removed 85 rows containing non-finite values (stat_ecdf).
Warning: Removed 810 rows containing non-finite values (stat_ecdf).
ggsave(file="../output/plots/QC_plots/PeakCovPerGeneCountCDF.png",PeakCovPerGeneCountCDF)
Saving 7 x 5 in image

These look good. We could use this to filter. I would compute the percent of the gene each peak covers in each individual then I could filter peaks that cover % t() fc_peaks=as.data.frame(fc_peaks) colnames(fc_peaks)=as.character(unlist(fc_peaks[1,])) fc_peaks=fc_peaks[-1,] fc_peaks\(Assigned=as.numeric(as.character(fc_peaks\)Assigned)) fc_peaks\(Unassigned_NoFeatures=as.numeric(as.character(fc_peaks\)Unassigned_NoFeatures)) ```

I need to separate the libraries by line and fraction.

fc_peaks=fc_peaks %>% separate(Status, into=c("line", "fraction"), sep="_") %>% mutate(PerReadPeak=Assigned/(Assigned+Unassigned_NoFeatures))

This number is the reads assigned to peaks out of all reads mapping to genome.

I can now melt these data by line and fraction

fc_peaks_melt=melt(fc_peaks, id.vars = c("line", "fraction"))
Warning: attributes are not identical across measure variables; they will
be dropped
fc_peaks_melt_PerRead=fc_peaks_melt %>% filter(variable=="PerReadPeak")
fc_peaks_melt_PerRead$value=as.numeric(fc_peaks_melt_PerRead$value)
ggplot(fc_peaks_melt_PerRead,aes( x=line, y=value, by=fraction, fill=fraction))+ geom_col(pos="dodge") +theme(axis.text.x = element_text(angle = 90, hjust = 1),axis.text.y = element_text(size=12),axis.title.y=element_text(size=10,face="bold"), axis.title.x=element_text(size=12,face="bold"))+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + labs(title="Percent of reads mapping to peaks by line and fraction", y="Reads mapping to peaks/all mapping reads")

Expand here to see past versions of unnamed-chunk-49-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11

It may be more interesting to look at this by fraction, with error bars.

fc_peaks_melt_PerRead_byfrac= fc_peaks_melt_PerRead %>% group_by(fraction) %>% summarise(mean=mean(value), sd=sd(value))

Plot this:

ggplot(fc_peaks_melt_PerRead_byfrac,aes(x=fraction, y=mean, fill=fraction)) + geom_col()+ geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.2)+ theme(axis.text.y = element_text(size=12),axis.title.y=element_text(size=10,face="bold"), axis.title.x=element_text(size=12,face="bold"))+ scale_fill_manual(values=c("deepskyblue3","darkviolet"))+ labs(title="Percent of reads mapping to peaks by fraction", y="Reads mapping to peaks/all mapping reads")

Expand here to see past versions of unnamed-chunk-51-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11

Now I want to look at how many reads map to gene. I will use the transcript annotations that I used for the peaks.

  • /project2/gilad/briana/genome_anotation_data/ncbiRefSeq_sm_noChr.sort.mRNA.bed

I need to make this an SAF file.
* GeneID * Chr * Start * End * Strand

RefSeqmRNA2SAF.py

#python
from misc_helper import *
fout = file("/project2/gilad/briana/genome_anotation_data/ncbiRefSeq_sm_noChr.sort.mRNA.SAF","w")
fout.write("GeneID\tChr\tStart\tEnd\tStrand\n")
for ln in open("/project2/gilad/briana/genome_anotation_data/ncbiRefSeq_sm_noChr.sort.mRNA.bed"):
    chrom, start, end, gene, score, strand = ln.split()
    start_i=int(start)
    end_i=int(end)
    fout.write("%s\t%s\t%d\t%d\t%s\n"%(gene, chrom, start_i, end_i, strand))
fout.close()

ref_geneTranscript_fc.sh

#!/bin/bash

#SBATCH --job-name=ref_geneTranscript_fc
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=ref_geneTranscript_fc.out
#SBATCH --error=ref_geneTranscript_fc.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env

featureCounts -O -a /project2/gilad/briana/genome_anotation_data/ncbiRefSeq_sm_noChr.sort.mRNA.SAF -F SAF -o /project2/gilad/briana/threeprimeseq/data/UnderstandPeaksQC/RefSeqTranscript_AllLibraries.fc /project2/gilad/briana/threeprimeseq/data/sort/*sort.bam -s 2

fix_Genefc_summary.py

infile= open("/Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/UnderstandPeaksQC/RefSeqTranscript_AllLibraries.fc.summary", "r")
fout = open("/Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/UnderstandPeaksQC/RefSeqTranscript_AllLibraries.fc.summary_fixed",'w')
for line, i in enumerate(infile):
    if line == 0:
        i_list=i.split()
        libraries=[i_list[0]]
        for sample in i_list[1:]:
            full = sample.split("/")[7]
            samp= full.split("-")[2:4]
            lim="_"
            samp_st=lim.join(samp)
            libraries.append(samp_st)
        print(libraries)
        first_line= "\t".join(libraries)
        fout.write(first_line + '\n' )
    else:
        fout.write(i)
fout.close()
fc_gene_peaks=read.table("../data/UnderstandPeaksQC/RefSeqTranscript_AllLibraries.fc.summary_fixed", stringsAsFactors = F) %>% t()
fc_gene_peaks=as.data.frame(fc_gene_peaks)
colnames(fc_gene_peaks)=as.character(unlist(fc_gene_peaks[1,]))
fc_gene_peaks=fc_gene_peaks[-1,]
fc_gene_peaks$Assigned=as.numeric(as.character(fc_gene_peaks$Assigned))
fc_gene_peaks$Unassigned_NoFeatures=as.numeric(as.character(fc_gene_peaks$Unassigned_NoFeatures))

I need to separate the libraries by line and fraction.

fc_gene_peaks=fc_gene_peaks %>% separate(Status, into=c("line", "fraction"), sep="_") %>% mutate(PerReadPeak=Assigned/(Assigned+Unassigned_NoFeatures))

Melt this:

fc_gene_peaks_melt=melt(fc_gene_peaks, id.vars = c("line", "fraction"))
Warning: attributes are not identical across measure variables; they will
be dropped
fc_gene_peaks_PerRead=fc_gene_peaks_melt %>% filter(variable=="PerReadPeak")
fc_gene_peaks_PerRead$value=as.numeric(fc_gene_peaks_PerRead$value)

GGplot:

ggplot(fc_gene_peaks_PerRead,aes( x=line, y=value, by=fraction, fill=fraction))+ geom_col(pos="dodge") +theme(axis.text.x = element_text(angle = 90, hjust = 1),axis.text.y = element_text(size=12),axis.title.y=element_text(size=10,face="bold"), axis.title.x=element_text(size=12,face="bold"))+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + labs(title="Percent of reads mapping to Transcripts by line and fraction", y="Reads mapping to transcripts/all mapping reads")

Expand here to see past versions of unnamed-chunk-58-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11

Do this by fraction.

fc_gene_peaks_PerRead_byfrac= fc_gene_peaks_PerRead %>% group_by(fraction) %>% summarise(mean=mean(value), sd=sd(value))

Plot this:

ggplot(fc_gene_peaks_PerRead_byfrac,aes(x=fraction, y=mean, fill=fraction)) + geom_col()+ geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.2)+ theme(axis.text.y = element_text(size=12),axis.title.y=element_text(size=10,face="bold"), axis.title.x=element_text(size=12,face="bold"))+ scale_fill_manual(values=c("deepskyblue3","darkviolet"))+ labs(title="Percent of reads mapping to Transcripts by fraction", y="Reads mapping to Transcripts/all mapping reads")

Expand here to see past versions of unnamed-chunk-60-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11

It would be nice to have this in one plot. In order to do this I want to join the PerReadPeak from both and melt. this way the variable can be peak or transcript.

fc_peaks_sel=fc_peaks %>% select(c("line", "fraction", "PerReadPeak"))

fc_gene_peaks_sel=fc_gene_peaks %>% select(c("line", "fraction", "PerReadPeak"))

fcGene_and_Transcript=fc_peaks_sel %>% left_join(fc_gene_peaks_sel, by=c("line","fraction"))

colnames(fcGene_and_Transcript)=c("Line", "Fraction", "Peaks", "Genes")


fcGene_and_Transcript_melt=melt(fcGene_and_Transcript, id.vars=c("Line","Fraction"))


fcGene_and_Transcript_melt_sum=fcGene_and_Transcript_melt %>% group_by(Fraction,variable) %>% summarise(mean=mean(value), sd=sd(value))
reads2featuresPlot=ggplot(fcGene_and_Transcript_melt_sum,aes(x=Fraction, y=mean, fill=Fraction)) + geom_col()+ geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.2)+ theme(axis.text.y = element_text(size=12),axis.title.y=element_text(size=10,face="bold"), axis.title.x=element_text(size=12,face="bold"))+ scale_fill_manual(values=c("deepskyblue3","darkviolet"))+ labs(title="Percent of reads mapping to feature by fraction", y="Reads mapping to Feature/all mapping reads") + facet_grid(~variable)

reads2featuresPlot

Expand here to see past versions of unnamed-chunk-62-1.png:
Version Author Date
6da90e9 Briana Mittleman 2018-12-11

ggsave(file="../output/plots/QC_plots/reads2featuresPlot.png", reads2featuresPlot)
Saving 7 x 5 in image

Misspriming:

Sheppard et al. cited 2 other papers, Beaudoing et al 2000 and Tian et al 2005. Thet excluded reads with 6 consequitive upstream As or those with 7 in a 10nt window. They did this at the read level.

We need to think about if this is appropriate at the read level or if we can do it at the peak level

Data along transcrip bodies

I can use deeptools to plot enrichment over gene bodies. The tool will automatically scale the genes/transcripts to be the same length.

BothFracDTPlotGeneRegions.sh

#!/bin/bash

#SBATCH --job-name=BothFracDTPlotGeneRegions.sh
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=BothFracDTPlotGeneRegions.out
#SBATCH --error=BothFracDTPlotGeneRegions.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END

module load Anaconda3
source activate three-prime-env


computeMatrix scale-regions -S /project2/gilad/briana/threeprimeseq/data/mergedBW/Total_MergedBamCoverage.bw /project2/gilad/briana/threeprimeseq/data/mergedBW/Nuclear_MergedBamCoverage.bw -R /project2/gilad/briana/genome_anotation_data/ncbiRefSeq.mRNA.named_noCHR.bed -b 1000  -a 1000 --transcript_id_designator 3 -out /project2/gilad/briana/threeprimeseq/data/UnderstandPeaksQC/BothFrac_Transcript.gz

plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/UnderstandPeaksQC/BothFrac_Transcript.gz --plotTitle "Combined Reads Transcript" --heatmapHeight 7 --colorMap YlGnBu  -out /project2/gilad/briana/threeprimeseq/data/UnderstandPeaksQC/BothFrac_Transcript.png

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2  tximport_1.8.0  devtools_1.13.6 reshape2_1.4.3 
 [5] cowplot_0.9.3   workflowr_1.1.1 forcats_0.3.0   stringr_1.3.1  
 [9] dplyr_0.7.6     purrr_0.2.5     readr_1.1.1     tidyr_0.8.1    
[13] tibble_1.4.2    ggplot2_3.0.0   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  haven_1.1.2       lattice_0.20-35  
 [4] colorspace_1.3-2  htmltools_0.3.6   yaml_2.2.0       
 [7] rlang_0.2.2       R.oo_1.22.0       pillar_1.3.0     
[10] glue_1.3.0        withr_2.1.2       R.utils_2.7.0    
[13] modelr_0.1.2      readxl_1.1.0      bindr_0.1.1      
[16] plyr_1.8.4        munsell_0.5.0     gtable_0.2.0     
[19] cellranger_1.1.0  rvest_0.3.2       R.methodsS3_1.7.1
[22] memoise_1.1.0     evaluate_0.11     labeling_0.3     
[25] knitr_1.20        broom_0.5.0       Rcpp_0.12.19     
[28] scales_1.0.0      backports_1.1.2   jsonlite_1.5     
[31] hms_0.4.2         digest_0.6.17     stringi_1.2.4    
[34] grid_3.5.1        rprojroot_1.3-2   cli_1.0.1        
[37] tools_3.5.1       magrittr_1.5      lazyeval_0.2.1   
[40] crayon_1.3.4      whisker_0.3-2     pkgconfig_2.0.2  
[43] xml2_1.2.0        lubridate_1.7.4   assertthat_0.2.0 
[46] rmarkdown_1.10    httr_1.3.1        rstudioapi_0.8   
[49] R6_2.3.0          nlme_3.1-137      git2r_0.23.0     
[52] compiler_3.5.1   



This reproducible R Markdown analysis was created with workflowr 1.1.1